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Abstract

The pair correlation function is a fundamental spatial point process character-
istic that, given the intensity function, determines second order moments of the
point process. Non-parametric estimation of the pair correlation function is a typ-
ical initial step of a statistical analysis of a spatial point pattern. Kernel estimators
are popular but especially for clustered point patterns suffer from bias for small
spatial lags. In this paper we introduce a new orthogonal series estimator. The
new estimator is consistent and asymptotically normal according to our theoretical
and simulation results. Our simulations further show that the new estimator can
outperform the kernel estimators in particular for Poisson and clustered point pro-
cesses.

Keywords: Asymptotic normality; Consistency; Kernel estimator; Orthogonal
series estimator; Pair correlation function; Spatial point process.

1 Introduction
The pair correlation function is commonly considered the most informative second-
order summary statistic of a spatial point process (Stoyan and Stoyan, 1994; Møller
and Waagepetersen, 2003; Illian et al., 2008). Non-parametric estimates of the pair
correlation function are useful for assessing regularity or clustering of a spatial point
pattern and can moreover be used for inferring parametric models for spatial point
processes via minimum contrast estimation (Stoyan and Stoyan, 1996; Illian et al.,
2008). Although alternatives exist (Yue and Loh, 2013), kernel estimation is the by far
most popular approach (Stoyan and Stoyan, 1994; Møller and Waagepetersen, 2003;
Illian et al., 2008) which is closely related to kernel estimation of probability densities.

Kernel estimation is computationally fast and works well except at small spatial
lags. For spatial lags close to zero, kernel estimators suffer from strong bias, see e.g.
the discussion at page 186 in Stoyan and Stoyan (1994), Example 4.7 in Møller and
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Waagepetersen (2003) and Section 7.6.2 in Baddeley et al. (2015). The bias is a major
drawback if one attempts to infer a parametric model from the non-parametric estimate
since the behavior near zero is important for determining the right parametric model
(Jalilian et al., 2013).

In this paper we adapt orthogonal series density estimators (see e.g. the reviews
in Hall, 1987; Efromovich, 2010) to the estimation of the pair correlation function.
We derive unbiased estimators of the coefficients in an orthogonal series expansion of
the pair correlation function and propose a criterion for choosing a certain optimal
smoothing scheme. In the literature on orthogonal series estimation of probability
densities, the data are usually assumed to consist of indendent observations from the
unknown target density. In our case the situation is more complicated as the data used
for estimation consist of spatial lags between observed pairs of points. These lags are
neither independent nor identically distributed and the sample of lags is biased due to
edge effects. We establish consistency and asymptotic normality of our new orthogonal
series estimator and study its performance in a simulation study and an application to
a tropical rain forest data set.

2 Background

2.1 Spatial point processes
We denote by X a point process on Rd, d ≥ 1, that is, X is a locally finite random
subset of Rd. For B ⊆ Rd, we let N(B) denote the random number of points in
X ∩ B. That X is locally finite means that N(B) is finite almost surely whenever B
is bounded. We assume that X has an intensity function ρ and a second-order joint
intensity ρ(2) so that for bounded A,B ⊂ Rd,

E{N(B)} =
∫
B

ρ(u)du, E{N(A)N(B)} =
∫
A∩B

ρ(u)du+

∫
A

∫
B

ρ(2)(u, v)dudv.

(1)
The pair correlation function g is defined as g(u, v) = ρ(2)(u, v)/{ρ(u)ρ(v)} when-
ever ρ(u)ρ(v) > 0 (otherwise we define g(u, v) = 0). By (1),

cov{N(A), N(B)} =
∫
A∩B

ρ(u)du+

∫
A

∫
B

ρ(u)ρ(v)
{
g(v, u)− 1

}
dudv

for bounded A,B ⊂ Rd. Hence, given the intensity function, g determines the covari-
ances of count variablesN(A) andN(B). Further, for locations u, v ∈ Rd, g(u, v) > 1
(< 1) implies that the presence of a point at v yields an elevated (decreased) probabil-
ity of observing yet another point in a small neighbourhood of u (e.g. Coeurjolly
et al., 2016). In this paper we assume that g is isotropic, i.e. with an abuse of notation,
g(u, v) = g(‖v − u‖). Examples of pair correlation functions are shown in Figure 1.

