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1 Proof of Lemma 1

Proof. When A(s) = A and the observation window is D,, = [0,7},] C R, we have that
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If we use the uniform kernel K(z) = $I(—1 < x < 1), the above equation can be further

simplified as

Qo) = g (T, — sh — 1) Ai(s)A] (s)ds

n Jmax(—r/h,—1)

)\2 r min[(T,—r)/h,1] -
S (1 _ ?) / Ay (s) AT (s)ds

A2 1 /min[(Tn—r)/h,l]

ax(—r/h,—1)
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A2 r N oh
= F (1 — an) Bl(T’) — FEBQ(T),

where By (r) is a (p+1) x (p+1) matrix whose (7, j)th entry is i+j1e1 (577t =g f77") and By(r)

isa (p+1)x (p+1) matrix whose (i, j)th entry is ﬁj(qzﬁj — @}, with g, = max(—r/h, —1)

and ¢, = min [(T,, — r)/h, 1]. O

2 Asymptotic Properties of Local Polynomial Estima-

tor

In this Section, we give detailed proofs of Lemma 2 and Theorem 1.



2.1 Conditions

The following conditions are sufficient for the asymptotic consistency of g, (r).

[C1] There exists a Cy such that the intensify function 0 < A(u) < C, for any u € D,,.

[C2] There exist positive constants ¢,, C, and C} such that (a) ¢, < g(r) < Cy; (b)
maxi<j<p+1 | [} (r)| < Cf for any 7 > 0 and that (c) [;°[g(s) — 1|ds < C,,.

[C3] It holds that (a) |g(k)(x1,...,xk)| < C, for any x; € D,,, j =1,...,k and k =
3,4,5,6; (b) [, 1957 (x,y) — g(lx—yl)ldx < Cy and (¢) [, [95"(x,y + w,w) —
g(x[Dg(llylDldw < Cj.

[C4] The kernel K (x) has a bounded support, say [—1, 1], such that fjl K(x)dz = 1.

[C5] As the bandwidth h — 0 and m|D,,|h(r + h)4~1 — 0o, there exists a constant ¢y > 0

such that

i [Qﬁfﬁl(r)] reh) >, k=1,2,

where 7,1, (Q) denotes the smallest eigenvalue of the matrix Q.

We need to make the following two additional assumptions for the asymptotic normality

Of gh(T).

[N1] Either one of the following conditions are true (a) m — oo; or (b) the mixing coeffi-

~4=¢) for some ¢ > 0.

cient satisfies ax(s;h™t, 00) = O(s
[N2] There exists § > 2d/e such that !g(’“)(xl, o ,xk)| <Cyforanyx; € D,,j=1,...,k,

k=2...,2(24+ [d]), where [d] is the smallest integer greater than §.

2.2 Sketch of the proof

Step 1 We first derive the asymptotic limit of solutions to U,.;,(6) = 0, namely, 8" defined

in the (A.1) in the next subsection. As a result, Lemma A.l gives the asymptotic



bias of the local polynomial estimator by quantifying the distance between 6* and

derivatives of f(r) = log[g(r)].

Step 2 Lemma A.2 gives the convergence rate of 0 to 6", which is of the order Op ( 1 >

\/m|Dn|h

entry-wise;
Step 3 Establish the asymptotic normality of 0-6 through Lemmas A.3 to A.5.

Step 4 Finally use the delta method to derive asymptotic distribution of g, (r) — g(r) based
on distributional results of 8 — §* given in Lemmas A.4-A.5, following the approach

proposed in Biscio and Waagepetersen (2019) .

2.3 The asymptotic bias

Suppose there exists a vector 8" = (65,67, ...,65)" € RP*! such that

/Dz AAV)wpp([lu =) [g(lla = v])) = grn(lu = v][;07)] G, ([lu - v[[)dudv = 0, (A.1)

where g,p(-;-) is defined in equation (3). Obviously 8" depends on n and h and r; i.e.,

0" =0,

n,h,r*

Moreover, since Ay(t —r) = D, 'G,(t), where D, = diag(1,h,...,hP), the

above equation (A.1) is equivalent to

/DQ AAV)wep([u =) [g(l[a = v])) = grn(llu = v]|;0")] Ap(flu = v|| — r)dudv = 0.

n

The following Lemma quantifies the distance between ¢(t) and g, ,(t; 0").

Lemma A.1. Under conditions C1-C5, we have that as h — 0,

W65 — U/ = Omrt), j=0,1,...,p, (A.2)

lg(t) — Grn(t;0%)] = O(WP*Y),  fort € [r—h,r+h. (A.3)



Proof. Define function

gro(t) = exp { f(r) + f ) (¢ = r) /L4 -+ fP () (8 — )P /o]

Then, from the Taylor’s theorem with Lagrange’s form of remainder

el eluiad

(p+1)!

g(t) = gro(t) = g(t){1 — exp [logg,o(t) — f()] } = g(t) {1 — exp {—

where r* is between t and r, and it is straightforward to show that

/2 wen([[a = vIDAAW) [g(lu = v]]) = gro(lla = vI)] An(lu = v = r)dudv

n

:/pwmwu—vmmmAwmmu—vm
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{ [ FE ) (o = vl = )P+t
1l —exp|—

(p+1)!

} Ap(|Jlu—v]| = r)dudv

Ap([lIsll = rl)ds

FE (sl = )+t
(p+ 1)

s@@m%Wﬂmwlme

where the last inequality follows from condition C1 and |D, N (D, —s)| < |D,]| for any
s € R% Combining conditions C2(a)-(b), C4 and the fact that |1 — e*| < |z|el*l, we have

that as h — 0,

(7‘+h)1_d/2 wrn([u = vIDAAE) [g(la = v[)) = gro(lu = v[)] An(flu = v| = r)dudv

n

c:c,C e C
< (];+91){ (r+ h)l_d/o |s — r|P™ exp {p——i—fl |s — T|p+1}Kh(s —7)Ap(s —r)s?ds
o0 Cphrt! r+sh\ !
=00t [ e { P b (TE)as
<1

= O(hHY).

By the definition of 8 in (A.1), using the above equation, it is straightforward to see that

(r+ h)l‘d/ wrp([[u = vIDA@AN) [g(lJa = v[; %) = gro([[a = V)] Ap([[a = v = r)dudv
D2 (A.4)

— O(h"*h).



Let a = (ag,ay, ..., a,)”, define the continuously differentiable function F : RPT! — RPF! as

follows

F(a) = (r+ h)l_d/Qwr,h(llu — VIDAWAWV)gan(lu = v[ = r) An([[u = v[| = r)dudyv,

where gq4(t) = exp {a”Ay(t — 1)} =exp(ag+ ai(t —7)/h+ -+ a,(t —r)?/hP). Recall
that g, (t;0) = exp (0o + 01 (t — 1) + -+ + 0,(t — )] = exp [(D0)" A(t — r)], then equa-

tion (A.4) immediately yields that
F(Dy0") = F(f(r), hf D (r) /1L, .. R FPH () fpl) = O(A"*), (A.5)

where D, = diag(1, h, ..., h?). The Jacobian matrix of F'(a) then becomes

J(a) - {8;5;1), - agéﬂ

— (r+h)" /D (o= VDA gan ([ = v = ) An(ju = v = ) AL (Ju — |

Plugging in ag = (log[g(7)],0,...,0)T back to the above equation, we have that J(ag) =
g(r)in%(r), where QSL(T) is as defined in equation (11). Using conditions C2(a) and
C5, we have that J(a) is strictly positive definite at ag = (log[g(r)],0,...,0)T and hence
det(J(ap)) > 0. Based on equation (A.5) and a simple application of the inverse func-
tion theorem (Burkill and Burkill, 2002, page 223) imply that F' is invertible near ag =

(f(r),0,...,0)T and as h — 0, one has that,
W0 = fUN ) /3] = O, j=0,1,....p.

Similar argument has been used in, e.g., Loader et al. (1996).

Finally, for any ¢ satisfying |t — r| < h, we have that

|9(t) = Grn(t:07)| = g(t) [L — exp [05 + O7(t —7) + - + O5(t = )" = f(1)]]

— r)dudv.



and

% % * D _ - 7i(n* 7 . t—r) p+1} % t—rPt!
T 00 =) e (0= = 1) = 3 05 = 100 ) Ly }(Tt)|(p+_’1)_!
P ; . C pil
<2 W0 = FI O + T
= O(h ).

Thus |g(t) — Gru(t;0%)] = O(hP*!), which concludes the proof. Note that, in particular,

| exp(05) —g(r)| = g(r)| exp(65—f(r)=1| < g(r)|05— f (r)| exp(|65—f(r)]) = O(R"*"). (A.6)

]

2.4 Proof of Lemma 2

The proof of Lemma 2 follows immediately from the following Lemma A.2 and Lemma A.1

in the last subsection, because

[Gn(r) — g(r)] < exp(65)] exp(fo — 65) — 1| + | exp(65) — g(r)]-
So, in this section we just prove the following Lemma A.2.

Lemma A.2. Under conditions C1-C5, we have that as m|D,|h(r+h)?* ' — co and h — 0,

- ar 1
16 — 6|, = Op <¢m|Dn|h(r — h)dl) : (A7)

where the norm ||x||7 = 22 + (hx1)* + - - - + (hWPx,,)? for any x = (g, 21, ...,7,)" € RFFT and

0" is defined in equation (A.1).
Proof. 1t is straightforward to see that solving estimating equation (4) is equivalent to max-
imizing the composite log likelihood function

m a
Lnl0) = =737 S wna(u = viDlog gea(fja = vI;:0)]
i=1 u,veX; (AS)

T D 2 3wl = vIDgeau = vi:0)

Z?éjil UEX,L' VEXJ'
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with respect to @, because 0L, ,(0)/00 = U, (0)/m. Note that the Hessian matrix

i1,(0) =2 Le®) 55 g > el =MDy a6 (1) G ()

T
0600 i#j=1 ueX;veX;

is negative definitive, which implies that L, ,(8) is a concave function of 6.
Let J,.n, be a sequence of positive real numbers such that J,,, — 0o as m — oo and/or
n — oo. We shall show that for any given €> 0 there exists a large constant C such that,

for large m and/or large n,

IP’{ sup Zr,h(e* + C’eJnfb},{z(s) < Zr,h(e*)} >1—c. (A.9)
[I16]|n=1

Inequality (A.9) implies that with probability tending to 1 there is a local maximum, denoted
as 0 = Emvn, in the the ellipsoid {0* + Codmil?8 16]|n = 1} centered at 6. It then follows
that Jmn||§ — 6%|)? is bounded in probability; i.e., ||§ — 6|7 = Op(J,,})

To show (A.9), let 8,,, be any sequence in {§ € RP*! : ||§]|, = 1} and define a function

of 2> 0 as
Hypn(2) = =L, (0 + an;}7{25m7n). (A.10)
Then
J—1/2 ~
H, () = =280 U (07 + 2,260 0), (A.11)
H), o\ (2) = =T 260 He (0 + 27,1 %6,00) 00 (A.12)

and by the Taylor’s theorem

2
Hpnn(2) = Hin(0) + Hy, o, (0)z + L, (8) 5

for any z > 0 and some 0 < ¢, < z, which implies that

Lo(07 4205128, ) = Lo (07) = iy (0) = Hyp(2) = —2 [H;7n<0)+ )], (a13)

2 m,n



By definition, H,,,(z) is a convex function of z since Hy, (z) > 0 for any constant z.
Therefore, to find a large enough C. so that (A.9) holds, it suffices to show that H), ,(0) =

O, |H! (t.)| for any z > 0. We first investigate H/ ,(0). By (A.11) and the definition of
p m,n m,n

6" in (A.1), we have that E [H}, ,(0)] = — {1717{2/7715517”?5 [U,.1(07)] = 0. Furthermore,

J-1 .

