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1 Introduction

The exercises are supposed to be solved using either R or BUGS. Many of the
exercises are one- or two-dimensional “toy examples” in order to keep the
programming simple. This creates a bit of a paedagogical conflict in a course
on Monte Carlo methods since in one dimension basically any method works
while Monte Carlo methods prevail in high-dimensional problems.

2 Some comments on R

R is a free-ware version of Splus. A wide range of statistical methods are
implemented in R and R is furthermore a very flexible programming language
where new applications can easily be developed.

2.1 Entering commands

In your pc version commands can be executed via the command line. Longer
sequences of commands or implementations of new functions can be written
in a separate file. If the commands are stored in a file, cmd.R say, then the
command line statement source(‘‘cmd.R’’) will execute the commands



in cmd.R and load function code contained in cmd.R. You can also open
cmd.R in your favourite text editor and use copy/paste to paste commands
or sequences of commands into the command line.

2.2 Introduction and help

You may find it useful to run the commands in basic.R to learn more about
some basic features of R. Help can be obtained by clicking the help-button.
For help on a specific topic, say the function scan, you may alternatively
just type help(scan) on the command line.

3 Exercises

You may either program the solutions from scratch or consider the programs
in the .R or .odc files associated to each exercise. However, to encourage you
to work actively with the code you will often need to either first correct bugs
in the programs or modify the programs before you get the correct solution.

3.1 Exercises for Lecture 1

1 (exercisel.R)

Suppose U ~ N(0,1) and Y|U = u ~ Poisson(exp(s + U)) (recall that
Poisson(A) has density f(y; A\) = exp(—A)AY/y!). Assume that ¥ = 8 is
observed.

a) In the same plot draw the density f(u) = exp(—u?/2)/v2r of N(0,1)
and f(8;exp(f + u)) as a function of u and for various B-values - why can
the variance of f(8;exp(/3 + U) be large for some 3 7. Also plot the product
f(8;exp(fG+u)f(u) of the two densities. Can you tell which values of 5 yield
small likelihoods 7

b) Compute and plot the marginal likelihood of 3 using numerical quadrature
(Use e.g. the R function integrate).

¢) Compute and plot a Laplace-approximation of the likelihood (note that
you obtain as a biproduct a normal distribution with mean and variance
approximately equal to the conditional mean and variance of U given Y = y).
d) Compute and plot a simple Monte Carlo approximation of the likelihood
and compute an estimate of the Monte Carlo error. Compare results obtained



with different numbers of simulations.
e) Repeat d) - ¢) but in the situations where 10 observations 8, 18, 5, 7, 10,
9,9, 6,7, 10 are available (i.e. f(8;exp(5 + u)) is replaced by the product
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of conditional densities for these observations). Note that we now have to
take care of numerical problems since the product of 10 Poisson densities may
take very small values. One possibility is to stabilize by dividing with the
product of Poisson densities evaluated at A= y (the MLE). Does the accuracy
of the Laplace approximation improve or worsen when more observations are
available 7

2 (exercise2.R) (Pig growth)

The R-package nlme can be used to compute maximum likelihood estimates
of parameters in non-linear mixed models. This package use a specialized
numerical integration method called Gaussian quadrature.

a) Consider a Gompertz model
y = exp(a — (a — log(v0)) exp(—k x t)) + €

for pig growth where k is the growth rate, ¢ is time in days, v0 corresponds
to the initial weight of pig, and € is N(0, 0?) residual noise. Fit a Gompertz
model with a random growth coefficent to the growth data (growth.txt).
Also fit a Gompertz model with a non random growth coefficient. Why is
the estimated residual variance larger for the latter model ?

b) Use the fitted models to simulate and plot growth curves for the five first
pigs. Does the simulated curves resemble the data ?

3.2 Exercises for Lecture 11

3 (exercise3.R) (continuation of Exercise 1)

This exercise considers importance sampling approximation of the likelihood



using a t-distribution with mean and variance from the Laplace approxima-
tion obtained in Exercise 1 e).

a) In the same plot draw the density of the importance t-distribution and of
the joint density

10

exp(g(w)) = [ [1f (wss exp(B8+ )/ f (wi; 9)] f (w)

i=1

of the observations and the random effect (here we have for numerical sta-
bility divided with f(y;;7)). How does the importance sampling distribution
depend on the value of 3 7

b) Compute an importance sampling approximation of the likelihood. What
happens if you use the importance sampling t-distribution obtained for, say
(8 = 4 to compute the likelihood for all the other values of 3 7

b) Compute the first and second order derivatives of the importance sam-
pling approximation of the log likelihood and maximize the log likelihood
using Newton-Raphson.

4 (exercise4.R) (continuation of Exercise 1)

Construct a random walk Metropolis sampler which simulates from U|Y = y.
Compare the Monte Carlo estimate of the conditional distribution with the
approximate normal distribution obtained in Exercise 1 ¢). A rule of thumb
states that the optimal acceptance rate is around 25 %. Use different proposal
variances (leading to different acceptance rates) and compare the estimated
autocorrelations (use acf to compute autocorrelations).

5 (exerciseb5.R) (Gibbs sampler for bivariate normal)
Consider a bivariate normal distribution

(U1, Uz) ~ N((0,0), Ll) ﬂ )

Note that the conditional distributions of Uy |Us = uy and Us|U; = uy are

N(pug, 1 — p?) and
N(puy, 1= p?),



respectively.

Run a Gibbs sampler for (U, Us) for values of p = 0,0.5, and 0.95. Plot
the trajectory of the simulated pairs of (U, Usy). Compute autocorrelation
for the simulated chain using acf. Why are the chains more auto-correlated
(slowly mixing) when p is large 7

3.3 Exercises for Lecture 111

6 (simple_ex.odc) (continuation of Exercise 1)

As a warm up for BUGS, try to simulate from the conditional distribution of
U|Y =y using BUGS.

7 (cherries.odc,cherriesdat.odc) (Bayesian analysis for cherries)

Perform a Bayesian analysis of the cherry data using BUGS. Assess conver-
gence by considering timeseries and compute posterior means and variances
of treatment effects and variance components.

3.4 Exercises for Lecture IV

8 (exercise8.R) (sensitivity analysis)

Use importance sampling to asses the sensitivity of the posterior results from
Exercise 7 to the choice of prior.

9 (cherriesbinary.odc) (non-Gaussian random effects, continuation of Ex-
ercise 7)

Try to replace the Gaussian random branch effects with binary random ef-
fects. Try also to replace an observation with NA (so that it is missing) and
then predict that observation with BUGS.