2.2 Kernel estimation of the pair correlation function
Suppose X is observed within a bounded observation window W ⊂ Rd and let XW =
X ∩W . Let kb(·) be a kernel of the form kb(r) = k(r/b)/b, where k is a probability
density and b > 0 is the bandwidth. Then a kernel density estimator (Stoyan and
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Stoyan, 1994; Baddeley et al., 2000) of g is

ĝk(r; b) =
1

sadrd−1

6=∑
u,v∈XW

kb(r − ‖v − u‖)
ρ(u)ρ(v)|W ∩Wv−u|

, r ≥ 0,

where sad is the surface area of the unit sphere in Rd,
∑ 6= denotes sum over all distinct

points, 1/|W ∩ Wh|, h ∈ Rd, is the translation edge correction factor with Wh =
{u − h : u ∈ W}, and |A| is the volume (Lebesgue measure) of A ⊂ Rd. Variations
of this include (Guan, 2007a)

ĝd(r; b) =
1

sad

6=∑
u,v∈XW

kb(r − ‖v − u‖)
‖v − u‖d−1ρ(u)ρ(v)|W ∩Wv−u|

, r ≥ 0

and the bias corrected estimator (Guan, 2007a)

ĝc(r; b) = ĝd(r; b)/c(r; b), c(r; b) =

∫ min{r,b}

−b
kb(t)dt,

assuming k has bounded support [−1, 1]. Regarding the choice of kernel, Illian et al.
(2008), p. 230, recommend to use the uniform kernel k(r) = 1(|r| ≤ 1)/2, where
1( · ) denotes the indicator function, but the Epanechnikov kernel k(r) = (3/4)(1 −
r2)1(|r| ≤ 1) is another common choice. The choice of the bandwidth b highly affects
the bias and variance of the kernel estimator. In the planar (d = 2) stationary case,
Illian et al. (2008), p. 236, recommend b = 0.10/

√
ρ̂ based on practical experience

where ρ̂ is an estimate of the constant intensity. The default in spatstat (Baddeley
et al., 2015), following Stoyan and Stoyan (1994), is to use the Epanechnikov kernel
with b = 0.15/

√
ρ̂.

Guan (2007b) and Guan (2007a) suggest to choose b by composite likelihood cross
validation or by minimizing an estimate of the mean integrated squared error defined
over some interval I as

MISE(ĝm, w) = sad

∫
I

E
{
ĝm(r; b)− g(r)

}2
w(r − rmin)dr, (2)

where ĝm, m = k, d, c, is one of the aforementioned kernel estimators, w ≥ 0 is a
weight function and rmin ≥ 0. With I = (0, R), w(r) = rd−1 and rmin = 0, Guan
(2007a) suggests to estimate the mean integrated squared error by

M(b) = sad

∫ R

0

{
ĝm(r; b)

}2
rd−1dr − 2

6=∑
u,v∈XW

‖v−u‖≤R

ĝ
−{u,v}
m (‖v − u‖; b)

ρ(u)ρ(v)|W ∩Wv−u|
, (3)

where ĝ−{u,v}m , m = k, d, c, is defined as ĝm but based on the reduced data (X \
{u, v}) ∩W . Loh and Jang (2010) instead use a spatial bootstrap for estimating (2).
We return to (3) in Section 5.
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3 Orthogonal series estimation

3.1 The new estimator
For an R > 0, the new orthogonal series estimator of g(r), 0 ≤ rmin < r < rmin +R,
is based on an orthogonal series expansion of g(r) on (rmin, rmin +R) :

g(r) =

∞∑
k=1

θkφk(r − rmin), (4)

where {φk}k≥1 is an orthonormal basis of functions on (0, R) with respect to some
weight function w(r) ≥ 0, r ∈ (0, R). That is,

∫ R
0
φk(r)φl(r)w(r)dr = 1(k = l) and

the coefficients in the expansion are given by θk =
∫ R
0
g(r + rmin)φk(r)w(r)dr.

For the cosine basis, w(r) = 1 and φ1(r) = 1/
√
R, φk(r) = (2/R)1/2 cos{(k −

1)πr/R}, k ≥ 2. Another example is the Fourier-Bessel basis with w(r) = rd−1 and
φk(r) = 21/2Jν (rαν,k/R) r

−ν/{RJν+1(αν,k)}, k ≥ 1, where ν = (d − 2)/2, Jν
is the Bessel function of the first kind of order ν, and {αν,k}∞k=1 is the sequence of
successive positive roots of Jν(r).