Var [H), ,(0)] = 2257 Var [Ur,h(e*)] S (A.14)
: m ;
and since X1, ..., X,, are independent replicates of the same Cox process
- * % 1 O\ *
Var |:Ur,h(0 ):| = Var Z Zl,’i — m Z Z ZZ,i,j(e )]
i=1 i#j=1
m *
= mVar(ZLl) + m\/ar [227172(0 )]

4dm(m — 2 N N "
ﬁCOV [Z27172(0 ), Z27173(9 )} — QmCOV [Zl,la Z27172<0 )] s
where
£
Zii= Y G(lu—=v|)wu(|u—v])
u,veXx;
Z5i(0) =Y > G(lu=v)gen(lu—=vl; @)wu(|[u—vl).
uelX; VEX]'

From a straightforward algebra and the definition of normalized joint intensities, we have

that

Var (Z;,) = /D4 Au)A(v)A ) AV)w, p([[uy — vi|Dwes(ug — vo )Gy (Jay — vi)
x Gy ([[ue = val)" [g“ (wr, vi uz, va) = g(l[uy = vi|)g(l[ue = val)] dusdvidusdv,
+ 4/[)3 M)AV ug)we s ([Jay — vi|)we s (|Jay — usl])
X Gy(luy = vi[) G ([luy — ua))"g® (uy, vi, up)duydvyduy

+ 2/13 Mu)A(v1) [wea(lfuy = vl Gr(l[ur = vil G ([[ar = val)Tg(lur — vi ) dwidvy,

2
n



Cov [Z1,1,Z5,12(0")] = / M) A(v)A(u) A(vo)w,p([[ur — vil)wen([uz — val[)Grn(l[uz — val|; 6)
D}
x [g® (a1, vi,w) — g([[r — vi])] Gr(lus — vi]) G, ([Juz — v2|) " duydvydusdv,
+ 2/ M) A(vi)A(ug)wrp([ar = vi|)wep(Jur — ual))g(flug — vi|)
D}

X Gra(lur — w2[; 0%) G, (JJuy — vi )G, (|[ur — uz))" duydv,dus,

Var [Zs,,5(67)] = /D4 A(u) A(vi)A(ug)A(va)wrn([lur = val[Jwrn(([ug = val])
X Gran(lar = val[; 07)grn(lluz — v2[;07) [g(lfar — wal[)g([[va — vall) — 1]
x G(|[ug — vi|)G.(|Jug — vo||)* durdviduydv,
+2 /DS Au) A(vi)A(ug)wrp([far = vl )wes(lfor = wal))grn((ur — vill;67)
% Gran(|lur — 2]l 07)g(vi — w2 NG ([ur = vi[) G ([[ur — o))" durdvidu,

+ /2 Au)A(v)wi, ([[ar = vil)g2, (lug = vi|; 69) G (luy — vi)Gr(JJug = vy ||) " duydvy,
Dn

and

Cov [Z2,12(67), Z2,1,3(07)] = /D4 A(a) A(vi) M) A(va)wrp([Jar — vi|)wyn(([us — valf)
X [g([[ur = uzl) = 1] grp(llur = val; 07)grn([luz — v2||; 07)
X G ([[ur = V1[G (|[uz = v2[)" dusdugdvidvy
+ /D3 Aun) A(vi)Auz)wpp([[ar = vl Jwra(llur = wzl))gra(llur — vill; 67)

X Gra(llur — w2l 0%) G, (Juy — vi )G, ([[uy — ua))" duydvdus.



Therefore, substituting the above terms in Var [ﬁr,h(e*)} , we obtain

m~Var [U,,,(67)] = /D MDAV AV (= val g (Juz = vall) [0 (w1, v, . v2)
— g(luy = vil)g(lluz = vo|)] G, (luy = v1[) G, (Jlug — o) duydviduydv,
— 4/174 M)A (V1) A () A(va)wpn(|[ur = v [ wrs([ug = v2 ) [g® (1, vi, ug) — g(|lug — va )]

X Gra(lluz = va||; 6°) G, (lur — vi )G, (|Juz = v2|) " duydvidusdv,

+ m2_ 1 /D4 Aa)A(vi)A(a)A(v2)wpp(flur = vilwen(laz = val)) gra(lar — vil; 67)grp(l[uz — vo|; 67)
x [g(lay = ug|)g(llvi = vall) = ]G, (Jluy = v1[)G,([[uy = va|[)" duydv,dugdv,
+ '4:?__12) /D4 A(un) A(vi)A(u2) A(va)wpp([[ur = vil[Jwrp(lluz — va)[g([[ur — vzlf) — 1]

X Gra(|lwr = vil[; 0G0z — val; %) G, ([[ur = vi[) Gy ([[us — v2[)T durdusdvidvs

+ 4/D3 Au) A(v)A(u)w,p ([[ur = vil)wep([ur — ua))g® (ug, vi, u)
X Gy([lug = vi])) G (|Juy — w])" duydv,du,

- 4/]33 A(un) A(vi)A(uz)wpp([[ur = vilJwpa((fur = wzf]) 2g([[ar = vil]) = grn([[ur = vi[; 7))
X Gra([ur = wol[; )G, (Jlur — vi[)G, (|l — wz]))* dusdvidu,

4

+ m/ A(a)A(v)A(ag)wr p([lur = vil[we (o = vzl gr (o = val); 67)
—1 Jps

% gra(lur = all;07)[g(llvi — w2]]) = G, ([u = vi )G ([ — )" duydvidu,

+ 2/1)2 M) A(v1) [we(lur = vil)? g(Jur = vill) Gr(Jlur = vi]) Gy (Jlug — vi )" duydvy

n

2 - X
+—— /2 Au)A(v)w?, ([[ar = vil)gz, (JJur = vi|; 69) G (luy — vi)Gr(JJug = vy |) T duydv,
o DTL

Note that by definition, 5%71(}’,,@) =nl  Ap(t—r), wheren,, , = D;'8,,, and ||n,, ,[|* =

|6m.nlln =1, which implies that
2
10 nGr(D)* = |13, 0 An(t = 1)|" < AR = 1) P[00l = [| ARt = 7)* < p +1

for any r — h <t <r 4+ h. Therefore, from (A.14) and under conditions C1, C2(a)-(b), C4

10



and equation (A.3), we obtain

M Var [Hy, ,(0)] = O(1) /4 wen(ur = vilwrn(|lue = val)[g? (ar, vi, uz, v2)
D

n

— g([luy = vil)g([luz — v2))|duydviduydvs

+O(1) /4 wen(lur = viDwen(Jus — va[)g® (wr, vi, us) — g([[ar — vi])|dardvidusdvs
D

n

1
+ 50(1) /4 wyp([[ur = vi])wep([uz — val)g([[ur — wzl))g(l|vi — v2||) — 1|duydvidusdvy
D

n

+ 0(1)/ wyp(ur — vi|)wep(Jug — val)|g(|lur — uzf]) — 1jdu;dusdv,dv,
D4

n

+ O(l)/ wep([[ugr — vi|))wyp(Jur — vg||)duydvidug
3

n

1
+ EO(U /3 wyp([[ur = vi])wep([[ur —wz)|g(|lvi — uz||) — 1|duydviduy
D

n

vow [ s =il dusdvy
~omin, [ Kl = (] = o+ w0) s st
~owin,[ [ sl =)l = )lg® 5, ) = e
+ ol [ sl =] = PlawIhaCe —s + w) ~ Tldsdiaw
+owip,|" [ % sl — )l - Plg(Iwl) — 1idsdcw
~owin,[ [ ] =]~ ryasat
+—owin [ sl =)l = s — )~ 1dsat
+OIDI [ (s - ) ds
= 0(1)yDn\1/Ooo Khzs —r)sTlds /OOO Ki(t —r)t*tdt

LoD, / " [Kals — ) st ds,

where the last equality follows from condition C3.

11



Finally, using condition C5, we have that

T Var [, (0)] = O(1)| Dy /0 T K (s —r/h)stds /0 TRt — /)y at

+0)|D,| 'ht /000 [K (s —r/h)]* s 1ds

=O0(1)|D,|™ { _ojh K(s)(r + sh)dlds}
+O0(1)| D, *ht /_Oo/h (K (5)]? (hs + )% 'ds

(r+ h)“—?) ((7’ + h)d—1>
o (") o (M
| D | Dn| 1
B (r+h)dt
o (")
Combing with the fact that E [H}, (0)] = 0, we have that

H.,,(0) = Op ( (rt )= ) | (A.15)

v m|Dplhd

Now we proceed to study H,, ,(t.). Let 6 = é:m =0"+ tZJn_fr{?&mm and note that

)

J 2 ~ % 2
Var [Hy,,(t.)] = ﬁ\/ar > wella=v)gen(lu—v|[;07) [87, ,Gr(lu—v|)]

ucX; veXo

12



Some tedious algebra gives that
Tmnm(m — 1) Var [Hy, (t.)]
= 2/[)4 M)AV ) A(va)wen([ar = vi [ ([[uz = Val)gen ([t = vall; 67)grn(luz — v2/; 6°)
< Loy — walg(lv: = val) = 1 [67,, G, (s = val)]? 87, G (lluz — va)] dusdvidusdv,
+ 4/[)3 M)AV ) w,n ([ = valwpn ([ = vsl)ges((fuy = val; 67)
X Gen(|lwr — usl;0)g([lvi — wal]) [0, G (|[ur — V1||)}2 167, Gr([luy — u2||)}2du1dV1duQ
+ 2/]3 M)AV w?, ([ar = vi )32, (lay = vall; 0)g(|[w = vi ) [65,,,Gr(|[uy — V1|m4du1dV1
+4(m —2) /D4 Au) A(v)A () A(va)wrp([[ur = vil[Jwrn([luz = va[)[g([lur — uz]]) — 1]
< Grn(lur = vill:0)grn(llaz = vall: 6) [87, ,Gx ([ = vil])] " [87,, G ([Juz = val))]” durdusdvidv,
+4(m —2) /D3 M)AV A2)wn (ar = vi e a((w = az])gen(|las = vi; 67)
X G ([[ur — ug; é*) [5;“6’7«(“111 — VlH)]2 [5£’HGT(||u1 — uQH)}Q du;dv;dus.

