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SUMMARY

We propose a computationally efficient technique, based on logistic regression, for fitting 15

Gibbs point process models to spatial point pattern data. The score of the logistic regression
is an unbiased estimating function, and is closely related to the pseudolikelihood score. Imple-
mentation of our technique does not require numerical quadrature, and thus avoids a source of
bias inherent in other methods. For stationary processes we prove that the parameter estimator
is strongly consistent and asymptotically normal, and propose a variance estimator. We demon- 20

strate the efficiency and practicability of the method on a real dataset and in a simulation study.

Some key words: estimating function, exponential family model, Georgii–Nguyen–Zessin formula, logistic regression,
pseudolikelihood.

1. INTRODUCTION

Spatial Gibbs and Markov point processes are important classes of models for spatial depen- 25

dence in point patterns (van Lieshout, 2000) with a broad range of applications (e.g. Harkness &
Isham, 1983; Stoyan & Penttinen, 2000; Mattfeldt et al., 2007; Funwi-Gabga & Mateu, 2012).
Popular options for parameter estimation include maximum likelihood (e.g. Ogata & Tanemura,
1981; Møller & Waagepetersen, 2004), maximum pseudolikelihood (e.g. Besag, 1977; Jensen
& Møller, 1991; Baddeley & Turner, 2000; Billiot et al., 2008) and Takacs–Fiksel (e.g. Fiksel, 30

1984; Billiot, 1997; Coeurjolly et al., 2012) estimation. For all three methods, the associated
estimating functions are unbiased.

However, practical implementations of these methods are typically biased, because the objec-
tive function or estimating function must be approximated. In the likelihood function the nor-
malizing constant is not tractable and is typically approximated by stochastic methods such as 35

Markov chain Monte Carlo simulation (Ripley, 1979; Huang & Ogata, 1999; Geyer, 1999; Møller
& Waagepetersen, 2004). The score of the pseudolikelihood, and the Takacs–Fiksel estimating
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function, involve an integral which must usually be approximated using numerical quadrature,
which may introduce substantial bias.

The maximum pseudolikelihood and Takacs–Fiksel methods offer enormous savings in com-40

putation time over Markov chain Monte Carlo maximum likelihood estimation. Another advan-
tage is that maximum pseudolikelihood can be implemented using standard software for gener-
alized linear models, with the attendant benefits of numerical stability, computationally efficient
optimisation, and flexible model specification.

One strategy for numerical approximation is to discretise the spatial domain onto a fine grid of45

pixels (Tukey, 1972) and to consider the random field of binary variables indicating presence or
absence of points in each pixel. This is used extensively in Geographical Information Systems to
fit spatial Poisson process models (Agterberg, 1974; Bonham-Carter, 1995; Baddeley et al., 2010;
Warton & Shepherd, 2010). The discrete approximation to the Poisson process likelihood is a
binomial regression with binary responses given by the presence/absence variables, which can be50

fitted using standard software. Approximation error can be controlled using a fine discretisation,
but this leads to numerical instability and the failure of the delta-method approximation (Hauck &
Donner, 1977), arising because the overwhelming majority of pixels do not contain a data point.
In practice, this is avoided by using only a randomly-selected subset of the absence pixels. The
pixel discretisation approach can be extended to form a pseudolikelihood for Gibbs processes55

(Clyde & Strauss, 1991), although this has not been widely used in practice. For a given choice
of grid the binary random field pseudolikelihood again takes the form of a logistic regression
likelihood. The spatial point process pseudolikelihood function may be viewed as a limit of
binary random field pseudolikelihood functions (Besag, 1975, 1977; Besag et al., 1982; Clyde &
Strauss, 1991).60

Another popular strategy for numerical approximation is the sparse quadrature approximation
pioneered by Berman & Turner (1992) for maximum likelihood estimation of spatial Poisson
processes and extended to maximum pseudolikelihood estimation of Gibbs processes by Bad-
deley & Turner (2000). The approximate pseudolikelihood is equivalent to a Poisson regression
likelihood which can be implemented using standard generalized linear model software. The65

sparse quadrature approximation involves a sum over the observed data points together with a
set of dummy points. While it was originally envisaged that the dummy points might be gen-
erated at random (Berman & Turner, 1992; Baddeley & Turner, 2000), the standard software
implementation in the spatstat package (Baddeley & Turner, 2005) generates a regular grid
of them if none are provided by the user.70

When unbiased estimating functions are approximated using deterministic numerical approx-
imations, the resulting estimating functions are not in general unbiased, and it may be difficult
to quantify the error due to the approximations. It can therefore be advantageous to replace
deterministic numerical quadrature with Monte Carlo approximations which can provide both
unbiased results and the possibility of quantifying the Monte Carlo error. Rathbun et al. (2007)75

and Waagepetersen (2007) introduced Monte Carlo approximation based on random dummy
points for maximum likelihood estimation of Poisson processes and composite likelihood for
Neyman–Scott point processes, respectively. The estimating function in Waagepetersen (2007),
obtained with weights determined by the Dirichlet tessellation (Baddeley & Turner, 2000), takes
the form of a conditional logistic regression, equivalent to the case-control conditional likelihood80

considered for epidemiological data in Diggle & Rowlingson (1994), and closely related to lo-
gistic regression in Geographical Information Systems where the absence pixels are subsampled
(Bonham-Carter, 1995).

In this paper we introduce a logistic regression estimating function for the wide class of Gibbs
point processes. This estimating function has several advantages. First, it is unbiased. Second,85



Logistic regression for Gibbs processes 3

since it takes the form of a logistic regression score, parameter estimates can easily be obtained
using existing software for generalized linear models. Third, due to a decomposition of variance
it is possible to quantify the proportion of variance due to using random dummy points, and to
decide how many are needed in order to attain the desired accuracy. Fourth, the logistic regression
estimating function typically requires fewer evaluations of the conditional intensity than methods 90

based on deterministic numerical quadrature, leading to shorter computing times. It can be further
motivated by its close relation to pseudolikelihood and to a time-invariance estimating (Baddeley,
2000) function obtained from Barker dynamics; see the Supplementary Material.