An estimator of g is obtained by replacing the θk in (4) by unbiased estimators
and truncating or smoothing the infinite sum. A similar approach has a long history in
the context of non-parametric estimation of probability densities, see e.g. the review in
Efromovich (2010). For θk we propose the estimator

θ̂k =
1

sad

6=∑
u,v∈XW

rmin<‖u−v‖<rmin+R

φk(‖v − u‖ − rmin)w(‖v − u‖ − rmin)

ρ(u)ρ(v)‖v − u‖d−1|W ∩Wv−u|
, (5)

which is unbiased by the second order Campbell formula, see Section S2 of the sup-
plementary material. This type of estimator has some similarity to the coefficient esti-
mators used for probability density estimation but is based on spatial lags v − u which
are not independent nor identically distributed. Moreover the estimator is adjusted for
the possibly inhomogeneous intensity ρ and corrected for edge effects.

The orthogonal series estimator is finally of the form

ĝo(r; b) =

∞∑
k=1

bkθ̂kφk(r − rmin), (6)

where b = {bk}∞k=1 is a smoothing/truncation scheme. The simplest smoothing scheme
is bk = 1[k ≤ K] for some cut-off K ≥ 1. Section 3.3 considers several other
smoothing schemes.

3.2 Variance of θ̂k
The factor ‖v − u‖d−1 in (5) may cause problems when d > 1 where the presence
of two very close points in XW could imply division by a quantity close to zero. The
expression for the variance of θ̂k given in Section S2 of the supplementary material
indeed shows that the variance is not finite unless g(r)w(r − rmin)/r

d−1 is bounded
for rmin < r < rmin + R. If rmin > 0 this is always satisfied for bounded g. If
rmin = 0 the condition is still satisfied in case of the Fourier-Bessel basis and bounded
g.
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For the cosine basis w(r) = 1 so if rmin = 0 we need the boundedness of
g(r)/rd−1. If X satisfies a hard core condition (i.e. two points in X cannot be closer
than some δ > 0), this is trivially satisfied. Another example is a determinantal point
process (Lavancier et al., 2015) for which g(r) = 1 − c(r)2 for a correlation function
c. The boundedness is then e.g. satisfied if c(·) is the Gaussian (d ≤ 3) or exponential
(d ≤ 2) correlation function. In practice, when using the cosine basis, we take rmin to
be a small positive number to avoid issues with infinite variances.

3.3 Mean integrated squared error and smoothing schemes
The orthogonal series estimator (6) has the mean integrated squared error

MISE
(
ĝo, w

)
= sad

∫ rmin+R

rmin

E
{
ĝo(r; b)− g(r)

}2
w(r − rmin)dr

= sad
∞∑
k=1

E(bkθ̂k − θk)2 = sad
∞∑
k=1

[
b2kE{(θ̂k)2} − 2bkθ

2
k + θ2k

]
. (7)

Each term in (7) is minimized with bk equal to (cf. Hall, 1987)

b∗k =
θ2k

E{(θ̂k)2}
=

θ2k
θ2k + var(θ̂k)

, k ≥ 0, (8)

leading to the minimal value sad
∑∞
k=1 b

∗
kvar(θ̂k) of the mean integrated square error.

Unfortunately, the b∗k are unknown.
In practice we consider a parametric class of smoothing schemes b(ψ). For practi-

cal reasons we need a finite sum in (6) so one component in ψ will be a cut-off index
K so that bk(ψ) = 0 when k > K. The simplest smoothing scheme is bk(ψ) =

1(k ≤ K). A more refined scheme is bk(ψ) = 1(k ≤ K)b̂∗k where b̂∗k = θ̂2k/(θ̂k)
2

is an estimate of the optimal smoothing coefficient b∗k given in (8). Here θ̂2k is an
asymptotically unbiased estimator of θ2k derived in Section 5. For these two smoothing
schemes ψ = K. Adapting the scheme suggested by Wahba (1981), we also consider
ψ = (K, c1, c2), c1 > 0, c2 > 1, and bk(ψ) = 1(k ≤ K)/(1 + c1k

c2). In practice we
choose the smoothing parameter ψ by minimizing an estimate of the mean integrated
squared error, see Section 5.

3.4 Expansion of g(·)− 1

For large R, g(rmin + R) is typically close to one. However, for the Fourier-Bessel
basis, φk(R) = 0 for all k ≥ 1 which implies ĝo(rmin +R) = 0. Hence the estimator
cannot be consistent for r = rmin + R and the convergence of the estimator for r ∈
(rmin, rmin+R) can be quite slow as the number of termsK in the estimator increases.
In practice we obtain quicker convergence by applying the Fourier-Bessel expansion
to g(r) − 1 =

∑
k≥1 ϑkφk(r − rmin) so that the estimator becomes g̃o(r; b) = 1 +∑∞

k=1 bkϑ̂kφk(r − rmin) where ϑ̂k = θ̂k −
∫ rmin+R

0
φk(r)w(r)dr is an estimator of

ϑk =
∫ R
0
{g(r + rmin)− 1}φk(r)w(r)dr. Note that var(ϑ̂k) = var(θ̂k) and g̃o(r; b)−