Recall that we have shown that 8] G,(t)]> < p+ 1 for any r — h <t < r+ h. Then

under conditions C1, C2(a)-(b), C3 and equation (A.3), we can further simplify J2, ,m(m —

13



1)Var [H), . (t.)] as follows
J2 m(m — 1)Var [H}, (1)
=0(1) /134 wep([lur = vilwen(|laz — va|)g([[ur — uzl))g([|vi — va|) — 1|dudvidusdvsy
<00 [ wealllon = villwns (= vl dwdvidus +001) [ wfy(ur vy,

+mO(1) /4 wyp(||ar = vil)wen(|lug — val)|g([Jur — uzf]) — 1|duidusdvidvy
D

n

+mO(1) /3 wyp([[ur — vi|)wyn(]Jur — uz||)duydvidug
D

n

= O(1)| D, /Dg En([Isll = ) Ka(l[t]l = r)lg(IwlDg(([t —s + wl]) — 1|dsdtdw

+O(1)|Dn|_1/DQ En([Isll = ) Ka(lt]] —T)dsdtJrO(l)anl‘l/ [K(lls]| —r)]* ds

n

+mO(1)|Dy| ™ /D3 En([[s]l = r) EKn([[t] = r)lg(lw]]) — 1|dsdtdw

+mO(1)| Dy / Kn(lsll = r) Kn(llt] — r)dsdt
D3

2

=0, [ IRl = s s 01D, | [T Ra(s = sty

o) o0

B O<1)|D”|_1h_1/ [K(s))" (4 sh)*™ds + mO(1)| D™ [ K(s)(r + sh)d_ldJ

—r/h —r/h

Then, by condition C4, we finally have that

(r+ h)d-1
|Dy| b

m(r + h)%4=2

J3 am(m —1)Var [H), . (t.)] = D,

o) + o),

which implies that

(r+h) (4 h)2d2> |

Var [ (t)] = Al
ar[ o )} O(‘]g@,nm2’D”‘h J2 m|Dy| S

On the other hand, we have that

E[Hy ()] = T /D2 M)AV W, (Jar = Vil gen(luw — v ;07 (67, .G (|luy — v1\|)]2du1dv1.

n

Observe that by definition 5ﬁ7nGr(Hu1 —vi) = 0l An([luy — vi| — r) with [|n,,.[> =1
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and the fact that the smallest eigenvalue satisfies the condition

i [ Q11| = Jnf " QUL

Using definition of Q;lgl(r) in condition C5, we have that
E [JmaHy o (t)] = 9(r)imin | QU] = / RACOACATE A
Dn
X [ér,h(th —vi];6") — 9(7“)} [67,,.G(Jlus = vi )] dusdv,

_ o) /D il = vil)

Gen(luy — v ];07) — g<r>\ duydv,

:CXDAwKMs—ﬂ

Gon(5:87) = g(r)] 5.

Note that by the definition of 0 =0+ tZJ;L},{zémm and equation (A.2) of Lemma A.1, it is

straightforward to show that

=g(r)

|
= (p+1)!

- N ] . . " t_ r p+1
exp ( <9;‘< — f{]}(r)/]!> (t—r) — f(p-i—l)(rt)( ) 1
and for any r — h <t <r+ h,

(t—r)
i

(5 = £ ) /5t) (¢ =Y =1 (8; = 1P ) /) ‘ er)j

o . L (t=Tr) N
smwr%mmeLﬁl+m%mwmm

s

—-1/21j
+ ZO‘]m,r{ h]5m,n,j+1

= O(h ' + J /%),

which implies that

Therefore, we have that, under conditions C4-C5,

3 . B oo r+sh\ 4t
(17 (B (0] = steI [QR )] } = 0020 [ i) (1) s
<1

_ O(Jn_zlr{Z + hp-i—l).
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By condition C2(a) and C5, the above equation gives that
(r+ 1) E [Jun ) ()] = g0 + O, % + hPH). (A.17)

Hence for the constant ¢ = cycy, by an application of the Chebyshev’s inequality we have
that
P {(7“ R T HY () < g}

:P{M#%Aw E [JnnHipalt:)] ¢ Eummm@ﬂ}

)T (r ) 2 (r k)
T HY (8) — B [y HY (2 E [y H (2 E [y H (E,
o p [ nain(t) =B U Hin(®)]] e B Unaan(®)] ||| (B Dniat)] e
(r + h)i 2 (rt h)yi r+h) 2
E [JnaHya(t:)] _ ¢
wHn(t)] _ ¢
”{ e h)i 32

Var [(r + h)' 4, HY (£)] E [JonHpa(t)] ¢ E [l a(t)] _
N ‘0/2 - E [(T + h)l_dJmanz,n(tz)] ‘ZI { (r+ h)i-t g 2 } 1 { (r+ h)d-1 = 2

= O(1)Var [(r + h)' T, Hit o (22)] + o(1)

(r+ h)t—d 1
f— 1
0 ( Do Cmipny) O

where the last equality follows from equations (A.16) and (A.17) as J,,,, — oo and h — 0.

Therefore, as long as m|D,|h(r + h)4™1 — oo, J;u, — 00 and h — 0, we have that
1—d " CoCyg
P{(r+h)' () 2 52 = 1, (A.18)

where ¢, and ¢ are constants defined in conditions C2(a) and C6, respectively.

We have already shown in equation (A.15) that

(r 4 h)@-D/2 )

H (0)=0
m,n( ) P( Jm7nm|Dn]h

hence as long as % = O(1), we have that H), ,(0) = Op(H), ,(t.)). In other words,

by taking Jy,,, = m|D,|h(r + h)'~=¢, we have that
P{|H,,.(0) > SH, ()} < e,

16



where € can be arbitrary small by choosing z and m and/or n large enough. Therefore, with
Jmn = m|Dy|h(r + h)'~¢, for any given ¢ > 0, there exists z. > 0 such that for large m

and/or n,

B 5 2
P {th(e* + 2e 28 0) < Lr,h(e*)} =P {zﬁH;n’n(O) + %H;;,n(t%) > o} >1—e

Thus, (A.9) holds, which completes the proof of equation (A.7). ]

2.5 Proof of Theorem 1

Define two random vectors

m  #
1
Zi=—>_ > wallu=vl)Au(u—v]-r), (A.19)
i=1 u,veX;

Z,(0") = _1 ZZ S wenlfu = vIDgen(lu = v[; 09 A(lu = v]| = r)A.20)
i#j=1 ueX; veX;
By definition of 6" in (A.1), we have that

EZ, = EZ, = /D2 AWAWV)w,p([Ju = v]))g(JJlu = v])Ar(]Jlu — v|| = r)dudv.  (A.21)

Lemma A.3. Under conditions C1-C5, as h — 0 and m|D,|h(r + h)4™1 — oo, we have

that,
(mIDoW)Var (Z1) = 29(r)QE)(r) + O(h(r -+ B, (422
(mIDLR)Var (2589 = —2—(r)QE) + Oh(r + B ), (A2)
(m|Dy,|h)Cov [Z1,Z5(6%)] = O(h(r +h)*), (A.24)

where in(r) is as defined in equation (11) and the convergence is entry-wise.

17



Proof. Under conditions C1-C5, using similar arguments as those in the proof of Lemma A.2,
we can immediately show that

mVar (Z;)

(r+ Ryt (r+n)t /D% A(a)A(v1)A(2) A(va)wp s ([ur = vilwes([uz = va ) [g™ (a1, vi, ug, va)

— (a1 = viDg(luz = va D] Ar(Jus = vi| = 7)Af (J[uz — v2|| — r)du;dvidusdy,

+4(r + h)l—d/

AuD) AV u2)wen (= vilwra(llur = uz])g® (ar, v, us)
D3

X Ah(Hul - VlH - 71)44h(Hul - u2H - T')duldvldllg

Alug)A
+2/ Aw)Av) (d"_ll) [wen(ur = vi D g(lhwr = vi ) An([w = vi |l = 7) AL (ug = v || = r)duydvy
p2 (r+h)

:2/ A(ug)A(v1)

Ot ) [we(luy = vi )] g(|[ur — vil)) An(|[ur — va|| = 1) AL (lug — v || — r)dudvy
+O(|D,| ™)

=29 DL [ M A fnahs =il An(ls = il = AT s = vi| - sy,

+ O(|D,| ™),

where the last equality follows from C4 and the fact that |g(t) — g(r)] = O(h) for any

r—h<t<r+hash— 0. Similarly, we can show that under conditions C1-C5, we have

18



that
mVar [Z5(0")]  2(r+h)'?
(r+h)-1 — m-1
X Ah(||u1 — V1H — T’)A,}I;(Hul — V1|| — r)duldvl

4(r + h)t-4
m— 1

/02 M)A (vi)w?, ([Jug = vil))gzn(luy = vill; %) g([luy — vi )

/D3 A(an) A(vi) A(uz)wr p ([l = va|wrp(llar = vzl gra((lur = vl 67)

X Gra(llur — wzl|; 0%)g(|[vi — wol|)Ap([Jur — vi|| = r) AL ([[ug — wp| — 7)duydvidu,

(
" 4(77:—_12) /D3 i (r)+(h)21)\E 2 wyp([ar = vl )wen([[ar —az)grp(lfuy = vill; 0%)Grp(l[u — uglf; 07)

X Ah(||u1 — V1|| — T)Ag(”ul — UQ” — T)duldvldu2

- m2_ 1 / )‘(ul))(‘i"i);‘)(izl)k(vgwnh(Hu1 = Vil )wrn([luz = val)[g(lur = waf[)g(lvi = val[) = 1]
< Gl = vl 6z — vall 6 A — v | — 1) AL (112 — val| - r)duy v, dusdv
o D) [ A v = vl i)~ 1

)
X Grn(lwr = va[[; 0)Grn([lus — vall; 0°) Ap([lur = vi]| = 7) A5 ([ug = vo| — r)duidusdvidvy

22\ (up) A(vy) wr([w = va g, ([lan — val; 67)

Ap(lur = vill = 1) Ay (luy = vil| = r)durdvy + O(|Da| ™)

m—1 (r + h)d-1
2g°(r) {1+ O} [ Aw)A(vi) o T -1
oy o1 el = Vil Al = vall =) AT (s = vall = r)duadvi +0(1D,[),

where the last equality holds because (A.2) implies that for any r — h <t < r + h,

1924 (t:07) — g*(r)] = g*(r) lexp(2 {logg,n(t; 07) — f(r)}) — 1] = O(K"*),

19



and that

mCov [Zy,Z5(0%)] A(up)A(vi)A(ug)
(r+h)-t 22 /D% (r 4+ h)d-1

X Ah(||u1 — V1|| — ’I")Ah(Hlll — UQH — ’I")lelldvldUQ

M) A(vi)A(uz)A(va)
2 /Dﬁ (r + h)it

wnh(”“l - V1H)wr,h(HU2 - V2H)g(3)(u17 Vi, u2)§r,h(\|uz — vo[;0%)

x Ap(|Juy — vi|| = 7) AT (JJug — vo|| — r)duidv,dugdvs

A(up)A(vi)A(u)A(v2)
—2 /D% T

wyp([[wr = vil)wpp([[ug = val[)g(llur — vil[)grp(l[uz — val|; 6%)
X Ap(|luy — vy — ’I“)Az:(”llg — va|| — r)duydvidusdvy
= O(|D| 7).