2. SPATIAL POINT PROCESSES

2·1. General background and notation 95

A point process X on Rd is a random subset of Rd which is locally finite, meaning that
X ∩W is almost surely finite for every bounded subset W of Rd. We assume the point process
is confined to a region Λ ⊆ Rd; this can be bounded or unbounded depending on the application.
The notation W will be reserved for a bounded subset of Λ. For a point pattern x we write
xW = x ∩W for the subset of points falling in W , and n(x) for the possibly infinite number of 100

points in x. Finally, | · | will be used to denote, depending on the context, either the cardinality
of a finite set or the volume of a bounded set or the supremum norm of a vector.

We assume X has an intensity function α. Then Campbell’s Theorem holds (e.g. Møller &
Waagepetersen, 2004):

E

{
∑

u∈X

h(u)

}
=

∫

Λ
h(u)α(u) du (1)

for any real function h defined on Λ such that hα is absolutely integrable. 105

A point process X has Papangelou conditional intensity λ(u,X) if

E

{
∑

u∈X

f(u,X \ u)
}

= E

∫
f(u,X)λ(u,X)du (2)

for all non-negative functions f : Λ× Ω → R where Ω is the set of locally finite point config-
urations in Λ. Intuitively, λ(u,X)du is the conditional probability that a point of X occurs in a
small ball of volume du around the location u, given the rest of the point process X . See Georgii
(1976) for a general presentation. 110

2·2. Gibbs point processes

In this paper we consider inference for a finite or infinite Gibbs point process X of exponential
family type. Letting Ωf be the set of finite point configurations in Ω, the distribution of X is
specified in terms of a sufficient statistic t : Ωf → Rp for some p ≥ 1, a parameter θ ∈ Θ ⊆
Rp and a function H : Ωf → [0,∞) which serves as a baseline or reference density. Spatial 115

covariates may be included in the components t1, . . . , tp, of the sufficient statistic t, while a hard-
core distance may be included in the baseline H . If Λ is bounded, X is a finite point process, and
the distribution of X is specified in terms of its probability density

f(x) ∝ H(x)eθ
⊤t(x)

with respect to the homogeneous Poisson process on Λ of unit rate.
In the case Λ = Rd, the distribution is given by a so-called specification which is a consistent 120

family of conditional point process densities {fW (· | ·)}W⊆Rd indexed by the bounded subsets
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of Rd. For ease of exposition we assume a finite range property, meaning that the conditional
density of XW given XΛ\W only depends on the points of XΛ\W within distance R from W for
some 0 ≤ R < ∞. For each W we then define the conditional density as

fW (xW | xΛ\W ) ∝ H(xW⊕R)e
θ⊤t(xW⊕R),

where W ⊕R = {v ∈ Rd : infu∈W ‖v − u‖ ≤ R}. Consistency means that whenever W1 ⊂125

W2 then fW1(· | xΛ\W1
) ∝ fW2(· ∪ xW2\W1

| xΛ\W2
). The distribution of the point process X

is specified by the consistent family {fW (· | ·)}W⊆Rd if XW | XΛ\W = xΛ\W has density
fW (· | xΛ\W ) for each bounded subset W . For general discussion of conditions that ensure the
existence of possibly infinite range Gibbs point processes we refer to Preston (1976), Georgii
(1988) and Dereudre et al. (2012).130

Assuming that H is hereditary, i.e., H(x ∪ u) > 0 implies H(x) > 0 for u ∈ Λ and x ∈ Ω,
the Papangelou conditional intensity of X exists and λθ(u, x) is equal to

H(u, x)eθ
⊤t(u,x) (Λ bounded) or H(u, xB(u,R))e

θ⊤t(u,xB(u,R)) (Λ = Rd), (3)

where H(u, x) = 1{H(x) > 0}H(x ∪ u)/H(x), t(u, x) = t(x ∪ u)− t(x) and B(u,R) is the
Euclidean ball centered at u with radius R. Note that λθ is in one-to-one correspondence with f
and with fW up to a normalizing constant. Hence the distribution of a Gibbs point process can135

equivalently and often conveniently be specified in terms of the conditional intensity. Conditions
that ensure the existence of a Gibbs point process corresponding to a given conditional intensity
are discussed in Section 4 and stated in the Supplementary Material.

2·3. Extension to marked point processes

A marked point is a pair u = (v,m) where v and m represent respectively the location and140

some other characteristic of an object observed in Rd. For example v might be the spatial lo-
cation of a tree, and m its diameter at breast height. We write ů = v for the unmarked point
corresponding to the marked point u. Let Λ be a subset of Rd and let M be an arbitrary space;
e.g., a countable set or a subset of Rk for some k ≥ 1. A marked point process Y on S = Λ×M
is a locally finite random subset of Λ×M meaning that Y ∩ (W ×M) is finite whenever W is145

a bounded subset of Λ. The notation Ω is used henceforth for the set of all locally finite marked
point configurations. For a marked point configuration y ∈ Ω, write yW = y ∩ (W ×M), that
is the subset of marked points where the location part falls in W .

We equip Λ×M with the product measure Ld ⊗ µ where Ld is the Lebesgue measure on
Rd and µ is a probability distribution that serves as the reference measure on M. For simplicity150

we write du = Ld(dů)⊗ µ(dm) for a marked point u = (̊u,m). Campbell’s formula (1) and the
Georgii–Nguyen–Zessin formula (2) continue to hold when integration over Rd is replaced by
integration over S with respect to Ld ⊗ µ.