E{g̃o(r; b)} = ĝo(r; b)−E{ĝo(r; b)}. These identities imply that the results regarding
consistency and asymptotic normality established for ĝo(r; b) in Section 4 are also valid
for g̃o(r; b).
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4 Consistency and asymptotic normality

4.1 Setting
To obtain asymptotic results we assume that X is observed through an increasing se-
quence of observation windows Wn. For ease of presentation we assume square obser-
vation windows Wn = ×di=1[−nai, nai] for some ai > 0, i = 1, . . . , d. More general
sequences of windows can be used at the expense of more notation and assumptions.
We also consider an associated sequence ψn, n ≥ 1, of smoothing parameters sat-
isfying conditions to be detailed in the following. We let θ̂k,n and ĝo,n denote the
estimators of θk and g obtained from X observed on Wn. Thus

θ̂k,n =
1

sad|Wn|

6=∑
u,v∈XWn

v−u∈BR
rmin

φk(‖v − u‖ − rmin)w(‖v − u‖ − rmin)

ρ(u)ρ(v)‖v − u‖d−1en(v − u)
),

where

BRrmin
= {h ∈ Rd | rmin < ‖h‖ < rmin +R} and en(h) = |Wn ∩ (Wn)h|/|Wn|.

(9)
Further,

ĝo,n(r; b) =

Kn∑
k=1

bk(ψn)θ̂k,nφk(r−rmin) =
1

sad|Wn|

6=∑
u,v∈XWn

v−u∈BR
rmin

w(‖v − u‖)ϕn(v − u, r)
ρ(u)ρ(v)‖v − u‖d−1en(v − u)|

,

where

ϕn(h, r) =

Kn∑
k=1

bk(ψn)φk(‖h‖ − rmin)φk(r − rmin). (10)

In the results below we refer to higher order normalized joint intensities g(k) of X .
Define the k’th order joint intensity of X by the identity

E


6=∑

u1,...,uk∈X
1(u1 ∈ A1, . . . , uk ∈ Ak)

 =

∫
A1×···×Ak

ρ(k)(v1, . . . , vk)dv1 · · · dvk

for bounded subsets Ai ⊂ Rd, i = 1, . . . , k, where the sum is over distinct u1, . . . , uk.
We then let g(k)(v1, . . . , vk) = ρ(k)(v1, . . . , vk)/{ρ(v1) · · · ρ(vk)} and assume with an
abuse of notation that the g(k) are translation invariant for k = 3, 4, i.e. g(k)(v1, . . . , vk) =
g(k)(v2 − v1, . . . , vk − v1).

4.2 Consistency of orthogonal series estimator
Consistency of the orthogonal series estimator can be established under fairly mild
conditions following the approach in Hall (1987). We first state some conditions that
ensure (see Section S2 of the supplementary material) that var(θ̂k,n) ≤ C1/|Wn| for
some 0 < C1 <∞:

V1 There exists 0 < ρmin < ρmax < ∞ such that for all u ∈ Rd, ρmin ≤ ρ(u) ≤
ρmax.
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V2 For any h, h1, h2 ∈ BRrmin
, g(h)w(‖h‖−rmin) ≤ C2‖h‖d−1 and g(3)(h1, h2) ≤

C3 for constants C2, C3 <∞.

V3 A constantC4 <∞ can be found such that suph1,h2∈BR
rmin

∫
Rd

∣∣∣g(4)(h1, h3, h2+
h3)− g(h1)g(h2)

∣∣∣dh3 ≤ C4.

The first part of V2 is needed to ensure finite variances of the θ̂k,n and is discussed in
detail in Section 3.2. The second part simply requires that g(3) is bounded. The con-
dition V3 is a weak dependence condition which is also used for asymptotic normality
in Section 4.3 and for estimation of θ2k in Section 5.

Regarding the smoothing scheme, we assume

S1 B = supk,ψ
∣∣bk(ψ)∣∣ <∞ and for all ψ,

∑∞
k=1

∣∣bk(ψ)∣∣ <∞.

S2 ψn → ψ∗ for some ψ∗, and limψ→ψ∗ max1≤k≤m
∣∣bk(ψ)−1∣∣ = 0 for allm ≥ 1.

S3 |Wn|−1
∑∞
k=1

∣∣bk(ψn)∣∣→ 0.