Combining above three equalities, we can conclude that as h — 0

(m|Dy|h)Var (Zy) = 29(r)Q),(r) + O(h(r + h)*),

2
(m| D[ ) Var [Z5(87)] = —=—=g*(r)Q,,(r) + O(h(r + h)*™),
(m|Dy|h)Cov [Z1,Z5(0%)] = O(h(r+ h)*"),
where Qf;l(r) is as defined in equation (11) and the convergence is entry-wise. O

Lemma A.4. Under conditions C1-C5 and N1-N2, we have that, as h — 0 and m|D,|h(r +

h)41 — oo,
m| Do |h %% (67) [Z1 — Zo(67)] 2 N(0,1), (A.25)
where X7(0%) =2(m — 14 g(r))/(m — 1)g(T)Q7(12;L(T) with Qg;l(r) defined in equation (11).

Proof. By equation (A.24) of Lemma A.3, we can see that Z; and Z,(6") are asymptotically
uncorrelated as h — 0. Hence, it suffices to consider asymptotic normality of (r+h)(1~9/27Z;,
and (r + h)(1=D/2Z,(0*) separately. We divide our discussions into two case scenarios: (1)

m — oo and (2) m is fixed.

20

wyp([lur = Vil wes(flur — ugl))g(JJur = vi|])gra(|Jur — us|; 8%)



Case I: when m — oo. In this case, from equations (A.22)-(A.23), we can see that as

m — oo and h — 0,

Vm|Du|h {Z5(6%) — E [Z2(6")]} = op((r + 1)\ D7),

which implies that

m| Dy |h[Zy — Z5(07)] = /m|Dp|h (Zy — EZy) + 0, ((r + h)@=D/2),

since EZ, = E[Zy(0%)]. Let Y; = (r + h)0—9 /QZuvex wep(f[u = v[)AR(Ju — v| —7),
then (r + h)U=9/2Z; = L3™" Y, By definition, Y;’s are independent and identically
distributed, thus it immediately follows from the standard multivariate central limit theorem

that as h — 0 and m — o0,
[Var(Z,)]™V? (Z, — EZ,) 3N(0,1),

which coincides with (A.25) after plugging (A.22) back to the above equation and use (A.23)-
(A.24) to obtain the asymptotic variance of \/m|D,|h[Z; — Z3(67)].

Case II: when m is fixed. In this case, condition m|D,|h — oo requires that
|D,| — oo. In other words, we need to consider the case where the observation win-
dow of the point processes is expanding. Define a partition of R? = UczaA,(t), where
An(t) = TTE (W Y40 + B)Y4Y (b, — 1/2), =Y + R)Y4Y(t;, + 1/2)]. Note that by this
definition, Ay (t;) N Ay (ty) = 0 if t1 # t, € Z9. Define random vectors

¥ () - 20y SIS vl v - 1),

=1 ueX;NAL(t),veX;

You(t) = ‘D I FEY EX wallu vl vl )4 - vl <)

i#j  ueX;NAL(t),veX;
Then by definition, we have that

2= D, thYl” Zs ~ D, |hZ

teTn teTn
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where T, = {t € Z%: A,(t)N D,, # 0}.
Under conditions C4-C5, it is straightforward to see that there exists a constant C; such
that

| Dn|hwrp([[a = vID[An([[u = v[| = )| < CiI([[[u = V]| =r| <h).

A simple application of the Jensen’s inequality gives that (m=' Y"1 |z;[)2F1 <m=1 Y7 |20

(note that f(x) = x>+ is convex for 2 > 0)

244

5
E[Y, 2+H <= Z]E ZZ | Dy |hw,p(JJu = v])) Ap(JJlu — V|| —7)
ucex; ﬂAh( VGX
2+[9]

#*
“E| S aka(lu—vi) Al - vl = 1)
ueleAh(t),vexl
2451

#

<ES Y3 hEy(lu—v])Au(u - v]| - 7))
ueX1NA(t),veXy

24487

#
<GTES S Y Y Illllu—vll-rl<h) :

uEXlﬂAh(t),VEXl

where the last expectation is essentially bounded by sums of integrals involving A(u), g(s),

g®(uy,...,ug), k=3,...,2(24 [§]). Specifically, note that

#
El Y>> I(llu-vl-rl<h

ueX1NAR(t),veXy

/ / Vv)go(|[lu—v|)I (|[[u—v| —r|] <h)dudv
Ap(t n
= [ (I Qg = vl < b

/ A(uwA(u—h)I(u—h e D,) du] dh
Ap(t)

01) [ oAl =+ <) | [ 7wt e D,)du] an
= O()|An(t)] /Rd go(|[M[) I ([[]f = < h)dh
= O(1)h ™ (r + ) /000 I(|s—r| <h)s™ds = 0(1).
All other terms can be similarly shown to be of the same order under conditions C1-C3 and
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condition N2, hence these integrals bounded for any d > 1 and uniformly in ¢ and n. Recall

that ¢ is defined in condition N2. Therefore, we have that

2496
2+[4]

sup sup E [Y,,(t)[*™ < (Sup sup E |Y1,n<t)|2+“”) < . (A.26)

n>1te7y, n>1te7y,
Similarly, using equation (A.3) in Lemma A.1 and condition C2(a), we have that g, (t; 0")

is also uniformly bounded and following similar arguments as above, we can show that

2445

241387
sup sup E | Yo, (t)[*1 < (sup sup E [Yo,(t) |2+W) < 0. (A.27)

n>1teT, n>1teT,

Note that the total number of disjoint partitions A, (t) N D,, # () is of the order | D, |h(r +
h)4=1, hence we can check that, using equations (A.22)-(A.23),

Var [ Yia(t)] _ Var (|Dy|h Zy)
| Dy |h(r + )1 1D,y |h(r + h)d1

Var [32,c7, Yon(t)]  Var[|D,|hZ,(6")]
| Dl (7 + )™ | Dal i+ )™

= |D,|h(r + h)l_d\/ar (Zy),

= |D,|h(r + h)' " Var [Z,(6*)],

both of above matrices have strictly positive eigenvalues under condition C5 and Lemma A.3.
Therefore, using conditions N1(b) and N2, together with inequalities (A.26)-(A.27), it follows

from Theorem 1 of Biscio and Waagepetersen (2019) that as |D,|h(r + h)?! — oo,

{ Var

which is equivalent to stating that

—-1/2
ZYk,n@)” S [Yiult) ~EY,u (] BNOT), k=12,

teTn teTn

[Var(Z,)]"V? (Z, — EZ,) 3N(0,1),

and
{Var [Z5(6%)]} 1/* [Z,(8") — EZ5(6")] 2N (0,1).
Recall that by Lemma A.3, Z; and Zy(0") have finite variances and are asymptotically
independent as h — 0, and that EZ; = E [Z,(0")] by definition, we can conclude that
{Var(Z,) + Var [Z,(6%)]} /* [Z, — Z,(6")] B N(0, 1),
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which coincides with (A.25) after plugging (A.22)-(A.23) back to the above equation. The

proof is complete. O]

Lemma A.5. Denote 0 as the solution to estimating equations (6), then under conditions

C1-C5, N1-N2, we have that, as h — 0 and m|D,|h(r + h)*! — oo,

[ (G- ) |
~ hél—ef 1 r 1-d
pu@-o= | " = fao] [Zrzxe*)w( %ﬂm&
_hp(ép—Q;)_

where Zy and Zy(0%) are defined in (A.19) and (A.20), respectively.

Proof. By the definition of U, () in (6), since G,.(t) = D, Ay(t —7), solving U, ,(0) =0

is equivalent to solving V,.,(8) = 0 for 8, where V,.;,(0) = D, U,.;,(8); i.c.,
1N &
= — —_— A —_— —
mz:: Z w(lle = v[)Au([u = v|[ —7)

) ZZ o> wea(lu = vIDAw([u = VI = 1)gen(lu—v]; 6).

i#j=1 ueX; veX;
Using the first order Taylor expansion, we can show that
Vr,h(/e\) _‘N/T,h<9*) = _I:Ih,T(é*)Dh(/é - 0*)7 <A29)

0

where " satisfies |8 — 0%, < Ha — 0%||, with || - ||, as defined in Lemma A.2 and

= wrh !u VH) .

H,,.(0 ZZ > Z Ap(lla = vl =) A (lu = vI| = 7)gen(lu = v]|; @A.30)
i#j=1 ueX; veX;

By definition, we have that for any r — h <t < r + h,

~ * ~ n* ~ * * N* * N t—r P (n* N* (t_r)P
197t 07) = Grn(:0°)] = G (8 07) |1 — exp |05 — g + h(07 — 07)—— -+ h7(0, = 0))—

< Gon(t:0°)V/p+ 118" = 0" lhexp (Vo + 187 =071
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where the last inequality follows form the fact that |1 — e*| < |z|e/*! and Cauchy-Schwarz

inequality. Since [|0" — 6", < ||6 — 6*[|, = 0, (1/\/m|Dn|h(r + h)d_l) by Lemma A.2, we

have that

Tmax [I:Ih,r(é*) - I:Ih,r(e*)} = sup 6" [I:Ih,r(é*) - I:Ih,r(e*)} o
l[6]1=1

cap YT Y el = 5 A - v -
(
m(

Gra(lu=v];0°) = gn(lu—v]; 67

16]l=1 i#j=1 ueX; veX;

DI

l18]=1 i#j=1 ueX; veX;

Ju - V”)[JTAh<||u vl = PGl — v]; 6)

mim —

< Vp+ 108" =0 [lnexp (Vo + 116" 7))
= s [ (8] 5 /0418 — 0" exp (Vo 1187 — 67
= s [F,(87)| Oy (1/3/mI Dl + 1)71)

Following exactly the same steps, we can also show that
—Tmin [I:Ih,r(é*) — I:Ih,r(e*)i| = Tmax |:_I:Ih,1"<é*) + I:Ih,r(g*)]

= Tlmax [I:Ih,r(e*)] O, <1/\/m|Dn|h(7~ + h)d—l) :

which implies that

H,,(07) — Hyo(67) = fona [ﬁh,T(e*)] 0, (1 I/ mlDulh(r + h)d—1> , (A.31)

where the convergence is entry-wise.
The next step is to quantify the variabilities of entries in f{h,r(e*), denoted as H;;’s.

