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Summary.

Fitting regression models for intensity functions of spatial point processes is of great interest in

ecological and epidemiological studies of association between spatially referenced events and

geographical or environmental covariates. When Cox or cluster process models are used to ac-

commodate clustering not accounted for by the available covariates, likelihood based inference

becomes computationally cumbersome due to the complicated nature of the likelihood func-

tion and the associated score function. It is therefore of interest to consider alternative more

easily computable estimating functions. We derive the optimal estimating function in a class

of first-order estimating functions. The optimal estimating function depends on the solution of

a certain Fredholm integral equation which in practise is solved numerically. The derivation

of the optimal estimating function has close similarities to the derivation of quasi-likelihood for

standard data sets. The approximate solution is further equivalent to a quasi-likelihood score

for binary spatial data. We therefore use the term quasi-likelihood for our optimal estimating

function approach. We demonstrate in a simulation study and a data example that our quasi-

likelihood method for spatial point processes is both statistically and computationally efficient.

Keywords: Estimating function, Fredholm integral equation, Godambe information, Intensity

function, Regression model, Spatial point process.

1. INTRODUCTION

In many applications of spatial point processes it is of interest to fit a regression model
for the intensity function. In case of a Poisson point process, maximum likelihood estima-
tion of regression parameters is rather straightforward with a user-friendly implementation
available in the R package spatstat (Baddeley and Turner, 2005). However, if e.g. Cox
or cluster point process models are used to accommodate clustering not explained by a
Poisson process, then maximum likelihood estimation is in general difficult from a compu-
tational point of view (see e.g. Møller and Waagepetersen, 2004). Alternatively, one may
follow composite likelihood arguments (e.g. Møller and Waagepetersen, 2007) to obtain an
estimating function that is equivalent to the score of the Poisson likelihood function. This
provides a computationally tractable estimating function and theoretical properties of the
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resulting estimator are well understood, see e.g. Schoenberg (2005), Waagepetersen (2007)
and Guan and Loh (2007).

A drawback of the Poisson score function approach is the loss of efficiency since possible
dependence between points is ignored. In the context of intensity estimation, it appears
that only Mrkvička and Molchanov (2005) and Guan and Shen (2010) have tried to incor-
porate second-order properties in the estimation so as to improve efficiency. Mrkvička and
Molchanov (2005) show that their proposed estimator is optimal among a class of linear,
unbiased intensity estimators, where the word ‘optimal’ refers to minimum variance. How-
ever, their approach is confined to a very restrictive type of intensity function known up to
a one-dimensional scaling factor. In contrast, Guan and Shen (2010) propose a weighted es-
timating equation approach that is applicable to intensity functions in more general forms.
A similar optimality result can on the other hand not be established for their approach.

In this paper we derive an optimal estimating function that not only takes into account
possible spatial correlation but also is applicable for point processes with a general regression
model for the intensity function. In the spirit of generalized linear models the intensity is
given by a differentiable function of a linear predictor depending on spatial covariates.
The optimal estimating function depends on the solution of a certain Fredholm integral
equation and reduces to the likelihood score in case of a Poisson process. We show in
Section 3.2 that the optimality result in Mrkvička and Molchanov (2005) is a special case of
our more general result, and that the estimation method in Guan and Shen (2010) is only a
crude approximation of our new approach. Apart from being computationally efficient, our
estimating function only requires specification of the intensity function and the so-called
pair correlation function, which is another advantage compared with maximum likelihood
estimation.

For many types of correlated data other than spatial point patterns, estimating functions
have been widely used for model fitting when maximum likelihood estimation is computa-
tionally challenging. Examples of such data include longitudinal data (Liang and Zeger,
1986), time series data (Zeger, 1988), clustered failure time data (Gray, 2003) and spatial
binary or count data (Gotway and Stroup, 1997; Lin and Clayton, 2005). For most of these
methods, the inverse of a covariance matrix is used to account for the correlation in data,
and optimality can be established when the so-called quasi-score estimating functions are
used (Wedderburn, 1974; Heyde, 1997). For a quasi-score estimating function the inverse
covariance matrix contributes to an optimal linear transformation of the residual vector.
For point processes, an analogue of residuals is given by the so-called residual measure and
our optimal estimating function can be viewed as an optimal linear transformation of the
residual measure. Moreover, the numerical implementation of our method is closely related
to the quasi-likelihood for spatial data considered in Gotway and Stroup (1997) and Lin
and Clayton (2005). Our work hence not only lays the theoretical foundation for optimal
intensity estimation, but also fills in a critical gap between existing literature on spatial
point processes and the well-established quasi-likelihood estimation method. We therefore
adopt the term quasi-likelihood for our approach.

Following some background material on point processes and estimating functions, we
derive our optimal quasi-likelihood score estimating function and discuss the practical im-
plementation of it based on a numerical solution of the Fredholm integral equation. Asymp-
totic properties of the resulting parameter estimator is then considered and the superior
performance of the quasi-likelihood method compared with existing ones is demonstrated
through a simulation study. We finally illustrate the practical use of the quasi-likelihood in
a data example of three tropical tree species.
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2. BACKGROUND

In this section we provide background on the intensity and pair correlation function of a spa-
tial point process and we state the basic assumptions on these needed for our quasi-likelihood
method. Also reviews on composite likelihood estimation and estimating functions are pro-
vided. Throughout the presentation, we use E, Var and Cov to denote expectation, variance
and covariance, respectively.