E.g. for the simplest smoothing scheme, ψn = Kn, ψ∗ =∞ and we assumeKn/|Wn| →
0.

Assuming the above conditions we now verify that the mean integrated squared er-
ror of ĝo,n tends to zero as n→∞. By (7), MISE

(
ĝo,n, w

)
/sad =

∑∞
k=1

[
bk(ψn)

2var(θ̂k)+
θ2k{bk(ψn)− 1}2

]
. By V1-V3 and S1 the right hand side is bounded by

BC1|Wn|−1
∞∑
k=1

∣∣bk(ψn)∣∣+ max
1≤k≤m

θ2k

m∑
k=1

(bk(ψn)− 1)2 + (B2 + 1)

∞∑
k=m+1

θ2k.

By Parseval’s identity,
∑∞
k=1 θ

2
k <∞. The last term can thus be made arbitrarily small

by choosingm large enough. It also follows that θ2k tends to zero as k →∞. Hence, by
S2, the middle term can be made arbitrarily small by choosing n large enough for any
choice of m. Finally, the first term can be made arbitrarily small by S3 and choosing n
large enough.

4.3 Asymptotic normality

The estimators θ̂k,n as well as the estimator ĝo,n(r; b) are of the form

Sn =
1

sad|Wn|

6=∑
u,v∈XWn

v−u∈BR
rmin

fn(v − u)
ρ(u)ρ(v)en(v − u)

(11)

for a sequence of even functions fn : Rd → R. We let τ2n = |Wn|var(Sn).
To establish asymptotic normality of estimators of the form (11) we need certain

mixing properties for X as in Waagepetersen and Guan (2009). The strong mixing
coefficient for the point process X on Rd is given by (Ivanoff, 1982; Politis et al.,
1998)

αX(m; a1, a2) = sup
{∣∣pr(E1 ∩ E2)− pr(E1)pr(E2)

∣∣ : E1 ∈ FX(B1), E2 ∈ FX(B2),

|B1| ≤ a1, |B2| ≤ a2,D(B1, B2) ≥ m,B1, B2 ∈ B(Rd)
}
,

7



where B(Rd) denotes the Borel σ-field on Rd, FX(Bi) is the σ-field generated by
X ∩Bi and

D(B1, B2) = inf
{
max
1≤i≤d

|ui− vi| : u = (u1, . . . , ud) ∈ B1, v = (v1, . . . , vd) ∈ B2

}
.

To verify asymptotic normality we need the following assumptions as well as V1
(the conditions V2 and V3 are not needed due to conditions N2 and N4 below):

N1 The mixing coefficient satisfies αX(m; (s + 2R)d,∞) = O(m−d−ε) for some
s, ε > 0.

N2 There exists a η > 0 and L1 < ∞ such that g(k)(h1, . . . , hk−1) ≤ L1 for
k = 2, . . . , 2(2 + dηe) and all h1, . . . , hk−1 ∈ Rd.

N3 lim infn→∞ τ2n > 0.

N4 There exists L2 <∞ so that |fn(h)| ≤ L2 for all n ≥ 1 and h ∈ BRrmin
.

The conditions N1-N3 are standard in the point process literature, see e.g. the discus-
sions in Waagepetersen and Guan (2009) and Coeurjolly and Møller (2014). The condi-
tion N3 is difficult to verify and is usually left as an assumption, see Waagepetersen and
Guan (2009), Coeurjolly and Møller (2014) and Dvořák and Prokešová (2016). How-
ever, at least in the stationary case, and in case of estimation of θ̂k,n, the expression for
var(θ̂k,n) in Section S2 of the supplementary material shows that τ2n = |Wn|var(θ̂k,n)
converges to a constant which supports the plausibility of condition N3. We discuss
N4 in further detail below when applying the general framework to θ̂k,n and ĝo,n. The
following theorem is proved in Section S3 of the supplementary material.

Theorem 1 Under conditions V1, N1-N4, τ−1n |Wn|1/2
{
Sn − E(Sn)

} D−→ N(0, 1).

4.4 Application to θ̂k,n and ĝo,n
In case of estimation of θk, θ̂k,n = Sn with fn(h) = φk(‖h‖ − rmin)w(‖h‖ −
rmin)/‖h‖d−1. The assumption N4 is then straightforwardly seen to hold in the case
of the Fourier-Bessel basis where |φk(r)| ≤ |φk(0)| and w(r) = rd−1. For the cosine
basis, N4 does not hold in general and further assumptions are needed, cf. the discus-
sion in Section 3.2. For simplicity we here just assume rmin > 0. Thus we state the
following

Corollary 1 Assume V1, N1-N4, and, in case of the cosine basis, that rmin > 0. Then

{var(θ̂k,n)}−1/2(θ̂k,n − θk)
D−→ N(0, 1).