Remark 1 (Multitype point processes). In the important special case of a multitype point pro-
cess where M is a finite set of K elements, say, µ is typically the uniform distribution on M.155

However, we could also have taken µ to be counting measure in which case the intensity function
αc with respect to Lebesgue-counting product measure would become αc(u) = α(u)/K.

3. UNBIASED ESTIMATING FUNCTION FROM LOGISTIC REGRESSION

Let W denote the bounded observation window of X . Our estimating function involves a
dummy point process D on S independent of X , with positive intensity function ρ. For instance160

D could be a Poisson, binomial, or stratified binomial point process; see Section 4 for details.
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The proposed estimating function is

sW (X,D; θ) =
∑

u∈XW

ρ(u)t(u,X \ u)

λθ(u,X \ u) + ρ(u)
−

∑

u∈DW

t(u,X)λθ(u,X)

λθ(u,X) + ρ(u)
. (4)

By the Georgii–Nguyen–Zessin formula (2) for X and the Campbell formula (1) for D given X ,
respectively, we obtain

E





∑

u∈XW

ρ(u)t(u,X \ u)

λθ(u,X \ u) + ρ(u)



 = E

{∫

W×M

ρ(u)t(u,X)λθ(u,X)

λθ(u,X) + ρ(u)
du

}
(5)

and 165

E

{ ∑

u∈DW

t(u,X)λθ(u,X)

λθ(u,X) + ρ(u)
| X

}
=

∫

W×M

ρ(u)t(u,X)λθ(u,X)

λθ(u,X) + ρ(u)
du. (6)

It follows that sW (X,D; θ) is an unbiased estimating function where the expectation is taken
over both X and D. The score (4) is the derivative of the function LRLW (X; θ), where LRL

stands for the logistic log-likelihood

LRLW (X; θ) =
∑

u∈XW

log

{
λθ(u,X \ u)

λθ(u,X \ u) + ρ(u)

}
+

∑

u∈DW

log

{
ρ(u)

λθ(u,X) + ρ(u)

}
. (7)

Since λθ(u,X) = λθ(u,X \ u) for u /∈ X , (7) is, conditional on X ∪D, formally equivalent to 170

the log-likelihood function for Bernoulli trials Y (u) = 1{u ∈ X}, u ∈ X ∪D with

pr(Y (u) = 1) =
λθ(u,X \ u)

λθ(u,X \ u) + ρ(u)
=

eθ
⊤t(u,X)+log H̃(u,X)

1 + eθ⊤t(u,X)+log H̃(u,X)
,

where H̃(u,X) = H(u,X)/ρ(u). Thus (7) is precisely a logistic regression with offset term

log H̃(u,X). This connection has many advantages. Estimation can be implemented straight-
forwardly using standard software for generalized linear models. The loglikelihood is a concave
function of θ, and conditions for existence and uniqueness of the maximum are well known 175

(Silvapulle, 1981).
If we rearrange (4) as

sW (X,D; θ) =
∑

u∈XW

t(u,X \ u)−
∑

u∈(X∪D)W

t(u,X \ u)λθ(u,X \ u)
λθ(u,X \ u) + ρ(u)

(8)

and apply the Georgii–Nguyen–Zessin formula and (6) to the last term in (8), we obtain

E





∑

u∈(X∪D)W

t(u,X \ u)λθ(u,X \ u)
λθ(u,X \ u) + ρ(u)



 = E

{∫

W×M
t(u,X)λθ(u,X)du

}
. (9)

Thus, if the last term in (8) is replaced by its integral compensator the score of the pseudolike-
lihood is obtained (Jensen & Møller, 1991). Hence our estimating function may be viewed as a 180

Monte Carlo approximation of the pseudolikelihood score to which it converges in mean square
when infu∈W ρ(u) → ∞.

The estimating equation (4) is applicable both for homogeneous and inhomogeneous Gibbs
point processes defined on Λ = W and even if W ⊂ Λ with Λ = Rd since (5) and (6) are still
valid in these cases. However in such a case the score (4) cannot be computed since it depends on 185
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XΛ\W , and an edge correction such as the border correction should then be applied. This is done
in Section 4 where we focus on stationary Gibbs models and stationary dummy point processes.

4. THEORETICAL RESULTS FOR STATIONARY MODELS

In this section we focus on exponential family models of stationary marked Gibbs point pro-
cesses that are defined on S = Rd ×M, i.e., taking Λ = Rd, and we derive asymptotic prop-190

erties for the logistic regression estimate. We assume that λθ has finite interaction range R ≥ 0
meaning that λθ(u, x) = λθ{u, xB(ů,R)}. We further assume that X is observed in a sequence

of bounded observation windows W+
n ⊂ Rd, n ≥ 1. Under the assumption of finite range, a lo-

gistic regression estimate θ̂n of θ is obtained for each n by maximizing LRLWn
(X; θ), where

Wn = W+
n ⊖R is the erosion of W+

n by R: Wn = {v ∈ W+
n : B(v,R) ⊆ W+

n }. Thus we base195

inference on the conditional distribution of XWn
given XRd\Wn

where X is a point process

on Rd with conditional intensity λθ. This corresponds to using minus sampling to correct for
edge effects (Miles, 1974). We assume that (Wn)n≥1 is a sequence of increasing cubes such
that Wn → Rd as n → ∞. Finite range together with the further technical assumptions in the
Supplementary Material ensure the existence of a marked Gibbs point process on Rd with the200

given conditional intensity (Bertin et al., 2008). These conditions are satisfied by a large class
of models including the Strauss process, its multiscale and multitype generalizations, Geyer’s
triplet process, the area-interaction process and Geyer’s saturation process.

