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Abstract

This paper is concerned with inference for a certain class of inhomogeneous

Neyman-Scott point processes depending on spatial covariates. Regression parameter

estimates obtained from a simple estimating function are shown to be asymptotically

normal when the “mother” intensity for the Neyman-Scott process tends to infin-

ity. Clustering parameter estimates are obtained using minimum contrast estimation

based on the K-function. The approach is motivated and illustrated by applications

to point pattern data from a tropical rain forest plot.

Keywords: asymptotic normality, clustering, estimating function, infill asymptotics, inho-
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1 Introduction

This work is motivated by ecological studies of biodiversity in tropical rain forests. A ques-
tion of particular interest is how the very high number of different tree species continue to
coexist, see e.g. Burslem et al. (2001) and Hubbell (2001). One explanation is the so called
niche assembly hypothesis that different species benefit from different habitats determined
e.g. by topography or soil properties. In recent years huge amounts of data have been
collected in tropical rain forest plots in order to investigate the niche assembly and other
competing hypotheses (Losos and Leigh, 2004). The data sets consist of measurements of
soil properties, digital terrain models, and individual locations of all trees growing in the
plots.

A first attempt to study the niche assembly hypothesis might be to fit an inhomogeneous
Poisson point process to the point pattern of a particular tree species where the intensity
function might be log-linearly related to soil properties and topographical variables like
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elevation or gradient. However, the inhomogeneous Poisson point process assumes inde-
pendent scattering of the trees. This is not realistic since the trees reproduce by seed
dispersal. That is, in addition to large scale variation due to environmental variables, one
may also expect clustering due to seed dispersal. The standard errors obtained assuming
a Poisson point process then underestimate the uncertainty of the regression parameter
estimates.

In this paper we model clustered point patterns of trees as realizations of certain in-
homogeneous Neyman-Scott cluster point processes which are introduced in Section 2.
Likelihood-based inference for such models can in principle be carried out using Markov
chain Monte Carlo (MCMC) methods, see Møller and Waagepetersen (2003) and Waagepetersen
and Schweder (2005). However, it is not straightforward to implement the MCMC approach
for the inhomogeneous Neyman-Scott process, see Section 6 for a discussion of computa-
tional problems. We therefore in Section 3 consider another approach where estimates of
the regression parameters are obtained from an estimating function given by the score of
a Poisson likelihood function. This is similar to the approach in Schoenberg (2004) who
considers consistent estimation of the intensity function of space-time point processes. The
estimating function approach is likely to be statistically less efficient than likelihood-based
inference but is computationally very simple and fast.

Given the number of “mother points”, the clusters in the Neyman-Scott process pro-
vide iid random samples of the spatial covariates. Using this it is easy to demonstrate
asymptotic normality of the score function under a kind of “infill” asymptotics where the
intensity of mother points approaches infinity. Asymptotic normality of the regression
parameters then follows from general results for estimating functions, see Waagepetersen
(2006). Asymptotics for inhomogeneous cluster processes seems to be a rather unexplored
topic in statistics for spatial point processes. Heinrich (1992) and Guan (2006), for exam-
ple, consider increasing domain asymptotics assuming stationarity.

The asymptotic variance depends on the Neyman-Scott clustering parameters which
can be estimated using minimum-contrast methods, see Stoyan (1992), Diggle (2003), or
Møller and Waagepetersen (2003). Minimum-contrast estimates are in general not believed
to be very efficient but may suffice in studies of the niche assembly hypothesis where the
clustering parameters are essentially nuisance parameters.

The usefulness of the estimating function is demonstrated via applications and simu-
lation studies in Sections 4 and 5. In Section 6 the estimating function is discussed in
relation to maximum likelihood estimation and a second order estimating function.

2 Inhomogeneous Neyman-Scott cluster point processes

Let S ⊂ R2 denote the bounded plot where trees and environmental variables are observed.
For ξ ∈ R2, z1:p(ξ) denotes the 1×p, p ≥ 1, vector of non-constant environmental variables.
We assume that the point pattern of trees is a realization of a spatial point process X ∩ S
where X = Xc∈C is a superposition of clusters Xc of “offspring” associated with “mother”
points c in a stationary Poisson point process of intensity κ > 0. Given C, the clusters Xc

2



are independent Poisson processes with intensity functions

λc(ξ) = αk(ξ − c; ω) exp(z1:p(ξ)β
T

1:p) (1)

where α > 0, β1:p is the 1×p vector of regression parameters, and k is a probability density
depending on a parameter ω > 0 determining the spread of offspring points around c. The
parameter of main interest is the regression parameter β1:p while κ, α, and ω are regarded
as nuisance parameters in this paper.