For ĝo,n(r; b) = Sn,

fn(h) =
ϕn(h, r)w(‖h‖ − rmin)

‖h‖d−1
=
w(‖h‖ − rmin)

‖h‖d−1
Kn∑
k=1

bk(ψn)φk(‖h‖−rmin)φk(r−rmin),

where ϕn is defined in (10). In this case, fn is typically not uniformly bounded since
the number of not necessarily decreasing terms in the sum defining ϕn in (10) grows
with n. We therefore introduce one more condition:

8



N5 There exist an ω > 0 and Mω <∞ so that

K−ωn

Kn∑
k=1

bk(ψn)
∣∣φk(r − rmin)φk(‖h‖ − rmin)

∣∣ ≤Mω

for all h ∈ BRrmin
.

Given N5, we can simply rescale: S̃n := K−ωn Sn and τ̃2n := K−2ωn τ2n. Then, assuming
lim infn→∞ τ̃2n > 0, Theorem 1 gives the asymptotic normality of τ̃−1n |Wn|1/2{S̃n −
E(S̃n)} which is equal to τ−1n |Wn|1/2{Sn − E(Sn)}. Hence we obtain

Corollary 2 Assume V1, N1-N2, N5 and lim infn→∞K−2ωn τ2n > 0. In case of the
cosine basis, assume further rmin > 0. Then for r ∈ (rmin, rmin +R),

τ−1n |Wn|1/2
[
ĝo,n(r; b)− E{ĝo,n(r; b)}

] D−→ N(0, 1).

In case of the simple smoothing scheme bk(ψn) = 1(k ≤ Kn), we take ω = 1 for
the cosine basis. For the Fourier-Bessel basis we take ω = 4/3 when d = 1 and
ω = d/2 + 2/3 when d > 1 (see the derivations in Section S6 of the supplementary
material).

5 Tuning the smoothing scheme
In practice we choose K, and other parameters in the smoothing scheme b(ψ), by
minimizing an estimate of the mean integrated squared error. This is equivalent to
minimizing

sadI(ψ) = MISE(ĝo, w)−
∫ rmin+R

rmin

{
g(r)−1

}2
w(r)dr =

K∑
k=1

[
bk(ψ)

2E{(θ̂k)2}−2bk(ψ)θ2k
]
.

(12)
In practice we must replace (12) by an estimate. Define θ̂2k as

6=∑
u,v,u′,v′∈XW

v−u,v′−u′∈BR
rmin

φk(‖v − u‖ − rmin)φk(‖v′ − u′‖ − rmin)w(‖v − u‖ − rmin)w(‖v′ − u′‖ − rmin)

sad2ρ(u)ρ(v)ρ(u′)ρ(v′)‖v − u‖d−1‖v′ − u′‖d−1|W ∩Wv−u||W ∩Wv′−u′ |
.

Then, referring to the set-up in Section 4 and assuming V3,

lim
n→∞

E(θ̂2k,n)→

{∫ R

0

g(r + rmin)φk(r)w(r)dr

}2

= θ2k

(see Section S4 of the supplementary material) and hence θ̂2k,n is an asymptotically
unbiased estimator of θ2k. The estimator is obtained from (θ̂k)

2 by retaining only terms
where all four points u, v, u′, v′ involved are distinct. In simulation studies, θ̂2k had a
smaller root mean squared error than (θ̂k)

2 for estimation of θ2k.
Thus

Î(ψ) =

K∑
k=1

{
bk(ψ)

2(θ̂k)
2 − 2bk(ψ)θ̂2k

}
(13)

9



Poisson Thomas VarGamma DPP

0.00 0.04 0.08 0.12 0.00 0.04 0.08 0.12 0.00 0.04 0.08 0.12 0.00 0.04 0.08 0.12
0.00

0.25

0.50

0.75

1.00

5

10

15

20

2.5

5.0

7.5

0.50

0.75

1.00

1.25

1.50

r

g(
r)

Figure 1: Pair correlation functions for the point processes considered in the
simulation study.

is an asymptotically unbiased estimator of (12). Moreover, (13) is equivalent to the
following slight modification of Guan (2007a)’s criterion (3):∫ rmin+R

rmin

{
ĝo(r; b)

}2
w(r−rmin)dr−

2

sad

6=∑
u,v∈XW

v−u∈BR
rmin

ĝ
−{u,v}
o (‖v − u‖; b)w(‖v − u‖ − rmin)

ρ(u)ρ(v)|W ∩Wv−u|
.