In the following we consider three different choices of the stationary marked dummy point
process D of constant intensity ρ > 0. In all cases the marks are assigned independently of the205

locations of the points according to the reference mark distribution µ. First, for the homogeneous
marked Poisson process P(Rd, ρ) the locations constitute a homogeneous Poisson process. Sec-
ond, for the marked binomial point process we assume that ρ|Wn| is integer. The marked bi-
nomial point process Dn on Wn then consists of ρ|Wn| independent and identically distributed
random marked points with locations uniformly distributed in Wn. In the case of marked bino-210

mial dummy points, we abuse notation by writing D = ∪∞
n=1{Dn} ∼ B(Rd, ρ) and DWn

= Dn.
Finally, the marked stratified point process on S requires a more detailed definition:

DEFINITION 1. Let Rd be decomposed as ∪k∈ZdCk where the cells Ck are disjoint cubes

centered at k/ρ1/d with volume 1/ρ. For k ∈ Zd let Uk = (Ůk,Mk) where the random point

Ůk is uniform on Ck, Mk ∼ µ and all Uk and Mk are independent. Then D = ∪k∈Zd{Uk} is215

referred to as a marked stratified binomial point process SB(Rd, ρ) on S .

Let θ⋆ denote the true parameter vector. The score sWn
(X,D; θ⋆) evaluated at θ⋆ is the sum

of T1,Wn
(X) and T2,Wn

(X,D) where

T1,Wn
(X) =

∑

u∈XWn

wθ⋆(u,X \ u)−
∫

Wn×M
wθ⋆(u,X)λθ⋆(u,X)du, (10)

T2,Wn
(X,D) =

∫

Wn×M
wθ⋆(u,X)λθ⋆(u,X)du− 1

ρ

∑

u∈DWn

wθ⋆(u,X)λθ⋆(u,X), (11)220

where for any θ ∈ Θ, u ∈ S and x ∈ Ω, wθ(u, x) = ρ t(u, x)/{λθ(u, x) + ρ}. Since T1,Wn
is a

centered random vector depending only on X and since the expectation of T2,Wn
given X is zero,

T1,Wn
and T2,Wn

are uncorrelated and can therefore be studied separately. Each component of
the vector T1,Wn

(X) is a special case of innovations for spatial Gibbs point processes introduced
by Baddeley et al. (2005) with variances studied by Baddeley et al. (2008) and asymptotic results225
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provided by Coeurjolly & Lavancier (2013) and Coeurjolly & Rubak (2013). Based on these
tools, we show in the Supplementary Material that

|Wn|−1/2T1,Wn
(X) → N(0, G1) (12)

in distribution, where G1 is defined in Appendix 1.
Regarding the term T2,Wn

, conditional on X , a Lindeberg central limit theorem is available.
Using this we show in the Supplementary Material that given X , 230

|Wn|−1/2T2,Wn
(X,D) → N(0, G2) (13)

in distribution, where

G2 =





Gp
2 = ρ−1

E{wλ
θ⋆(0

M , X)wλ
θ⋆(0

M , X)⊤}, D ∼ P(Rd, ρ),

Gb
2 = ρ−1 var{wλ

θ⋆(0
M , X)} = 1

ρ var{wλ
θ⋆(U0, X)}, D ∼ B(Rd, ρ),

Gsb
2 = ρ−1

E [var{wλ
θ⋆(U0, X) |X}], D ∼ SB(Rd, ρ),

(14)

where for θ ∈ Θ, u ∈ S and x ∈ Ω we write wλ
θ,j(u, x) for wθ,j(u, x)λθ(u, x), and U0 is as in

Definition 1. Here 0M = (0,M) denotes a randomly-marked point at the origin in Rd, where
M ∼ µ. We can easily check that Gsb

2 ≤ Gb
2 ≤ Gp

2 where for two square matrices A and B,
A ≤ B means that B −A is a positive-semidefinite matrix. Therefore, among the three choices 235

of random dummy points, the marked stratified point process seems to be the optimal choice.
The following almost sure convergence is also proved to hold as n → ∞

−|Wn|−1 d

dθ⊤
sWn

(X,D; θ⋆) → S = E

{
ρt(0M , X)t(0M , X)⊤

λθ⋆(0M , X) + ρ
λθ⋆(0

M , X)

}
(15)

where S is the sensitivity matrix.

Combining (12)-(15) we obtain the following main result, in which we denote by θ̂ = 240

θ̂n(X,D) the logistic regression score estimate based on XW+
n

.

THEOREM 1. As n → ∞, θ̂ is a strongly consistent estimate of θ⋆. Assume that G1 and G2

are positive-definite matrices, then |Wn|1/2(θ̂ − θ⋆) tends to a Gaussian distribution with co-

variance matrix Σ = S−1(G1 +G2)S
−1 which is consistently estimated by Σ̂ = Ŝ−1(Ĝ1 +

Ĝ2)Ŝ
−1 where the matrices Ŝ, Ĝ1 and Ĝ2 are defined in Appendices 1 and 2. In other words, 245

|Wn|1/2Σ̂−1/2(θ̂ − θ⋆) → N(0, Ip) in distribution.

Remark 2 (Variance decomposition). Theorem 1 shows in particular that var(|Wn|1/2θ̂) is the
sum of Σ1 = S−1G1S

−1 and Σ2 = S−1G2S
−1 where G1 = |Wn|−1 var{T1,Wn

(X; θ⋆)} and
G2 = |Wn|−1 var{T2,Wn

(X,D; θ⋆)}. Equations (14)–(15) suggest that Σ2 is approximately pro-
portional to 1/ρ. Furthermore, in the simulation studies in Section 5 the estimated Σ1 is close 250

to the covariance matrix of the maximum pseudolikelihood estimate. We can thus quantify the
increase in estimation variance due to the use of the random dummy points D relative to the
variance of the exact maximum pseudolikelihood estimate. This also allows us to determine how
large a ρ should be used in order to achieve a certain accuracy; see Section 5·5.