Following steps as those in the proof of Lemma A.2 about Var [H, , (z)], under conditions

25



C1, C2(a)-(b), C4 and equation (A.3), some tedious algebra give that

m(m —1)Var (Hy;) = O(1) /4 wrn([[ur = val)wrn(lluz = val)lg(ur = walg((lve = v2l) 1|

n

du1 dV1 dllg dV2

+001) [ wna =il — walhdusdvidus +0(1) [ wly (s = vil) dusdv,

n DTL

+mO(1) /4 wyp(||ar = vil)wen(|lug = val))|g([lur — uzl]) — 1|duidugdvidv,
D

n

+mO(1) /3 wyp([[ur — vi|)wyn(]Jur — uz||)duydvidug

n

— 0()|D.["! /D Ealsl = ) Ea(lt] = P)lg(iwlg(lt = s+ wl]) - 1]dsdtdw

+O(1)|D,| /D Killsl — ) i8]~ r)dsd + ()] D, / K (|ls]] — )] ds

n

+mO(1)| Dy~ /D3 En([sll = ) Kn([[t] = r)lg(lw]]) — 1|dsdtdw

+mO(1)| Dy / Kn([s]l = r) EKn([[t] — r)dsdt
D

_ 0(1)|Dn|‘1/000 (Kn(s — )2 s Lds + mO(1)| Dy~ (/OOO Ku(s — r)sd_lds>2

o0 [e.9]

= O(l)|Dn|_1h_1/ K(s)(r+sh)d_1ds)2

o [K(s))” (r + sh)®ds + mO(1)|Dn|_1(

—r/h

Then, by condition C4, we finally have that

(T + h)dfl (7“ + h)2d72

Hi' - 7 1 P A
Var( J) m2|Dn|h ()+ man|

O(1) — 0, as m|Dy|h — oo,
which gives that as m|D,|h — oo,

(- h) T, (67) = (1) [F1,,,(67)] + 0,(1). (A.32)
Next, we study E [f{hm(o*)} . By definition
B [1,(6%)] = [ A@AW)a(lavI) A (fu-v] =) AT (vl (fu-vi] ) dudy,
Recall the definition of QS;L(T) in equation (13) and the fact that for any r — h <t < r+h,

|G n(t;07) — g(r)| = g(r)O(h?™') by Lemma A.1, following the similar proof as that of
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equation (A.31), we have that

(r+ 1) {E [H,(09)] = g(r)QULE) } = (r + )90 mmae [ QU (1] O(R). (A.33)

Using condition C5, equations (A.32)-(A.33) shows that nyax [I:Ihm(ﬁ*)} = o,((r+h)?1),

which further implies that using (A.31), one has that

(r—f—h)l—d)
vm|Dy|h |

Furthermore, under condition C5, equations (A.32)-(A.33) also implies that Hy,.(8%) =

H,,(0") = H,,(0%) + 0, (

Q(T)QS%(T) + Op(h(r + h)*1) + 0,((r + h)*~!) and hence that

~ %k

H,,(8") = g(NQUL(r) + Op(h(r + h)™1) + 0,((r + B)") + 0, (%) |

Plugging the above equality back to equation (A.29), one has that

P POV OV ) ik R PP
vr,hw)—{g()cz 2(r) + o((r + BY) + p(m>}nh<e o),

which further gives that, under conditions C2(a), C5 and use Lemma A.2, one has

3 e 1) R N 1o 1
DACERE [()Q ()} [VT,h(9>+ ”<\/m|Dn|h(r+h)d—1>]' (A.34)

The proof is completed by observing that the definition of Z; and Z,(0*) gives that V,.,,(8%) =

[Z, — Z,(67)]. ]

Proof of Theorem 1. By applying the delta method to g,(r) = exp(éo): exp(eTa), where

e=(1,0,...,0)T, with Lemmas A.4 and A.5, we have that

/M| Dy [ (r) — exp(65)] ZN(0,1).

exp<es>\/ 2m — 1+ g(r)/(m — Dlgr)] e [QU0] T QA0 [@U0)] e
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By equation (A.6) in the proof of Lemma A.1, we have that exp(6;) — g(r) = O(h**1).

Therefore, it readily follows that

VDL (3(r) — g(1)
exp<es>\/ 2m — 1+ g(r)/(m — Digr)] e [QU0] T QA0 [Q10)] e

_ v/MIDuh [gu(r) = exp(6y) + exp(8) — g(r)] +0,(1)

\f2m 1+ g/~ 1gt)e” [ )] @i [@lhin] e
D (1) — exp(83) + 007

¢2<m—1+g<r>>/<m—1>g<r>ef’ Q] Qe Qb)) e

which completes the proof. ]

3 Asymptotic Properties of the Orthogonal Series Es-

timator

In this Section, we gives detailed proofs of Lemma 3 and Theorem 2.

3.1 Conditions

The following conditions are needed for consistency of the orthogonal series estimator (10).

[C4’] For some v, > 0, the approximation error (14) satisfies (a) fOR wo(1)C3 (13 8)dr =
S 61 = O(L1); (b) $upocyr G073 80)] = O (L7 for some 0 < 7, < w:
(c) supge,<r @ ()] = O(L"?) for some 0 < 1, < vi; and (d) the weight function is
uniformly bounded, i.e., w,(r) < C, for any 0 < r < R.

[C57] As L — oo, there exist constants ¢y, vy where 0 < 21y < 14 — 1, such that

Thmin (QL) > COL_VUa
where 7,1, (Q) denotes the smallest eigenvalue of a matrix Q.
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The following additional conditions are needed for asymptotic normality.

[N1'] Either one of the following conditions are true (a) m — oo; or (b) the mixing coeffi-
cient satisfies ax(s;2,00) = O(s74¢) for some &’ > 0.

[N2'] There exists ¢’ > 2d /e’ such that ’g(’“) (x1,. .. ,xk)| <(Cyforanyx; € D,,j=1,...,k,
k=2,...,2(2+ [0).

[N3] For r € [0, R], define the vector £(r) = (Qr) " ¢~ (r) and its standardized version
£o(r) = ||€(r)|| " €(r). Assume that as m|D,,| — oo and L — oo, (a) there exists some
constant ¢, > 0 such that £ (r) Xy (0*)€(r) > ¢, with y(0*) = Var [\/mfh(@*)} ;
and (b) the basis functions satisfy fOR [wo(s)|ﬂg(r)¢L(s)|]QHM ds < Cy, for some

C¢>O.

3.2 Sketch of the proof

Step 1 We first derive the asymptotic limit of solutions to Uy (8) = 0, namely, 8* defined
in the (A.35) in the next subsection. As a result, Lemma A.6 gives the asymptotic

bias of the orthogonal series estimator of g(r).
Step 2 Lemma A.7 gives the convergence rate of 8 to 8*, which is of the order ||§ -0 =
O, | 22— |;
g (\/mDn)
Step 3 Find the asymptotic normality of 06 through Lemmas A.8 to A.9, following the

approach proposed in Biscio and Waagepetersen (2019) .

3.3 The asymptotic bias

Let 6y = (6o1,...,00.), where 6y,’s are the first L coefficients of the orthogonal series

expansion of g(r) with respect to the basis functions ¢;(r)’s and suppose there exists a
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vector 8* = (0%,...,0%)T such that

/D AWAV)wr(llu =) [g(lla = v])) = go(lfu = v[[; 67)] ¢, (lu — v[)dudv = 0. (A.35)

2
n

The following Lemma quantifies the distance between g(r) and g, (r; 0%).

Lemma A.6. Under conditions C1-C3 and C4’-C5’, we have that as L — oo,

100 — 67| = O(L™™), (A.36)
sup |g(r) — gr(r;0%) = O (L*I/1+max{7'1,1/o+l/2}) = o(1), (A.37)
0<r<R
sup |gr(r;0%)] = O(1), (A.38)
0<r<R

where vy, 11, 1 and vy are defined in conditions C4’ and C5’.

Proof. 1t is straightforward to see that by definition, 8" is the solution to (A.35), which also

maximizes the following target function

((0) :/DQ M)AV wr(l[u = vI) {g(lla = vI),(Ju = v]) — exp [6" ¢, (Ju— v])] } dudv.

Let v, be an arbitrary sequence on the sphere {v € R : ||v|| = L™*"} and define functions
A, (1) =T, (r). Let fo(r) = 0L ¢, (r), 0 <r < R, and define the function of a scalar z as

follows

b = [ AW w(a = vi)
X Ag(llu = i) fo(llu = vil) + zAn(JJa = v[)] = exp [fo([[u = v[|) + 2Ax(lu = v|})]} dudv.
We shall show that for any zo > 0, h'(z9) < 0 and h'(—zp) > 0. This implies that the

maximum of £(0), namely %, satisfies fo(r) — 20A,(r) < 0T, (r) < fo(r) + 20A,(r), using
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the fact that £(0) is a concave function of 8. Some straightforward calculus gives that

h(z) = / AwAV)wr(llu = v{)g(lu = v[)An(lu —v])
D,
x {1 exp | =Cu(lu = v];80) + 2Au([u — v|})] } dudv
- /D MA@ wa(fu = vig(lu = vI)Au(lu = vi) {1 = exp [l = v]:60)] | dudv
+ [ @AWl = vIDg(a = v = Vi) exp [~ - viis6)]
D3
X {1 —exp [zA,(||u—v])]} dudv

= /D AMwAM)wr(llu = viDg(lu = vI)Au(la = vI)C(lu v 60) [1 + o(1)] dudy

+ /D2 AWAW)wr([lu = v[Dg(lu = v[)An(lu = v[)) [=2An([u = v[)][1 + o(1)] dudyv,
where (;(r; 8y) is the approximation error defined in equation (13). The last equation follows
from the Taylor expansion 1 — e” = —z [1 + €* z/2], for some |2*| < |z|, and the condition

C4’, which ensures that as L — oo,

sup [C1(r;60)| = O(L™™") = o(1),

0<r<R
sup [A,(r)] < [[vall sup [l (r)]| = O(L*27) = o(1).
0<r<R 0<r<R

When z > 0, using conditions C1-C3, C4” and the Holder’s inequality, we can derive that

(=) £ 00) [ (o)) 031G (5:80)5" s
~towE{ [ A = vidg(u = v - v@f (- vidudv v

n
(&

-
Qr defined in (13)

1>\/ / wo(S)A%(S)S“dS\/ / wo(5)C2(5: 00)ds — 2 [1 + o(1)] [[0all? X tin (@]

\/anll2 wo(s)[| @y (s)[|2s% 1d8\// wo(s)CE (51 00)ds — 2 [1 + o(1)] [[1a* X i [Q]
=0(L™)

HVn” -z [1 + 0( )} ||Vn||2 X Tmin [QL]
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Finally, under condition C5, ||v,|| = L~"**"0 is sufficient to ensure that there exists a zop > 0

such that h'(z) < 0.

Similarly, ||v,|| = L~ 1" is sufficient to ensure that

H(—20) > —O(1) / wo(5)9(5)| An () Co (5; 80) s 1ds
L+ o()] { [ M@@pna = vig(u - vy (la - vi)ef (lu - vH)dudv} v

v~

QL
1)\/ /0 wo(s)Ag(s)sdldS\/ /0 wo($)C3 (53 60)ds + 20 [1 + o(1)] [[wn|* X Niin [QL]

= —O (L) |lwnll + 20 [1 + o(D)] [[n]l* X i [Q1] > 0.