For the simple smoothing scheme bk(K) = 1(k ≤ K), (13) reduces to

Î(K) =

K∑
k=1

{
(θ̂k)

2 − 2θ̂2k
}
=

K∑
k=1

(θ̂k)
2(1− 2b̂∗k), (14)

where b̂∗k = θ̂2k/(θ̂k)
2 is an estimator of b∗k in (8).

In practice, uncertainties of θ̂k and θ̂2k lead to numerical instabilities in the mini-
mization of (13) with respect to ψ. To obtain a numerically stable procedure we first
determine K as

K̂ = inf{2 ≤ k ≤ Kmax : (θ̂k+1)
2−2θ̂2k+1 > 0} = inf{2 ≤ k ≤ Kmax : b̂∗k+1 < 1/2}.

(15)
That is, K̂ is the first local minimum of (14) larger than 1 and smaller than an upper
limit Kmax which we chose to be 49 in the applications. This choice of K is also used
for the refined and the Wahba smoothing schemes. For the refined smoothing scheme
we thus let bk = 1(k ≤ K̂)b̂∗k. For the Wahba smoothing scheme bk = 1(k ≤ K̂)/(1+

ĉ1k
ĉ2), where ĉ1 and ĉ2 minimize

∑K̂
k=1

{
(θ̂k)

2/(1 + c1k
c2)2 − 2θ̂2k/(1 + c1k

c2)
}

over c1 > 0 and c2 > 1.

6 Simulation study
We compare the performance of the orthogonal series estimators and the kernel esti-
mators for data simulated on W = [0, 1]2 or W = [0, 2]2 from four point processes
with constant intensity ρ = 100. More specifically, we consider nsim = 1000 re-
alizations from a Poisson process, a Thomas process (parent intensity κ = 25, dis-
persion standard deviation ω = 0.0198), a Variance Gamma cluster process (parent
intensity κ = 25, shape parameter ν = −1/4, dispersion parameter ω = 0.01845,
Jalilian et al., 2013), and a determinantal point process with pair correlation function
g(r) = 1 − exp{−2(r/α)2} and α = 0.056. The pair correlation functions of these
point processes are shown in Figure 1.
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Figure 2: Plots of log relative efficiencies for small lags (rmin, 0.025] and all
lags (rmin, R], R = 0.06, 0.085, 0.125, and W = [0, 1]2. Black: kernel estima-
tors. Blue and red: orthogonal series estimators with Bessel respectively cosine
basis. Lines serve to ease visual interpretation.

For each realization, g(r) is estimated for r in (rmin, rmin +R), with rmin = 10−3

and R = 0.06, 0.085, 0.125, using the kernel estimators ĝk(r; b), ĝd(r; b) and ĝc(r; b)
or the orthogonal series estimator ĝo(r; b). The Epanechnikov kernel with bandwidth
b = 0.15/

√
ρ̂ is used for ĝk(r; b) and ĝd(r; b) while the bandwidth of ĝc(r; b) is cho-

sen by minimizing Guan (2007a)’s estimate (3) of the mean integrated squared error.
For the orthogonal series estimator, we consider both the cosine and the Fourier-Bessel
bases with simple, refined or Wahba smoothing schemes. For the Fourier-Bessel basis
we use the modified orthogonal series estimator described in Section 3.4. The parame-
ters for the smoothing scheme are chosen according to Section 5.

From the simulations we estimate the mean integrated squared error (2) withw(r) =
1 of each estimator ĝm, m = k, d, c, o, over the intervals [rmin, 0.025] (small spatial
lags) and [rmin, rmin + R] (all lags). We consider the kernel estimator ĝk as the base-
line estimator and compare any of the other estimators ĝ with ĝk using the log relative
efficiency eI(ĝ) = log{M̂ISEI(ĝk)/M̂ISEI(ĝ)}, where M̂ISEI(ĝ) denotes the estimated
mean squared integrated error over the interval I for the estimator ĝ. Thus eI(ĝ) > 0
indicates that ĝ outperforms ĝk on the interval I . Results for W=[0, 1]2 are summarized
in Figure 2.