Remark 3 (Ergodicity). Theorem 1 requires neither the assumption that X be ergodic nor that 255

the Gibbs point process be uniquely determined by the specification.



8 A. J. BADDELEY, J.-F. COEURJOLLY, E. RUBAK AND R. WAAGEPETERSEN

5. SIMULATION STUDIES AND DATA EXAMPLE

5·1. Implementation

Our estimating function is implemented in the R package spatstat as an option of the
function ppm. We specify the expected number of dummy points in W using a parameter nd.260

By default ppm uses a deterministic grid of dummy points where a one-dimensional nd specifies
the number of grid points in each spatial direction. We have implemented the logistic regression
estimate as an option for ppm and then n2

d specifies the expected number of dummy points in case
of Poisson or binomial dummy points while nd specifies the grid dimensions in case of stratified
dummy points. Extending the rule of thumb used in ppm, we suggest using ρ = 4n(XW )/|W |.265

In our simulation studies this usually resulted in moderate additional variance due to the random
dummy points. Moreover, this choice can be used as a starting point for a data driven approach
to determine ρ; see Section 5·5.

5·2. Comparison of logistic likelihood and pseudolikelihood estimation

We generate simulations of a stationary unmarked Strauss process in W = [0, 1]2 specified270

by a conditional intensity of the form (3) with t(u,X) = {1, nR(u,X)} and θ = (θ1, θ2) where
nR(u,X) is the number of neighbouring points in X of distance from u less than or equal to
R. The parameter values used for the simulations are θ1 = log 1000, θ2 = log 0.5 and R = 0.01.
The interaction distance R is treated as a known parameter. We generate 10000 simulations of
the specified Strauss process and estimate θ using Poisson, binomial or stratified dummy points275

as well as with default ppm and with nd equal to 10, 20, 40, 80 or 160. The empirical intensity
for the simulated patterns is 871. In the particular case of a stationary Strauss process it is also
possible to compute the exact maximum pseudolikelihood estimate (Baddeley & Turner, 2000,
2013) which we also consider for comparison.

Boxplots of the parameter estimates for the different estimation methods are shown in Fig-280

ure 1. The default ppm estimate is strongly biased even with nd = 80 while the logistic regres-

Fig. 1. Boxplots of parameter estimates for increasing values of nd for the different estimation methods. Hori-
zontal lines show true parameter values. The four greyscales from dark to light represent default ppm and the
logistic regression estimates with Poisson, binomial and stratified binomial dummy points. For comparison the
exact maximum pseudolikelihood estimate is included as the rightmost box labelled nd = ∞ in both subfigures.

sion estimate is essentially unbiased for all nd. With nd equal to 80 or 160 the variance of the
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Table 1. Decomposition of variance for the logistic estimator using stratified dummy points with

increasing values of nd. The columns show the standard deviation of the estimator σ and the two

contributions σ1 and σ2 as well as the percentage increase of the standard deviation due to ran-

dom dummy points. For the exact maximum pseudolikelihood estimate the standard deviations

are 0.04 and 0.14 for θ1 and θ2.

θ1 θ2
nd σ×100 σ1×100 σ2×100 (σ − σ1)/σ1 σ×100 σ1×100 σ2×100 (σ − σ1)/σ1
10 7 4 6 66.28 25 14 21 79.99
20 5 4 3 19.22 17 14 10 23.21
40 4 4 1 4.35 14 14 5 5.48
80 4 4 0 0.64 14 14 2 0.84
160 4 4 0 0.08 14 14 1 0.11

logistic regression estimate is very close to that of the exact maximum pseudolikelihood esti-
mate. For small values of nd the variance for default ppm is much smaller than for the logistic
regression estimate. On the other hand, the table of root mean squared errors provided in the 285

Supplementary Material shows that they are always largest for the ppm estimate and that for
each nd, the lowest estimation variance is obtained with stratified dummy points. With nd equal
to 80 or 160 and considering θ2, the increase in root mean squared error relative to the exact
maximum pseudolikelihood estimate is just 0.9 %, respectively 0.07 %, when stratified dummy
points are used. In the remainder we only consider stratified dummy points. 290

As mentioned in Remark 2, the variance of the logistic regression estimator is a sum of terms
Σ1 and Σ2 where Σ2 is due to the random dummy points. To investigate this we consider 500
simulations from the Strauss model and for each simulation we refit the model 10 times using
independent realizations of the dummy process. A one-way analysis of variance then partitions
the total estimation variance into Σ1 and Σ2. Results from the analysis of variance are given in 295

Table 1. Here we use the generic notation σ2 = σ2
1 + σ2

2 for the variance of a univariate parame-
ter where σ2

1 and σ2
2 are extracted from the diagonals of Σ1 and Σ2. For nd greater than or equal

to 40 the relative increase in estimation standard deviation (σ − σ1)/σ1 due to using random
dummy points is less than 5.5 %. For both parameters the standard error σ1 quickly converges to
a constant value as nd increases. The reduction in variance as nd increases thus mainly occurs 300

for the σ2
2 term. This justifies regarding σ2

2 as the increase in variance additional to the maxi-
mum pseudolikelihood estimate variance due to the random dummy points. Note also that σ2 is
approximately halved each time nd is doubled.

The logistic regression estimate outperforms the default ppm method and is competitive with
the exact maximum pseudolikelihood estimate for the Strauss process. The same conclusion is 305

valid for more sophisticated examples, such as the ones presented in the next section, for which
the exact maximum pseudolikelihood estimate is unavailable.