Assume that exp(z1:p(·)β
T

1:p) is bounded by some constant M . A cluster Xc may then be
regarded as an independent thinning of a cluster Yc with intensity function Mαk(· − c; ω)
where the spatially varying thinning probability is exp(z1:p(·)β

T

1:p)/M . From this point of
view, the environmental variables control the survival of the offspring in Yc. The thinning
perspective is moreover useful for simulation purposes: it is straightforward to simulate the
homogeneous Neyman-Scott process Y = ∪c∈CYc and secondly apply thinning to obtain a
realization of X. For simulation of X ∩ S, M = maxξ∈S exp(z1:p(ξ)β

T

1:p) suffices.
The intensity function of X is

λ(ξ) = κα exp(z1:p(ξ)β
T

1:p) = exp(z(ξ)βT), ξ ∈ R
2, (2)

where z(ξ) = (1, z1:p(ξ)) and β = (β0, β1:p) = (log(κα), β1:p). The so-called inhomogeneous
K-function (Baddeley et al., 2000) for X coincides with the K-function for the stationary
process Y (letting λY = κMα denote the constant intensity of Y , λY K(t) is the expected
number of points within distance t from a typical point of Y ).

Note that the cluster model is a tractable but crude model for clustering due to seed
dispersal. The clustering in reality results from an iteration of mother-offspring events over
several generations.

3 Parameter estimation

Intuitively one may expect to obtain a useful estimate of the parameter β using an esti-
mating function based on the intensity function (2). We therefore consider

l(β) =
∑

ξ∈X∩S

z(ξ)βT −

∫

S

exp(z(ξ)βT)dξ

which simply corresponds to the log likelihood function under the assumption that X is
a Poisson process with intensity function (2). Our unbiased estimating function is the
derivative

u(β) =
d

dβ
l(β) =

∑

ξ∈X∩S

z(ξ) −

∫

S

z(ξ) exp(z(ξ)βT)dξ (3)

with sensitivity

j(β) = −
d

dβT
u(β) =

∫

S

z(ξ)Tz(ξ) exp(z(ξ)βT)dξ.
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The estimating equation u(β) = 0 has a unique solution β̂ which maximizes l(β) if the
sensitivity j is positive definite. This is the case provided there exists a region A ⊆ S of
positive area |A| > 0 so that z(ξ)Tz(ξ) is positive definite for ξ ∈ A. The object function
l(β) can easily be maximized using the procedure ppm in the R package spatstat (Baddeley
and Turner, 2005). Positive definiteness of j is moreover sufficient to establish asymptotic
normality of the estimate β̂1:p of β1:p, see Section 3.1.

An estimate (Baddeley et al., 2000; Møller and Waagepetersen, 2003) of the K-function
for X can be obtained using the spatstat procedure Kinhom substituting the intensity
function (2) by the estimate exp(z(·)β̂T). More specifically,

K̂(t) =
∑

ξ,η∈X∩S

1[0 < ‖ξ − η‖ < t]

exp
(

(z(ξ) + z(η))β̂T
)eξ,η (4)

where eξ,η is an edge correction.
In applications one typically uses a kernel k for which the K-function has a closed form

expression depending on κ and ω. Minimum contrast estimates κ̂ and ω̂ are then obtained
by minimizing

∫ a

0

(K̂(t)1/4 − K(t; κ, ω)1/4)2dt (5)

with respect to (κ, ω) for some user specified value of a. The choice of a introduces a certain
level of arbitrariness in the estimation procedure, see Diggle (2003) who recommends that
a should be considerably smaller than the dimensions of the observation plot. Finally
α̂ = exp(β̂0)/κ̂.

3.1 Approximate distribution of regression parameter estimates

Denote by κ∗, α∗, ω∗, and β∗
1:p the unknown parameter values for which the data is assumed

to be generated. Suppose for a moment that κ∗ is known in which case we obtain the
estimate β̂0 − log κ∗ of log α. By Theorem 1 in Waagepetersen (2006), for large κ∗, (β̂0 −
log κ∗, β̂1:p) is approximately normal with mean (log α∗, β∗

1:p) and covariance matrix Σ∗ =
Σ(κ∗, α∗, ω∗, β∗

1:p) where

Σ(κ, α, ω, β1:p) = (καJ(β1:p))
−1 + J−1(β1:p)G(β1:p, ω)J−1(β1:p)/κ, (6)

J(β1:p) =

∫

S

z(ξ)Tz(ξ) exp(z1:p(ξ)β
T

1:p)dξ,

G(β1:p, ω) =

∫

R2

H(β1:p, ω, c)TH(β1:p, ω, c)dc,

and

H(β1:p, ω, c) =

∫

S

z(ξ) exp(z1:p(ξ)β
T

1:p)k(ξ − c; ω)dξ.