For all types of point processes, the orthogonal series estimators outperform or
does as well as the kernel estimators both at small lags and over all lags. The detailed
conclusions depend on whether the non-repulsive Poisson, Thomas and Var Gamma
processes or the repulsive determinantal process are considered. Orthogonal-Bessel
with refined or Wahba smoothing is superior for Poisson, Thomas and Var Gamma
but only better than ĝc for the determinantal point process. The performance of the
orthogonal-cosine estimator is between or better than the performance of the kernel
estimators for Poisson, Thomas and Var Gamma and is as good as the best kernel
estimator for determinantal. Regarding the kernel estimators, ĝc is better than ĝd for
Poisson, Thomas and Var Gamma and worse than ĝd for determinantal. The above con-
clusions are stable over the three R values considered. For W = [0, 2]2 (see Figure S1
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Table 1: Monte Carlo mean, standard error, skewness (S) and kurtosis (K) of
ĝo(r) using the Bessel basis with the simple smoothing scheme in case of the
Thomas process on observation windowsW1 = [0, 1]2,W2 = [0, 2]2 andW3 =
[0, 3]3.

r g(r) Ê{ĝo(r)} [v̂ar{ĝo(r)}]1/2 Ŝ{ĝo(r)} K̂{ĝo(r)}
W1 0.025 3.972 3.961 0.923 1.145 5.240
W1 0.1 1.219 1.152 0.306 0.526 3.516
W2 0.025 3.972 3.959 0.467 0.719 4.220
W2 0.1 1.219 1.187 0.150 0.691 4.582
W3 0.025 3.972 3.949 0.306 0.432 3.225
W3 0.1 1.2187 1.2017 0.0951 0.2913 2.9573

in the supplementary material) the conclusions are similar but with more clear supe-
riority of the orthogonal series estimators for Poisson and Thomas. For Var Gamma
the performance of ĝc is similar to the orthogonal series estimators. For determinantal
and W = [0, 2]2, ĝc is better than orthogonal-Bessel-refined/Wahba but still inferior
to orthogonal-Bessel-simple and orthogonal-cosine. Figures S2 and S3 in the supple-
mentary material give a more detailed insight in the bias and variance properties for
ĝk, ĝc, and the orthogonal series estimators with simple smoothing scheme. Table S1
in the supplementary material shows that the selected K in general increases when the
observation window is enlargened, as required for the asymptotic results. The general
conclusion, taking into account the simulation results for all four types of point pro-
cesses, is that the best overall performance is obtained with orthogonal-Bessel-simple,
orthogonal-cosine-refined or orthogonal-cosine-Wahba.

To supplement our theoretical results in Section 4 we consider the distribution of
the simulated ĝo(r; b) for r = 0.025 and r = 0.1 in case of the Thomas process
and using the Fourier-Bessel basis with the simple smoothing scheme. In addition to
W = [0, 1]2 and W = [0, 2]2, also W = [0, 3]2 is considered. The mean, standard
error, skewness and kurtosis of ĝo(r) are given in Table 1 while histograms of the
estimates are shown in Figure S3. The standard error of ĝo(r; b) scales as |W |1/2 in
accordance with our theoretical results. Also the bias decreases and the distributions of
the estimates become increasingly normal as |W | increases.

7 Application
We consider point patterns of locations of Acalypha diversifolia (528 trees), Lon-
chocarpus heptaphyllus (836 trees) and Capparis frondosa (3299 trees) species in the
1995 census for the 1000m × 500m Barro Colorado Island plot (Hubbell and Fos-
ter, 1983; Condit, 1998). To estimate the intensity function of each species, we use a
log-linear regression model depending on soil condition (contents of copper, mineral-
ized nitrogen, potassium and phosphorus and soil acidity) and topographical (elevation,
slope gradient, multiresolution index of valley bottom flatness, ncoming mean solar ra-
diation and the topographic wetness index) variables. The regression parameters are
estimated using the quasi-likelihood approach in Guan et al. (2015). The point patterns
and fitted intensity functions are shown in Figure S5 in the supplementary material.

The pair correlation function of each species is then estimated using the bias cor-
rected kernel estimator ĝc(r; b) with b determined by minimizing (3) and the orthogonal
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ĝ
(r

)−
1
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Figure 3: Estimated pair correlation functions for tropical rain forest trees.

series estimator ĝo(r; b) with both Fourier-Bessel and cosine basis, refined smoothing
scheme and the optimal cut-offs K̂ obtained from (15); see Figure 3.

For Lonchocarpus the three estimates are quite similar while for Acalypha and
Capparis the estimates deviate markedly for small lags and then become similar for
lags greater than respectively 2 and 8 meters. For Capparis and the cosine basis, the
number of selected coefficients coincides with the chosen upper limit 49 for the number
of coefficients. The cosine estimate displays oscillations which appear to be artefacts
of using high frequency components of the cosine basis. The function (14) decreases
very slowly after K = 7 so we also tried the cosine estimate with K = 7 which gives
a more reasonable estimate.
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