5·3. Coverage rates of approximate confidence regions

In this section we study finite sample coverage properties of approximate confidence intervals
based on the asymptotic normality demonstrated in Theorem 1. Simulations are generated 310

from Strauss processes, multiscale Strauss processes, Geyer’s saturation processes with satu-
ration threshold 1 and multitype Strauss processes with two types, i.e., M = {1, 2}. The two
latter unmarked point processes are specified by conditional intensities of the form (3) with
respectively t(u,X) = {1, nR1(u,X), nR2(u,X)− nR1(u,X)} with 0 ≤ R1 ≤ R2 < ∞ and
t(u,X) = [1,

∑
v∈X∪u 1{d(v,X ∪ u) ≤ R} −∑

v∈X 1{d(v,X) ≤ R}] where d(v,X) denotes 315
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Table 2. Empirical coverage rates using a nominal level of 95% for the logistic regression es-

timator with stratified dummy points and increasing values of nd when W is a square with

sidelength ℓ. The first column contains the average empirical intensities for the models. The

results are based on 2000 realizations from each of the models.

ℓ = 1 ℓ = 2
n/|W | nd = 20 nd = 40 nd = 80 nd = 20 nd = 40 nd = 80

S1 88 96 94 95 95 94 94
S2 65 95 95 95 96 95 95
M1 53 94 95 95 95 95 96
M2 41 93 93 94 94 95 94
G1 56 95 94 95 94 94 94
G2 45 95 94 95 95 93 95
MS1 74 94 95 95 94 95 94
MS2 74 94 93 93 94 94 94

the distance from v to the nearest point in X without v and with 0 ≤ R < ∞. The conditional
intensity of the multitype Strauss point process is also of the form (3) with t{(̊u,m), X} =
[δm,1, δm,2, nR11{(̊u,m), X1}δm1, nR22{(̊u,m), X2}δm2, nR12{(̊u,m), X2}δm1 +
nR12{(̊u,m), X1}δm2] where δjk is equal to 1 when j = k and 0 otherwise, Xj consists
of the points in X with mark j ∈ {1, 2} and 0 < R1, R2, R12 < ∞.320

More specifically we consider two Strauss processes with R = 0.05 and θ1 = log 100, where
models S1 and S2 respectively have θ2 = log 0.8 and θ2 = log 0.2, two multiscale Strauss
processes with R1 = 0.05, R2 = 0.1, and θ1 = log 100, where models M1 and M2 respec-
tively have (θ2, θ3) = (log 0.2, log 0.8), and (θ2, θ3) = (log 0.8, log 0.2), two Geyer saturation
processes with saturation parameter s = 1, R = 0.05 and θ1 = log 50, where models G1 and325

G2 respectively have θ2 = log 1.2 and θ2 = log 0.8 and two multitype Strauss processes with
R1 = R2 = R12 = 0.05 and θ1 = θ2 = log 50 where models MS1 and MS2 respectively have
(θ3, θ4, θ5) = (0.5, 0.5, 0.5) and (θ3, θ4, θ5) = (0.8, 0.8, 0.2). For all models we use relatively
small values of θ1, as well as θ2 for MS1 and MS2, to illustrate that the asymptotic results can
be applied even for small point patterns.330

For all the models the observation window is W+ = [−R, ℓ+R]2, ℓ = 1, 2, where R is
the interaction range of each model equal to R2 for the multiscale Strauss process and to
max(R1, R2, R12) for the multitype Strauss process. Due to edge effects, the simulations of
XW+ are not realizations of stationary processes. To obtain approximate realizations of sta-
tionary processes we use the spatstat default settings and simulate a finite process on W+

335

expanded by a border of size 2R and consider the restriction to W+. For each simulation we
obtain parameter estimates using stratified dummy points with nd = 20, nd = 40 and nd = 80.
Subsequently we record whether or not the estimate falls within the approximate 95 % ellipsoidal

confidence region {θ : ‖|W |1/2Σ̂−1/2(θ̂ − θ)‖2 ≤ χ2
0.95(p)}. The results given in Table 2 show

that the coverage rates are in general close to the nominal 95 % for all the models. Model M2340

is one exception where the coverage rates are consistently too low when ℓ = 1 suggesting that
there are too few points to rely on asymptotic results. This agrees with the fact that M2 has the
lowest empirical intensity. The estimated Monte Carlo errors are of the order 0.5 %–1 % so the
remaining deviations from the nominal 95 % are not worrying. As expected, the closeness to the
nominal level does not appear to depend on nd.345
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Table 3. First column: logistic regresssion estimates with nd = 60 of the two polynomials at y =
0.1, 0.6 and of the interaction parameter. Remaining columns: estimated standard deviations

and relative increases in percent with nd = 60 or nd = 120 based on 1000 simulations from the

fitted model. See the text for further details.

nd = 60 nd = 120
estimate σ σ1 σ2 (σ − σ1)/σ1 σ σ1 σ2 (σ − σ1)/σ1

q1(0.1) 6.00 0.20 0.19 0.05 3.52 0.19 0.19 0.02 0.81
q1(0.6) 3.53 0.75 0.75 0.06 0.35 0.75 0.75 0.03 0.09
q2(0.1) 7.80 0.09 0.08 0.05 16.07 0.08 0.08 0.02 3.80
q2(0.6) 7.14 0.10 0.09 0.04 10.71 0.09 0.09 0.02 2.65
θ11 −2.59 0.34 0.34 0.05 1.05 0.34 0.34 0.02 0.20