Therefore, we have shown that 87 ¢, (r) is between 03 ¢, (s) & 2oL ¢, (s), and hence

10— 002 = (6° — 6,)" [ / wo<s>¢L<s>¢€<s>ds] (0 — 6,)
= [ o) (070000 = 00001 a5 < 5 [ o) [T pule)) s = Sl

which completes the proof of equation (A.36).

Furthermore, to show (A.37), note that, under condition C4’(b),

lg(r) — gr(r;00)| = g(r) 1—exp[ Z o1 (7 ” g(MO(L™"+) = O(L~"+™),

I=L+1

Under condition C2(a), the above result also implies that supy., .z G5(7;600) = O(1). Then,

we have that

l9(r) = go(r; 07)| < |g(r) — gr(r;00)| + gL (r; 00) — gu(r; 67|

1 —exp [Z(Ql* — 90,1)@0”)] '

=1

= O(L™") + gr(r; 6)

— O(L*™) + G4 (r:6)0 ( sup [lbr(r)16 — e*u)
0<r<R

— O(L7V1+T1) + O(L'joﬂ’lﬂ/?)

— (1),

32



where the last equality follows from condition C5’, where we have assumed that 0 < 21y <
v1 — 1. Equation (A.37) immediately follows by noting that all the upper bounds do not
depend on 7. Equation (A.38) is trivial by combining equation (A.37) and condition C2(a).

]

3.4 Proof of Lemma 3

Lemma A.7. Under conditions C1-C3, and C4’-C5’, we have that as L — oo and L**?*2 /m|D,,| —

0,
~ Lo
-0 = O, —— A.39
o-o = o, ( MDH) (A29)
where 0" is defined in equation (A.35).

Proof. Tt is straightforward to see that solving estimating equation (9), i.e., UL(8) = 0, is

equivalent to maximizing the following composite log likelihood function
1 m
= Z Z wr([Ju = v)log[gr(|[u—vl};6)]

" ZZ S wallu = viDaw(lu—vl;0),

i#j=1 ueX;veX;

(A.40)

with respect to @, because dL(0)/00 = U(0)/m. Note that the Hessian matrix

F1,(6) = aeaeTz—ZZZZwR g1 = vl 00 ~ V1) (Vi)

i#j=1 ueX; veX;
is negative definitive, which implies that L(8) is a concave function of 6.
We use the same steps as in the proof of Lemma A.2. Let J,,, be a sequence of positive
real numbers such that J,,, — co as m — oo and/or n — oco. We shall first show that for

any given £> 0 there exists a large constant C, such that, for large m or/and n,

IP{ sup L(0" + C.J,}26,) < i(e*)} >1—e. (A.41)
I =1
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Inequality (A.41) implies that with probability tending to 1 the function L(6) has a local
maximum, denoted as 0= b\m,n, in the ball ©,,, ={0" + Jmn2C8y ¢ ||6.]] = 1}. Tt then
follows that Jm7n|]§ — 6*||% is bounded in probability; i.c., ||@ — 6*|> = O,(J1).

m,n

To show (A.41), for any fixed 8, € RY that ||§| = 1 define a function of z> 0 as

Hypn(2) = —L(6" + 2J,,1/%6,). (A.42)
Then
—1/2 ~
H),.(2) = — ”;1" 61UL(0" +2J,,)%5,), (A.43)
H), . (2) = —J L 6THL (0" + 2J,,1%61)d), (A.44)

and by the Taylor’s theorem

2
i (2) = i (0) + H, ,(0)2 + H) L (8) S

for any z > 0 and some 0 < t, < z, which implies that

L(0" + 2J;,1/26,) — L(07) = Hyp(0) = Hypo(2) = —2 [H;m(o) v ian )]

9 mn

By definition, H,,,(z) is a convex function of z since H,, (z) > 0 for any constant z.
Therefore, to find a large enough C. so that (A.41) holds, it suffices to show that H,, , (0) =
O, [H}), ,(t.)] for any z > 0. We first investigate H, ,(0). By the definition of 6" in (A.35),

we have that E [H], ,(0)] = 0. Furthermore, similarly as in the proof of Lemma A.2 the
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variance can be shown as
M Var [H, (0] = /D AN A = vl vl 5 v v
= g(lhw = vil)g(llus = v2l)] x [@p(llur = vi])* L] [pr(l[uz — val)"6L] dwdvidusdve
—4 [ A A = vl = vl 1) =g =)

X gr(lluy — val|;07) [@(Ilay —v1l))76L] [@r(luz — v2l)" 6] dusdviduydv,

+ - 2 1 /D4 A(u)A(v)A(u) A(vo)wr(||[uy — vi|)wgr(|Jue — val|)gr([[ur — vi|;0%) gL (|[uz — val|; 6%)

x [g(|lur — wa|)g(llve = va|l) = 1] [@r(lur — vi[)6L] [@r([[uz — val[)T0.] duydvidusdv,
N 4(m — 2)

po— /D% Mu)A(v)Au) AV wr(||ug — vi|)wr(|Jug — va||)[g(|Juy — ug]]) — 1]

X gr(lluy — vill;09)gn([[uy — val[; %) [@r(lluy — vil)76L] [@r([[uz — v2l))" 6. duydusdvidv,
+ 4/ A(an)A(vi)A(u2)wr(|[uy — vilwr(llur — ua]))g® (uy, vi, us)

D3

X [ ([lar = vil[)"0L] [¢r(Jlur — we]])"6.] dusdvidu,
- 8/[)3 Aun)A(vi)A(u)wr(|lu — vi|)wr(llur —az)[g([[ar — vil]) = gz (l[ur — vi]; 67)]

X gr(lluy — wol; 67) (@ (luy — vil)"8.] [@r(lur — uy|))" 8. ] duydvyduy
+ o Au)A(vi)A(ug)wr(|lur = vil)wr([[ur —az|)ge(llar — vil; 8%)

m — 1 D%

x gr(|lur — w09 [g (v — u2ll) — 1] [@L([wr = vi[)" L] [@p ([ — wz]))"6L] durdviduy

+ 2/1)2 AMun)A(v1) [wr(l[uy = vi D g(lw = vall) [ (lw — va])78.]" dusdv,y

2

+ m/ Mu)AvO)wh ([ —vil)g2 ([ = vill:0°) [ (lm — vi[)78;]" dusdv,.
=1 /e

Therefore, under conditions C1-C3 and equations (A.37)-(A.38), we can further simplify

mJm, Var [H, (0)] as follows
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meJmaVar [H,,(0)] = O(1) /4 wr(ur = vil)wr(lluz = va|) g (ur, v, uz, v2)

n

— g(Jlur = vi|Dg(lluz = val)] x |@L([ur = vil)d.| |#7 (Jluz — v2[)d. | dudvidusdvy

+0(1) [ wnllm = villwa(hus = val)lg® (i, vi, ) = gl s = vil))

n

X ‘¢L(|‘U1 — V1H)T($L| |¢L<HUQ — VQH)T(sL’ duldvldungQ

+0(m™) /D4 wr([[wr = valJwr([luz = va|)[g([lur —w2l))g(l[vi = vall) — 1]

n

X | (luy = vil)"6.| | (lluz — v2 )76, | duydvidusdvs
+0(1) /4 wr([|ar = vil)wr(Juz — val))[g([[ur — ual|) — 1]

X |¢L(Hu1 — VlH)T(SL‘ ’QSL(HLIQ — VQH)T(sL} duldUdeldVQ

+ 0(1)/ wr(|lar — vil)wr(lur — wa]) [@,(lur — vi )" 65| | (Jur — wal)"6, | duydvidus

n

<o [ (s =) |6 s a8 v,

—owinil [ s o+, w) — sl 1] 6 ()] o (1) st
~owin,| [ s 4110 5. w) s[5 151085 |6 11D asaa
+—omp,| [ sl e — s +w1) 1 I8 | |48 | asaw
~owin,| [ ol Do) — 167 1) 67132 dsdc
~owin,| [ sl el 67l ac | [6E1e1) 8 asas
+ 0D [ (ISl [0 sl as

- 0(1)|D,| ( | wnts) |08 d) SOWID [ [un(s)f ()8:]" 5" s,

where the last equality follows from conditions C2-C3 and equations (A.37)-(A.38). Recall

that by definition of orthogonal basis functions, we have that fOR w,(s) [#7(s)8 L}st =
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076, = 1. Finally, by the condition C4, we have that
2

Ve 11,0 = o, { [ " s(9) [65(9)81) =
OID [ ud(o) [6F0)5u] s as
<o { [ (66180 a5} [ s vas

oI [ o) (o008 as = 0 (3.

where the second last inequality follows from the Holder’s inequality.

Combing with the fact that E [H}, ,(0)] = 0, we have that

Hrlnn(()) =0Op (\/ﬁ) . (A.45)

Now we proceed to study H)) ,(t.). Some tedious algebra gives that
ngm(m — 1)Var [H,',’l,n(tz)}
= 2/194 M)AV A (u2) A (V) wr([luy = valwr([uz = val)ge(fur = vil; 6)ge(|[uz — va|;67)
% [g(lur = wl)g([[vi = vall) = 1] [@ (|[us = val)70L]" [, (uz — v2])76L)” duydvidusdvy,
+ 4/D3 M) A(v1)A(us)wa(|fur = valJwr(ar — wsl)ge(w = vi;6°)
< gr(lur — ual; 0)g([[vi — ) [ (|l — V1||)T5L}2 [ (Jus — 112H)T5L]2 du;dviduy

+ 2/D M)AV (e = vil)gE ([w = vil;0) gl = val)) [br(Jur = vi[)78,]" dusdvy

n

+4(m - 2) /D MDA A va)w(as = valDwn(uz = val)ig(lus = wal) = 1

% gu(lwr = vall;0)gu(lluz = va[:8°) [l = vil)762)* (@1 (I[uz — vl 761 duydusdv,dv,
+4(m - 2) /D M)AV e = vl ywaus = val)ga(us = vl 6)ge (s = 6)

% [y (Il = Vi) 8.)° [l — us]))761)” duydv dus,

where 8 = 6* + tan_%lTP(SL.