In practice we estimate the variance of β̂1:p using a plug-in approach where the unknown

parameters in Σ∗ are replaced by their estimates. Letting ŝdj denote the square root of the
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Figure 1: Upper plots: locations of Beilschmiedia pendula Lauraceae (left) and Ocotea

whitei Lauraceae (right) trees. Lower plots: altitude (left) and norm of altitude gradient
(right).

jth diagonal element of Σ̂ = Σ(κ̂, α̂, ω̂, β̂1:p), [β̂j−1.96ŝdj, β̂j +1.96ŝdj] is an approximate 95
% confidence interval for βj, j = 1, . . . , p. Our asymptotic result where κ tends to infinity
does not justify the plug-in approach and the uncertainty of the plugged-in parameter
estimates is not taken into account. We therefore assess the usefulness of standard errors
and approximate confidence intervals obtained from Σ̂ via simulation studies in Section 5.

Note that the first term in the right hand side of (6) is the asymptotic covariance matrix
for the maximum likelihood estimate of (log α, β1:p) when the data are generated under a
Poisson process with intensity function (2), cf. Theorem 2 in Waagepetersen (2006).

The integrals J , G, and H are evaluated using Riemann sums where k(ξ − c; ω) is
approximated by 1[ξ ∈ Dc]k(ξ − c; ω) for a disc Dc around c. In Section 4 k is a bivariate
Gaussian density with standard deviation ω and we use four times ω as the radius for Dc

(actually, using just three times ω produces almost identical results).

4 Application to rain forest data

The tropical tree data sets considered in this section are extracted from a huge data set
collected in the 500 by 1000 meter Barro Colorado Island plot, see Condit et al. (1996);
Condit (1998); Hubbell and Foster (1983), and the Acknowledgment. The upper plots in
Figure 1 show respectively all tree positions in 1995 of the species Beilschmiedia pendula

Lauraceae (3605 trees) and Ocotea whitei Lauraceae (1298 trees). The lower plots show
covariates (altitude and norm of the altitude gradient) recorded on a 5 by 5 meter grid.
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β̂1 β̂2 Corr(β̂1, β̂2) κ̂ α̂ ω̂
Beilschmiedia 0.02 (-0.02;0.06) 5.84 (0.89;10.80) 0.39 8e-5 85.9 20.0
Ocotea 0.01 (-0.04;0.06) 14.87 (8.70;21.03) 0.55 1.2e-4 13.5 12.4

Table 1: Parameter estimates for the two species (approximate 95% confidence intervals for
β1 and β2 in parentheses). The fourth column contains the estimated correlation between
β̂1 and β̂2.

For both species, we let z1:p consist of the altitude and gradient covariates and k is
assumed to be a bivariate isotropic normal density with standard deviation ω. The K-
function is then

K(t; κ, ω) = πt2 +
(

1 − exp(−t2/(4ω)2)
)

/κ (7)

and X can be viewed as an inhomogeneous version of the so-called Thomas process
(Thomas, 1949). The upper limit a in (5) is chosen to be 100 meter for both species.
We use 5 by 5 meter cells for the discretization in the Riemann approximation of the
integrals in J , G, and H, and use four times the estimated ω for the radius in Dc, see
Section 3.1.

Table 1 shows parameter estimates for the two species. According to the approximate
95% confidence intervals (in parentheses) for β1 and β2 there is evidence that both species
prefer to live on slopes but not that they favor low or high altitudes. The parameter esti-
mates β1 and β2 seem to be rather strongly positively correlated according to the estimates
of Corr(β̂1, β̂2) obtained from the approximate covariance matrix Σ̂. The estimates of κ
yield the expected numbers of mother points 40 and 60 within the plot for the two species.

Figure 2 shows for both species K̂(t) given by (4), K(t, κ̂, ω̂), and the K-function
Kpois(t) = πt2 for the Poisson process. The plots indicate clustering since the estimates

K̂(t) are above Kpois(t). Applying maximum likelihood estimation under the Poisson pro-
cess assumption, we obtain the same estimates of β1 and β2 for the two types of trees
but much too narrow confidence intervals (0.02;0.03) and (5.34;6.34) (Beilschmiedia) and
(0.00;0.02) and (14.15;15.58) (Ocotea).