5·4. Data example

We consider the mucous membrane data shown in Figure 1.3 in Møller & Waagepetersen
(2004); our analyses are motivated by Examples 9.3 and 9.5 therein. The dataset used is a sub-
set of the mucosa dataset available in spatstat and consists of the locations of two types
of cells in an observation window W = [0, 1]× [0, 0.7]. There are 87 points of type 1 and 806 350

points of type 2. We fit an inhomogeneous multitype Strauss process with log conditional inten-
sity log λθ(u,X) = qm(y, θ) + θ11nR(u,X) where u = (x, y,m), m = 1 or 2 denotes the cell
type, qm(y, θ), m = 1, 2, are fourth order polynomials in y with coefficients depending on the
type of points and θ ∈ R11 consists of the 10 polynomial regression coefficients and the inter-
action parameter θ11 ≤ 0. The polynomials only depend on y since the point pattern is assumed 355

to be homogeneous in the x-direction. As before nR(u,X) denotes the total number of neigh-
bouring points and we use R = 0.008 as in Møller & Waagepetersen (2004). One question of
interest is whether the conditional intensities of the two types of points share the same large scale
polynomial trends.

In this case we use a marked stratified point process, which is generated by sampling uniformly 360

1 or 2 as marks where each mark is independent of all other variables. In spatstat multitype
point processes are specified with respect to counting measure on the mark space. To comply
with this and following Remark 1 we specify the dummy point intensity as 0.5 times ρ = n2

d/0.7
in our implementation where we for this dataset use nd = 60 according to the rule of thumb. To
obtain standard deviations and confidence intervals for the fitted polynomials and the interaction 365

parameter we use a parametric bootstrap based on 1000 simulations generated under the fitted
model, where we still use nd = 60 when estimating parameters for each simulation. Furthermore,
to enable empirical decomposition of estimation variance we use two replications of the dummy
point process for each simulated dataset.

The estimated coefficients of the fourth order polynomials vary considerably but the resulting 370

polynomials do not. We therefore chose to focus on values of the polynomial for six equidistant
y values in the range [0, 0.7]. Figure 2 shows the estimated polynomials without the constant
term as well as bootstrap confidence intervals at the selected set of y values. This plot indicates
that the two trends are significantly different.

The first column in Table 3 shows the estimated values of the polynomials for y = 0.1, 0.6 375

and the estimate of the interaction parameter. A more extensive table is provided in the Supple-
mentary Material. The three next columns show the bootstrap estimates of the standard deviation
σ of the parameter estimates, the standard deviation σ1 due to T1, the standard deviation due to
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0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
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0

Fig. 2. Left: mucous membrane data with type 1 and type 2 cells indicated by open circles and grey dots, respec-
tively. Right: Fitted fourth order polynomials without the constant term. Bootstrap confidence intervals are given

at selected values. Solid and dashed lines correspond to type 1 and type 2 cells, respectively.

T2 and the relative increase (σ − σ1)/σ1 in standard deviation due to T2. Comparing the fitted
polynomials, the smallest standard deviations are obtained for the more abundant type 2 cells.380

For this reason also the largest relative increases, which are at most 16 %, in estimation stan-
dard error due to the random dummy points are obtained for the type 2 cells. We also applied
nd = 120 and this brings the maximal relative increase in standard deviation down to 4 %, see
the four columns labeled nd = 120 in Table 3.

To test the hypothesis of equal polynomials we fitted the null model with common coefficients385

of the non-constant terms of the fourth order polynomials. We then calculated −2 logQ for each
of 1000 simulations under the fitted null model where Q is the ratio of the likelihoods for the
logistic regressions corresponding to the null model and the original model. The 1000 values of
this test statistic were between 0.1 and 16.3. The observed value of 28.6 is thus highly significant.

The main drawback of using the default ppm is that it is not a priori clear how large nd must390

be used to avoid severe bias (Baddeley & Turner, 2013) and sometimes the required value of
nd may even be computationally prohibitive. In the present example we obtained reliable results
for the logistic estimator with nd = 60 and the estimation for 1000 datasets took 2 minutes. For
default ppmwe need nd = 120 to avoid strong bias and in this case the 1000 estimations required
over 20 minutes of computing time.395

5·5. Data-driven determination of ρ

As mentioned in Remark 2, the variance σ2 of a parameter estimate is the sum of a term σ2
1

which is roughly constant as a function of ρ and a term σ2
2 which is roughly proportional to 1/ρ,

σ2
2 = s22/ρ, say. For a given choice of ρ, for example using the rule of thumb, our asymptotic

results provide estimates σ̂2
1 and ŝ22 of these quantities. To find a ρp so that the dummy point400

additional variance s22/ρp is less than a specified fraction p of σ2
1 , we may determine ρp as

ρp = ŝ22/(σ̂
2p). This relation can also be used to determine pρ = ŝ22/(σ̂

2ρ) for a given ρ. In
practice we may rewrite these relations in terms of standard deviations such that p gives the
relative increase of the standard deviation, and thereby of the confidence interval length, due to
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random dummy points. We illustrate this approach in the Supplementary Material for the mucous 405

membrane data.

6. FURTHER PERSPECTIVES

Our theoretical results only cover finite range stationary Gibbs point processes but, based
on practical examples, e.g., for the mucous membrane data in the Supplementary Material, we
believe that similar asymptotic results are also valid for infinite range and non-stationary Gibbs 410

point processes which depend on spatial covariates. Our method requires that the covariates
are observed at each random dummy point, but in practice they are often observed on a fixed
regular grid, in which case we are not aware of a central limit theorem for the Monte Carlo
approximation error. For increasingly fine grids our estimating function nevertheless converges
to the pseudolikelihood score, and our confidence intervals for stratified dummy points might 415

provide a conservative assessment of the parameter uncertainty when evaluated using the fixed
grid dummy points.