Using equations (A.37)-(A.38), under conditions C1-C3, we can further simplify J7, ,m(m—
1)Var [H]), .(t.)] as follows
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J2 nm(m —1)Var [H, , /D wr(|lay — vi|)wr(|[uz — val)g([[ur — us|))g(l|vi — v2l|) — 1|
% [ (lur —va[)782]° [@(l[ua — val)76,]” dudvidusdvs
+0(1) /D wrlllw = vl wa(hn —all) [ (Il — vell)"6.]" duydvidu,
=00) [ whlun—vil) [l = wi])782]" dusav,
+mO(1) / wr(lla = vilwr(luz = vallg(lu; = u]) = 1

n

x (¢, (Jlu — V1\|)T5L}2 (&1 ([lus — V2H)T5L]2 duydugdvidve

+mO(1) /3 wi(wr = vaJwr((lwr = wsl]) [¢r(lar = val)"8.]" [ (ur — ua])761) durdvyduy
(1) D /Ds wrllsDwa(leDlg(Iwg(lle — s+ wl) = 1] [¢7 (lIs)8.]" [¢7 ([1£1)8,] dsdtdw
+O()[ Dy /D2 wr(lswale]) [ (IsINdx]” [ (1I¢1)d1] " dsdt
(D)]Dn] /D wasll)]* [ (Isl)d:]" ds
+m0(1)\Dn|/D% wr(llsDwa(leDlg(Iw]) — 1| [$7(1Isl)0x] [¢1(1I6])81]” dsdtdw

+mO(1) D, / walllswr(lel) [S (s3] (@ (lel)d]* dsde
VID, |/ (s 5)0,]" s 1ds+m0(1)|Dn|</OoowR(s) [qs}f(s)aL}?sd—lds) |

Recall that by definition of orthogonal basis functions, we have that fOR w,(s) [¢7 (s)d1] “ds =

5%(& = 1. Then, by the condition C4’, we have that
R 4
Tl = 1)Var [, ()] = OWIDL ™ [ wi(s) [9 (98] s s
0
+O0(1)m|D,| ™" {/ w,($) [qbf(s)é,;fsd_lds}
0

R
O™ sup 8,07 x [ 1) [87(5)62]" ds + O1)m[D,
0<r<R 0

= O(L*?| D] ™) + O(m|Dy| ),

2
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which immediately implies that

L2 1
7z _
Var [H],,(t.)] = O (—J%,nm2| Dn|> +0 (—J%,nml Dn|> . (A.46)

On the other hand, we have that

E[H,(t.)] = Jm,ln/2 Mu) AV )wr(lar = vilDgz (= vil:6,) [on(w — vi])70:]” duidvy.

n

Using definition of Qy in condition C6 and the fact that nmi [Qr] = infjy2=1 nTQrn, we

have that
E [Jm,nH;rlm(tZ)] — Tmin [Qn,h] > /;2 )‘(ul))‘(vl)wR(Hul - VlH)

X [gL(th —vilf; é*) = g(|[u1 = VlM [¢L(Hu1 - VlH)Tst}QduldVl
DD [ (e [bu()78,)° s ds (A.47)

= 001) [ o) ute: 8 - g<s>\ 60(6)76)* s

gr(s; é*) —9g(s)

= 0(1) sup (1 ||/ w(s 576, ds.

0<r<

since 8 = 0" + tng,n ’8 L, it is straightforward to show that, under conditions C4’ and

provided the supy_,<p ’Jn;}fég(h(r)‘ = O(1),

= (1) (6" 00)7 1) + 17,267 p, (1) — (50|
= 0(){|(6" = 00)7b,(r)| + [t-J 4285 ,.(r)] +|Cu(r560) |}

which further gives that, under condition C4’ and using (A.36) in Lemma A.6,

R R
|t 781 ds = 01) [ (o) (6 = 00)7 (1) | 5115781 s

~ %k

gr(r;0 ) —g(r)

§L(S;é;) -

R
+00) [ o) 1,265 6,0)] |51 s

)| (15782 ds

1/2 1/2

R R
=0(1) [/ wo(s) (6% — 89) e, (r)|” ds} + 01z, + O(1) [/ wo(s)C2(r; B)ds
0 0
= 0([10" = 6ol + J5,}0* + L)
= O(L"™ + J M2 L) = O(L" ™ + T 1),
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Combining the above result, equation (A.47) and condition C2, we have that if J;:n/? L =
o),
E [Jm,nH;vlz(tZ)] ~ Nhmin [Qn,n] = O<LV2+V07V1 + Jr:L,ln/QLVQ)

By condition C2(a) and C5’, the above equation gives that

LE [J o H](£2)] > ¢ + O(L2T207 4 J A2 o), (A.48)
Hence for the constant ¢ = ¢j, we have that
P (LVOJmmH;;(tZ) < g) = P {Jpn H!\(t.) — B [Jn HA(£.)] < ¢/2L77 — E [T o HY,(£2)]}

S P{|JmnH(t.) = E [Ty Hy (8] | > |¢/2077 — B [Jnn Hi ()] |}

X T{E [ o Hpp (t2)] > ¢/2L70} + T{E [JnnHyy (L)) < ¢/207°}
- Var [Jm,nH#L?n(tz)]
= fe/2L7r0 = E [y Hy(E)] 2

L2V2+2V0 L2V0
O} [— O 1
(mzmn\)* (manr)“( )

where the last equality follows from equations (A.46) and (A.48) when J,,,, — oo and

I{E [ Hpy(82)] > ¢/2L77} + T{E [Jpn Hi(t.)] < ¢/2L7°}

Lot /] — 0. Therefore, as long as ;"—;uf+nf|21;i| 0, Jyn — 0o and L2042 /]y
0, we have that
P (JmnHp(t.) > coL7°/2) — 1, (A.49)

where ¢y is the constant defined in condition C5’.

We have already shown in equation (A.45) that

, 1
Hm,n(o) =Op <W> .

hence as long as 2= r[f |0 = O(1), we have that H,, ,(0) = Op(H,,,(t.)). In other words, for

any sequence Jy, ,, satlsfymg | | — 0 and L*0272/ ] . — 0, the right hand side of the

inequality

P{1H}n(0)] = S}, () } < P{ (1) < 5+ P Ll H,, (0] = 22



can be arbitrary small by choosing z and m and/or n large enough. Therefore, for any given

€ > 0, there exists z. > 0 such that for large m and/or n,

~ _ 2
P {L(e* + 228, < L(e*)} —P {ZEH;n’n(O) + %H;ﬁm(t@) > o} >1—e

Thus, (A.41) holds, which completes the proof of equation (A.39). ]

Proof of Lemma 3. Our goal is to show

0<r<R

Y vo+v2
sup (g<r)—§L(r;0)| = O (L vmadnmtl) L o (L—D> (A.50)

To show (A.50), using equations (A.37)-(A.38), we have that

-~

l9(r) = 31.(r38)| < l9(r) = Gur:0°)] + |37 67) — 5.3 0)|

1 —exp [Z(éz - Ql*)qbl(r)] i

=1

-0 (L—u1+max{71,yo+yz}) + gL(T; 0*)

=0 (L) g 00 ( sup 64001110 - 0°))
0<r<R

[otv2
-0 (L—u1+max{71,1/0+1/2}) + Op -

V m|D,|
=o(1),

where the upper bounds does not depend on r, which completes the proof. O

3.5 Proof of Theorem 2

Lemma A.8. Let 53(0%) = 61 Xy (0%)d] with Xy (6*) = Var [\/m]Dn\fJ(H*)] . If the vector
8y, satisfies (a) |6.]| = 1; (b) [7 [wo(s)|67 ¢ (s)|]> " ds = 0(1); and (c) 52(6°) > . for
some constant ¢, > 0, then under conditions C1-C3, C}’-C5° and N1-N2, we have that, as

L — oo and m|D,,| — oo,

L1 5

(A.51)
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Proof. Following the exact same arguments in the proof of finding m.J,, ,, Var [H;,M(O)} in

Lemma A.7, we have shown that
Var [5{6(9*)] = O(m~Y|D,|Y) = 62(6°) = O(1).

To study the asymptotic normality of 87 U(6*), we define two random variables such that

6TU(0") = Z, — Z,(8*) as follows

mo#
= mZ > wr(llu - vi)oLe,(lu - vi), (A.52)

i=1 u,veX;

Z,(07) = Y ZZ Y > wallu—=viDae(lu—vi;6")87 ¢, (lu —v]). (A.53)

i#j=1 ueX; veX;

By definition of 6" in (A.35), we have that
EZ, = BZ,(07) = / AwAW)wr(llu = v])g(u = vIDdLe,(u - vi)dudv.  (A.54)
D

We shall divide our discussions into two case scenarios: (1) m — oo and (2) m is fixed.

Case I: when m — oo. In this case, the normality of Z; is easy to show since it is
an average of independent and identically distributed random variables. The normality of
Z5(0%) is less straightforward since it has a structure similar to a U-statistic, because

( Z Zy:,(0%)

i#j=1

where

2030 = 5 3 3 wallla ~ v~ vIi: 61876, (ha Vi)

uEX veX;

To resolve issue, we define the following approximation
= 2 Em —EZ5(60%), A.55
m 4= 2 (A-55)

where

Z4(0") Z/ v)wr([u = vIDge(lu—v]; 08¢, (lu—v])dv

ueX;
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It is trivial to see that EZ,(0*) = EZ,(0*) by definition. Following similar arguments as
those in the proof of finding m.J,,,Var [H}, ,(0)] in Lemma A.2 and Lemma A.7, some

tedious algebra gives that

mVar [22(0*) - ZQ(O*)}

= L/ Mu) Ao w ([l —vil)g (Ju = vill; 0)g(lw = vall) [ (|luy — vi[)782]” dusdv,
m — 1 D%
4
o /D% Aup)A(vi)AM(ug)wr([[ar — vilJwr(flug — uel))gr(lfuy — vif; 67)
x gr(|lur — us);0%) [g(|lvi — usl) = 1] [@L([[ur — vi[)"6L] [@r(Jur — us)"dL] durdviduy
+ L/ AMup)A(vi)A(u) A(v2)wr(|[ur — vi|)wr([[uz — va|[)gr([[ur — vil[; 0)gr([[uz — val|; 07)
m — 1 D%

x g(llu —wz])) [g(lvi = vall) = 1] [@L(lur = vil)"02] [@r([uz = vol)" 8] dusdviduzdv,

_ 2 /D M)AV ) M va)wr(uy — vi | wa((luy — va|) [g(]luy — us)) — 1]

m—1

x gr([lur = vill; 6%)gr(lug — vall;0%) [@([[uy — vi[)" L] [@p([[uz — vo)"d.] dusdusdvidv,
2

= O(m™'|Dy| ™) /OR w)(s) [@p(s)78:]" s ds + O(m ™ Da| ™) {/OR wo(s) [p(s)" O] Sd_lds}

= O(m™" Dy ™).

Therefore, as m — oo, we have that

VD, | 22(07) = 22(6%)| = 0,(m™") = 0,(1),
and hence
VmID,1870(6%) = v/mIDul |7 = Z3(6)] + 0,(1).
Since m|D,,|Var [5{6(0*)} > ¢, for some constant ¢, > 0, it suffices to show the asymptotic
normality of

ValD 7~ 0] = YL S,

where Y;’s are i.i.d. random variables of the form as follows

#
Yi= Y wallu=v[)die(lu—v) —22,:(6°) + EZ(67).

u,veX;
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Note that \/WYi’s are i.i.d random variables with a bounded variance (straightforward to
show), (A.51) immediately follows from the standard central limit theorem as m — oo.
Case II: when m is fixed. In this case, condition m|D,,| — oo requires that |D,| — oc.
In other words, we need to consider the case where the observation window of the point
processes is expanding. Define a partition of R? = UgczaA(t), where A(t) = szl(s(tk —
1/2),s(ty + 1/2)] with s > 0 as the length of the interval. Note that by this definition,

A(ty) NA(ty) = 0 if t; # to € Z. Define random variables

Vil = 2215 SISl — v = vI.