5 Simulation study

In the following simulation study we focus on the asymptotic normality of β̂1:p, the per-

formance of the standard errors for β̂1:p obtained from either Σ∗ or Σ̂, and the coverage
properties of approximate confidence intervals, see Section 3.1.

We use the observation plot, covariates, and kernel k from the previous section, fix β∗
1:p

at the parameter estimates obtained for the Beilschmiedia trees and let ω∗ equal to 10 or
20. The parameter κ∗ is 5e-5, 1e-4, or 5e-4 corresponding to either 25, 50, or 250 expected
numbers of mother points within the plot. For each value of κ∗ we consider two values of
α∗ so that the expected number µ∗ of simulated points is either 200 or 800 corresponding
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Figure 2: Solid lines: K̂(t) (4) for Beilschmiedia pendula Lauraceae (left) and Ocotea whitei

Lauraceae (right). Dotted lines: K(t, κ̂, ω̂) (7). Dashed lines: K-function Kpois(t) = πt2

for a Poisson process.

to “small” and “moderately large” point patterns. For each combination of κ∗ and µ∗ we
generate 1000 synthetic data sets and obtain simulated parameter estimates by applying
our estimation procedure to the synthetic data. The results obtained with the two ω∗

values are qualitatively very similar, so below we only comment on the results for ω∗ = 20.
The qq-plots in Figure 3 and Figure 4 based on the simulated values of β̂1:p indicate that

the distribution of β̂1 is fairly close to normal already for κ∗=5e-5 while the convergence to
normality is slower for β̂2 where the qq-plots reveal a heavy tail to the left for the smaller
κ∗ values. The different rates of convergence are probably due to the difference between the
associated covariates. High values of the gradient covariate occur in rather narrow areas
which are less likely to be sampled by a cluster of points. This induces a bias downwards
for the estimates of β2: for κ∗=5e-5 the mean of β̂2 is about 0.6 smaller than β∗

2 = 5.84.
For κ∗=5e-4 the bias is reduced to around 0.1. The estimate of β2 is essentially unbiased
for all values of κ∗.

The first column in Table 2 shows for each combination of κ∗ and µ∗, a Monte Carlo
estimate of the standard deviation for β̂1 obtained from the 1000 simulated parameter
estimates. The second column contains the standard deviations obtained from Σ∗ while
Monte Carlo estimates of the medians of the standard deviations obtained from Σ̂ are given
in the third column. The fourth column contains the estimated coverage percentages for
the approximate 95 % confidence intervals for β1. The last four columns are as the four
first but for β2.

The estimated coverage percentages in general differ less from the nominal 95% than
twice the Monte Carlo standard error which is around 0.007. The approximate confidence
intervals seem to be slightly too conservative for β1 and slightly too restrictive for β2.
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Figure 3: Quantiles obtained from 1000 simulated parameter estimates of β1 against
quantiles of a normal distribution. Left to right κ∗=5e-5,1e-4,5e-4 and top to bottom
µ∗ = 200, 800.

There is in general good agreement between the first three columns regarding β1. Larger
discrepancies can be observed between the columns 5 to 7. In particular, the standard
errors obtained from Σ̂ (column 7) seem to underestimate somewhat the sampling standard
deviation of β̂2 (column 5). Perhaps the underestimation of the standard deviation is
counterbalanced by the bias of β̂2 so that reasonable coverage percentages are still obtained.

Considering the generally decent coverage properties of the approximate confidence
intervals, basing inference on standard errors obtained from Σ̂ does not seem unreasonable
even when the expected number of mother points in the observation plot is as low as 25.
However, for covariates with peaks and narrow ridges, one should be careful with possible
bias of the estimates of the associated parameter and standard error.

6 Discussion

We conclude by discussing merits and disadvantages of the proposed estimating function
approach in relation to the alternatives of maximum likelihood estimation and a second
order estimating function.