We have assumed a known interaction range R. In practice, R is often estimated by maxi-
mizing a profile pseudolikelihood over a grid but the theoretical properties of this procedure are
not well studied. The fast computation for our method with moderate nd is advantageous for 420

evaluating the profile logistic regression likelihood at a large number of R-values.
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APPENDIX 1 435

Definitions of G1 A1, A2, A3 and S and their estimates

The matrix G1 equals
∑3

i=1 Ai(wθ⋆ , wθ⋆) where for i = 1, 2, 3 the p× p matrices Ai(g, h) for two

functions g, h : S × Ω → Rp are given by

A1(g, h) = E

{
g(0M , X)h(0M , X)⊤λθ⋆(0M , X)

}
,

A2(g, h) = E

[∫

B(0,R)×M

g(0M , X)h(v,X)⊤{λθ⋆(0M , X)λθ⋆(v,X)− λθ⋆({0M , v}, X)}dv

]
, 440

A3(g, h) = E

{∫

B(0,R)×M

∆vg(0
M , X)∆0Mh(v,X)⊤λθ⋆({0M , v}, X)dv

}
,
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where 0M = (0,M) with M ∼ µ and where for θ ∈ Θ, u, v ∈ S ,

λθ({u, v}, X) = λθ(u,X ∪ v)λθ(v,X) = λθ(v,X ∪ u)λθ(u,X)

∆vg(u,X) = g(u,X ∪ v)− g(u,X).

From (15) the sensitivity matrix can be rewritten as445

S =
1

ρ
A1

(
wθ⋆

√
λθ⋆ + ρ,wθ⋆

√
λθ⋆ + ρ

)
.

We also define for two functions g, h : S × Ω → Rp the computationally fast empirical estimates (Coeur-

jolly & Rubak, 2013) of Ai(g, h) for i = 1, . . . , 3 by

Â1(X,D, g, h) =
1

|Wn|
∑

u∈(X∪D)Wn

g(u,X \ u)h(u,X \ u)⊤ λ
θ̂
(u,X \ u)

λ
θ̂
(u,X \ u) + ρ

, (A1)

Â2(X, g, h) =
1

|Wn|
∑

u,v∈XWn

u6=v,‖ů−v̊‖≤R

g(u,X \ {u, v})h(v,X \ {u, v})⊤

×
{
λ
θ̂
(u,X \ {u, v})λ

θ̂
(v,X \ {u, v})

λ
θ̂
({u, v}, X \ {u, v}) − 1

}
, (A2)450

Â3(X, g, h) =
1

|Wn|
∑

u,v∈XWn

u6=v,‖ů−v̊‖≤R

∆vg(u,X \ {u, v})∆uh(v,X \ {u, v})⊤. (A3)

The matrices Ŝ and Ĝ1 are defined by

Ŝ =
1

ρ
Â1

(
X,D,w

θ̂

√
λ
θ̂
+ ρ,w

θ̂

√
λ
θ̂
+ ρ

)
, (A4)

Ĝ1 = Â1(X,D,w
θ̂
, w

θ̂
) + Â2(X,w

θ̂
, w

θ̂
) + Â3(X,w

θ̂
, w

θ̂
). (A5)

Remark 1 (On the definition of Ŝ). If we had followed the strategy proposed in Coeurjolly & Rubak455

(2013), the estimate of A1(wθ⋆ , wθ⋆) would have been based only on X . We include the dummy point

pattern D to get a more accurate estimate. No new numerical computations are required since Ŝ, us-

ing (A1), depends only on the quantities tj(u,X \ u) for j = 1, . . . , p and u ∈ (X ∪D)Wn
which have

already been stored when computing the estimate θ̂. The estimates (A2) and (A3) involve second order

characteristics which have not been computed before and are therefore defined using only the data point460

pattern X .

APPENDIX 2

Definition of Ĝ2

According to the dummy point process D considered, the matrix G2 is consistently estimated as fol-

lows:465

1. if D ∼ P(Rd, ρ) the estimate Ĝp
2 is defined by

1

ρ
Â1(X,D,w

θ̂

√
λ
θ̂
, w

θ̂

√
λ
θ̂
); (B1)

2. if D ∼ B(Rd, ρ) the estimate Ĝb
2 is defined by

1

ρ

{
κnÂ1(X,D,w

θ̂

√
λ
θ̂
, w

θ̂

√
λ
θ̂
)− Â1(X,D,w

θ̂

√
λ
θ̂
,
√
λ
θ̂
)Â1(X,D,w

θ̂

√
λ
θ̂
,
√
λ
θ̂
)T

}
(B2)
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where κn = |Wn|−1
∑

u∈(X∪D)Wn

(λ
θ̂
(u,X \ u) + ρ)−1;

3. if D ∼ SB(Rd, ρ) the estimate Ĝsb
2 is defined by 470

1

2ρ2|Wn|
∑

ℓ∈Zd:
Cℓ∩Wn 6=∅

{
wλ

θ̂
(Uℓ, X)− wλ

θ̂
(U ′

ℓ, X)
}{

wλ

θ̂
(Uℓ, X)− wλ

θ̂
(U ′

ℓ, X)
}⊤

(B3)

where D′ = ∪k∈Zd{U ′
k} is a marked stratified point process independent of D.

Remark 1. The variable κn in (B2) converges to 1 as n → ∞. It has been introduced to ensure that the

estimate Ĝb
2 is a positive-semidefinite matrix. By definition, Ĝp

2 and Ĝsb
2 also fulfill this property.

Remark 2. Following Remark 1 of Appendix 1, we have proposed, in the Poisson and binomial cases,

estimates of G2 based on X ∪D. As for Ŝ, the estimates Ĝp
2 and Ĝb

2 do not involve new numerical 475

computations. The estimate of Gsb
2 is more awkward to handle and requires an extra dummy point process

D′. As pairs of points are involved in (B3), we could not include the data points without adding second

order characteristics computations for X and this has not been investigated.
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