=1 ueX;NA(t),veX;

Veult) = o L STST ST wnlla - vIDge( - vI: )67, - vI).

i#j  ueX;NA(L),veX;
Then by definition, we have that

where 7, = {t € Z¢: A(t)N D, 7é 0}.
A simple application of the Jensen’s inequality gives that (m = > |z;|)2F 1T <m=L 3" |a, 2191

(note that f(x) = |z|**1?] is convex)
246"
51
B Yin(t)*"" ZE ZZ | Dafwn([u = vI)8L e (Ilu =)
UEX;NA(L),vEX;
2461

-k ZZ | Dulwr(|u—vI[)oLé(u—v|)
ueX1NA(t),veX,
246"

#
<ES DY [Dufwr(lu— )87 (u—v])]
ueX1NA(t),veX,
2+[6"

#
=O0MES > > Ilu—v|<Rw(u—vIDIsTe.(Ju—vl) ,

ueX1NA(t),veX,

where the last expectation is essentially bounded by sums of integrals involving w”(s)|87 ¢ (s)|*,

k<2407, Mu), g(s), g®(uy,...,up), k=3,...,2(2+[6"]). All terms are bounded under
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conditions C1-C3 and condition N2’ except the first batch, hence we only need to consider

upper bounds of integrals of the form

[ ubistonetas, k<o
0

For any k < 2+ [0'], by the Hoder’s inequality with p = (24 [0'])/k,q = 1/[1 —k/(2+ [0'])]
such that 1/p +1/q = 1, we have that

1/p

[ wionstoras = [t (o istan oy o
: { / " [oofe)laen ()" ds}l/p { /OR wz“—”ﬂ(s)ds}”q

= 0(1)7
where the last equality follows from the condition for d;,. Therefore, we have that there
exists a constant C such that

E |V, (t)* 1 < ¢y

Similar arguments also yield that for some constant C'y > 0
E |V, () < ¢

Then by the Minkowski inequality, we have that

' 11/ 2+[6) 11/ ) 2H0]
El¥in) - Yea 011 < { B0 4 [, ope]

< 22+[6/-| maX{C’l, CQ},

which further gives that
+
sup sup B |Yy ,,(t) — Ya,(t)*7 < (sup sup E |V, (t) — Ym(t)F*W) < o0, (A.56)
n>1teT, n>1teT,

Note that the total number of disjoint partitions A(t) N D,, # () is of the order |D,,|, hence

we can check that,

(1D.]) Ve {Z Yin(t) - Yz,nof)]} = (ID,])Var (|D,[670(6) = m~'53(6") = cu/m.

teTn
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Therefore, using conditions N1'(b) and N2/, together with inequality (A.56), it follows from

Theorem 1 of Biscio and Waagepetersen (2019) that as |D,,| — oo,

{Var D Vi) =D Yaul(t)

teTn t€Tn
which coincides with (A.51) by definition of Y} ,,’s, k =1, 2. O

-1/2
} 3™ Via(t) = Yau ()] BN(0, 1),

teTn

Lemma A.9. Denote 8 as the solution to estimating equations UL(@) = 0, then under
conditions C1-C38 and C4’-C5’, we have that as L — oo and L2 /m|D,| — 0, for any

0<r<R,

V'm|D,| 7 (r 0 6*) = /m|D, |7 (r UL<9* + 0p(1 H¢L )_1

(A.57)

)

where 8™ and Qr are defined in (A.35) and (14), respectively. Furthermore, under additional

conditions N1-N3, we have that

\ |Dajzi70*)9 ) 2 N(0,1), (A.58)

where o2 (r;0%) = ¢7(r) (Q1) " Su(07) (Q1) " é,.(r) and Sy(67) = Var [\/ 1D,]U,.(67) ]

Proof. Recall the definition
13 &
=—>_ > wallu—vi)e.(lu—vl)
i=1u,veX;
) ZZ SN wallu = v, (lu = vIDaL(lu - vI|; 6).

i#j=1 ueX;veX;

Using the first order Taylor expansion, we can show that

UL(6) - UL(6") = —HL(6')(6 - 6°), (A.59)
where [|6” — 6*|| < |6 — 6*|| and

Yy Yy =D g, u = Vi = viDga(u = vI:6) (460

i#j=1 ueX;veX;
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is a symmetric non-negative definite matrix. Observe that fJL(b\) = 0, we can re-write

expansion (A.59) as follows
UL (6°) = (Q. + Q%) (6 — 6", (A.61)

where Qy, is defined in (14) and Q* = ICIL(é*) — Q. From the above new expansion, we

have that
SL)O —0) = $1(1) (Qu) " [UL(0) - QB - 07)]
< 1) (Qu) 7 ULO") + (| (Qu) | o [Q*] 6 - €7

(A.62)

where oy (A) stands for the largest singular value of the matrix A. We have shown the
order of Ha — 0"|| in Lemma (A.7), so it remains to quantify o [Q%]. Note that we can

further decompose Q* as follows
Q* = H. (") — H,(6") + HL(67) — E [F(67)] + E [H,(67)| - Q.

By the property of the singular value, we readily have that

O [QY] < O [HL(87) = HL(07)| + 0 {HL(0) — B [HL(07)] } + 0 {B [F(67)] — Qu$4.63)

which will be studied one by one.

By definition of 6" and Lemma A7,

~ % N ~ % " ~ . y LV0+Z/2
sup (0 —60") ¢ (r)| <6 —07| OSHERH%(T)H = [[6-07|O(L™) = Op <—> = op(1).
<r<

0<r<R m|Dn|

Then, it is straightforward to see that

|G (15 07) — §u.(r;87)| = Gr(r; 07)

1= exp (67~ 67) ()|

~ * n* AT — ar(r- 0* —LVO+V2
= (0700 |(6" = 67 6,()| = 30300 < myDn\> |
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which further implies that

s [FLL(6) — Ho(67)] = sup 87 [F1(8") ~ HL1(67)] &

<sp Y Y el v =0 57, — w11~ v1:0) — g = v1:0°)

é]l=1 i#j=1 ueX; veX;

- (JL:> ap 5050 5 =5, (v (a0

llo1=1 i#j=1 ueX; veX;

O LV0+V2 ~ 0

= T max H - ] .

P \/m n |: L( )

Following exactly the same steps, we can also show that

_— [ﬁL(é*) _ IiIL(e*)] = Dna [—ﬁL(é*) n ﬁLw*)] - [ﬁL(e*)] Op <L> ,

V m|D,|

which implies that
~ ~ % ~ - otz
oo [HL(e ) — HL(o*)} = o [HL(O*)} Op [ ——— ), (A.64)

where the convergence is entry-wise.

The next step is to quantify the magnitude of 0.y {I:IL(O*) —E [I:IL(O*)} } Using the
standard random matrix theory, it suffices to consider the variability of §” {I:I L(0") —E [I:I L(H*)] } )
for any § € R* with ||]| = 1. Following steps as those in the proof of Lemma A.7 about

Var [H), . (t.)], we immediately have that

s [ {0 2 0]} o) =0, () + ()

hence that

s {11,(0°) ~ E [1,(07)]} = 0, (%) +0 (mﬁ)n') | (A.65)

Next, we proceed to bound the largest singular value of E [f{ L(B*)} —Q;. For any § € RF
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with 6] = 1,
87 {E [f{L(e*)} - QL} 5
= [ Al = vI) (@ (= VD8 Gl - v]:6%) = gllja = v} dudv
= | Al = vI) (9 = VD8] o(lha = vI)
x {1—exp (6" = 80) ([ — v[)) = (oIl = v 60)] | dudv
= 001) [ wale) [616)9]" 166" - 80 9(6) + Gu(s eo>|} s
=00~ 0l s 1601 [ wale) [67(6)9]"d

\// w(s ~g||u—v||4svools><\// wo(s) [¢F(5)8]"d

_ O LVo+l/2 1/1

where the last equality follows from condition C4 and Lemma A.6. This further gives that

e {E [ﬁL(e*)] - QL} — O(Lwtrem), (A.66)

Combining equations (A.63)-(A.65), we have that where oax (Q%) = O, ( LVOT;2| + L”0+”2”1).

In addition, we have shown in Lemma A.7 that || — 6*|| = O, (L) Plugging these

m|Dy|

two equations back to (A.62), we have that

~ L~ [ 2votra LV0+V2 v 3
$L()(0 —0") = ¢} (r) (Qr) ' UL(6") + O, ( D] W) 620 (Qu)

which gives (A.57), recall that 15421y < v in condition C5’ and the condition L*#*°™2"2 /m|D,,| —
0.

To show (A.58), define vector £(r) = (Q1) " ¢ (r) and its standardized version £y(r) =
|£(r)||~1£(r) as in condition N3. Then applying Lemma A.8 to €2 (r)U(#*), under condition

N3, we have that

VDI (YOE") _ /mDE ()T o)
VBB )6(r) D000
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where 3 (0%) = Var [\/ |D,.|U(6") } Then using (A.57), we have that

VlD,I¢}(r)@ —6") _ /mDJ¢t(r) (Qu) ' Uu(e") el

\/ETTEU(O*)E(T) NG zUw*)z() WT S0 (67)4(r)
\/m|D €% (r 0") N(O D,
VE ) zUar VQT )30 (60)4o(r)

where the last equality follows from condition N3(a), which requires that \/ £ (r)Sy(6%)Ly(r) >

¢y. The proof is complete. O]

Proof of Theorem 2. Recall the definition §z(r; 8) = exp [6" ¢, (r)] and §.(r) = Gr.(r; 5),
then applying the delta method to the asymptotic distribution of y/m|D,,|¢x ( 9 0") from

Lemma A.9, we have that
V/mID, [G1(r;8) = 1. 67)] .
—N(0,1).
L0\ BE(r) (QL) ™ 20 (07) Q1) 6,(r)

By equation (A.37) in Lemma A.6, we have that supy.,.|g(r) — gr(r;0%)] = O(L™"*™ +

Lwo—mt2) = o(1), it readily follows that

VmID,l |[L<r 6) — u(r:0")] VD [30(r:8) — ) +9(r) ~ 3u(r:6°)]

(r: 0/ 7(r) (Qu) " Su(67) (Qu) " (r)  3(r: 01/ $L (1) (Qu) ™ Su(6°) (Qu) ™" ¢,.(r)
. W [gm 0) —g(r) + O(L™*7 4 L)
g/ BE(r) (QL) ™ 20 (07) (Q) " 6,(r)

which completes the proof. O

+op(1)BN(0, 1),
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