Maximum likelihood estimation is likely to be statistically more efficient but the practi-
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Figure 4: Quantiles obtained from 1000 simulated parameter estimates of β2 against
quantiles of a normal distribution. Left to right κ∗=5e-5,1e-4,5e-4 and top to bottom
µ∗ = 200, 800.

cal implementation using MCMC is not easy in the case of an inhomogeneous Neyman-Scott
process. Let

Λ(ξ|C, β1:p, α, ω) = α exp(z1:p(ξ)β
T

1:p)
∑

η∈C

k(ξ − η; ω), ξ ∈ R
2,

denote the random intensity function of X viewed as a Cox process. The basic computa-
tional obstacle is the integral

∫

S
Λ(ξ|c, β1:p, α, ω)dξ which appears in the conditional density

of the data X ∩ S given C and which can only be evaluated using a Riemann sum ap-
proximation. This becomes computationally very time consuming since the integral must
be evaluated millions of times in connection with birth-death updates in an MCMC al-
gorithm for simulation of C given X ∩ S and with computation of importance sampling
weights, see Møller and Waagepetersen (2003) Section 7.1.2, 8.6, and 10.3.1 for details.
Evaluating the integral in the birth-death MCMC updates can be avoided using a data
augmentation technique in Waagepetersen and Schweder (2005). However, in experiments
for the Beilschmiedia data with an MCMC sampler based on data augmentation, very low
acceptance rates for births or deaths of mother points are obtained. This is partly due to
the large value of α for this data set which implies that adding a point to C or removing
a point to C induces a major change in the intensity function Λ(ξ|C, β1:p, α, ω), ξ ∈ S, for
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κ∗ µ∗ sd1 sd∗
1 ŝd1 cvrg1 sd2 sd∗

2 ŝd2 cvrg2

5e-5 200 0.027 0.027 0.027 0.96 3.67 3.35 3.34 0.94
800 0.026 0.026 0.025 0.97 3.36 3.21 3.16 0.94

1e-4 200 0.020 0.020 0.020 0.96 2.57 2.49 2.41 0.94
800 0.018 0.018 0.018 0.96 2.23 2.3 2.23 0.95

5e-4 200 0.013 0.013 0.012 0.94 1.50 1.48 1.42 0.94
800 0.009 0.009 0.009 0.95 1.14 1.14 1.10 0.94

Table 2: First four columns: Monte Carlo estimate of the standard deviation for β̂1,
standard deviation obtained from Σ∗, median of standard deviation obtained from Σ̂, and
coverage of approximate confidence interval. Last four columns: as first four columns but
for β2.

X ∩ S given C.
Inspired by Guan (2006) another alternative is the second order object function

l2(β1:p, κ, α, ω) =
∑

ξ,η∈X∩S:
ξ 6=η

log λ(2)(ξ, η; β1:p, κ, α, ω) −

∫

S

∫

S

λ(2)(ξ, η; β1:p, κ, α, ω)dξdη

where
λ(2)(ξ, η; β1:p, κ, α, ω) = exp(z(ξ)βT) exp(z(η)βT)g(‖ξ − η‖; κ, ω)

is the second order product density and the pair correlation function g(t; κ, ω) is the
derivative of the K-function divided by 2πt. The function l2 may be viewed as a limit
of log composite likelihoods

∑

i6=j

[

Nij log P (Nij = 1) + (1 − Nij) log P (Nij = 0)
]

where
Nij = 1[X ∩Ai 6= ∅ and X ∩Aj 6= ∅] is the indicator for simultaneous occurrence of points
within Ai and Aj where {Ai} is a disjoint partitioning of S and the sizes of the Ai tend to
zero. Differentiating l2 an unbiased second order estimating function u2 is obtained. No
choice of tuning parameters is needed for u2.

In preliminary experiments the numerical solution of u2(β1:p, κ, α, ω) = 0 turned out
to be rather time consuming due to the need for numerical integration to evaluate u2 and
its derivative. Using a grid search for ω combined with Newton-Raphson updates for the
remaining parameters and about one hour of computing time, the estimate (0.02,5.73,7e-
5,95,30) is obtained for (β1, β2, κ, α, ω) in the case of the Beilschmiedia data. The estimate
for ω differs substantially from the estimate obtained using the minimum contrast method
whereas the other parameter estimates are rather similar to the ones obtained in Section 4.
In a simulation study under parameter settings as in the fourth row of Table 2 we obtained
Monte Carlo estimates 0.018 and 2.26 of the standard deviations for the u2 estimates of β1

and β2. These values are very similar to the ones obtained using the first order estimating
function (3), see Table 2. Hence, it is not obvious that u2 provides more efficient regression
parameter estimates than (3).

In conclusion, the approach for parameter estimation suggested in Section 3 suffers
from two disadvantages: the need for choosing the constant a in (5) and the potential loss
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of efficiency in comparison with maximum likelihood estimation. From a computational
point of view, however, the method is a very simple and fast alternative to maximum
likelihood estimation and to the second order estimating function u2. An advantage from
a mathematical point of view is the easy characterization of the asymptotic properties of
the regression parameter estimates obtained using (3), see Waagepetersen (2006).
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