2.1. Basic Assumptions on the Intensity and Pair Correlation Function

Let X be a point process on R2 and let N(B) denote the number of points in X ∩ B for
any bounded set B ⊂ R2. We assume that X has an intensity function λ(·) and a pair
correlation function g(·, ·) whereby the first- and second-order moments of the counts N(B)
are given by

EN(B) =

∫

B

λ(u)du (1)

and

Cov[N(A), N(B)] =

∫

A∩B

λ(u)du +

∫

A

∫

B

λ(u)λ(v)[g(u,v) − 1]dudv (2)

for bounded sets A,B ⊆ R2 (Møller and Waagepetersen, 2004).

We assume that the intensity function is given in terms of a parametric model λ(u) =
λ(u;β), where β = (β1, . . . , βp) ∈ Rp is a vector of regression parameters. The intensity
function is further assumed to be positive and differentiable with respect to β with gradient
λ
′(u;β) = dλ(u;β)/dβ. A popular example is the log linear model logλ(u;β) = z(u)βT,

where z(u) = (z1(u), . . . , zp(u)) is a covariate vector for each u ∈ R2. For convenience of
exposition we assume that g(u,v) only depends on the difference u − v since this is the
common assumption in practise. This implies that X becomes second-order re-weighted
stationary (Baddeley et al., 2000). In the following we thus let g(r) denote the pair cor-
relation function for two points u and v with u − v = r. However, our proposed optimal
estimating function is applicable also in the case of a non-translation invariant pair correla-
tion function. For the derivations in Section 3 we further need that g(·) is continuous and
that g(·)− 1 is a non-negative definite function.

For given functions λ(·) and g(·), in addition to the assumptions specified above, it is
of course required that these functions are indeed respectively an intensity function and a
pair correlation function of some spatial point process. To be an intensity function, λ(·)
just needs to be non-negative and integrable. We are not aware of simple necessary and
sufficient conditions that ensure that a function g(·) is a pair correlation function. We
hence restrict attention to functions g(·) which conform with pair correlation functions of
existing point process models. From a practical point of view, we also need a computation-
ally tractable expression for g(·). This precludes pair correlation functions of Markov and
Gibbs point processes (e.g. Møller and Waagepetersen, 2007). On the other hand, a wide
range of shot-noise Cox processes, log Gaussian Cox processes and Poisson cluster processes
have pair correlation functions given in closed form (Møller and Waagepetersen, 2004) and
satisfying the assumptions stated in the previous paragraph (see also Section 3.1 regarding
the condition of non-negative definiteness).
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2.2. Composite Likelihood

A first-order log composite likelihood function (Schoenberg, 2005; Waagepetersen, 2007) for
estimation of β is given by

∑

u∈X∩W

logλ(u;β)−
∫

W

λ(u;β)du, (3)

where W ⊂ R2 is the observation window. This can be viewed as a limit of log composite
likelihood functions for binary variables Yi = 1[N(Bi) > 0], i = 1, . . . ,m, where the cells
Bi form a disjoint partitioning of W and 1[·] is an indicator function (e.g. Møller and
Waagepetersen, 2007). The limit is obtained when the number of cells tends to infinity and
the areas of the cells tend to zero. In case of a Poisson process, the composite likelihood
function coincides with the likelihood function.

The composite likelihood is computationally simple and enjoys considerable popularity
in particular in studies of tropical rain forest ecology where spatial point process models
are fitted to spatial point pattern data sets of locations of thousands of rain forest trees
(see e.g. Shen et al., 2009; Lin et al., 2011; Renner and Warton, 2013). However, it is
not statistically efficient for non-Poisson data since possible correlations between counts of
points are ignored.

2.3. Primer on Estimating Functions and Quasi-likelihood

Referring to the previous Section 2.2, the composite likelihood estimator of β is obtained
by maximizing the log composite likelihood (3). This is equivalent to solving the following
equation:

e(β) = 0, (4)

where

e(β) =
∑

u∈X∩W

λ′(u;β)

λ(u;β)
−
∫

W

λ′(u;β)du. (5)

Equations in the form of (4) are typically referred to as estimating equations and functions
like e(β) are called estimating functions (Heyde, 1997). Note that many other statistical
estimation procedures, such as maximum likelihood estimation, moment based estimation
and minimum contrast estimation, can all be written in terms of estimating functions.

We defer rigorous asymptotic details to Section 5 and here just provide an informal
overview of properties of an estimator β̂ based on an estimating function e(β). By a first-

order Taylor series expansion at β̂,

e(β) ≈ e(β̂) + [β̂ − β]S = (β̂ − β)S,

where S = −Ede(β)/dβT is the so-called sensitivity matrix (e.g. page 62 in Song, 2007) and

the equality is due to e(β̂) = 0 as required by (4). It then follows immediately that β̂ ≈
β+e(β)S−1. Thus, with β equal to the true parameter value, β̂ is approximately unbiased

if Ee(β) = 0, i.e. e(β) is an unbiased estimating function. Moreover, Varβ̂ ≈ S−1ΣS−1

where Σ = Vare(β) and S−1ΣS−1 is the asymptotic covariance matrix when the size of
the data set goes to infinity in a suitable manner (Section 5). The inverse of S−1ΣS−1, i.e.
SΣ−1S, is called the Godambe information (e.g. Definition 3.7 in Song, 2007).
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Suppose that two competing estimating functions e1(β) and e2(β) with respective Go-

dambe informations I1 and I2 are used to obtain the estimators β̂1 and β̂2. Then e1(β) is
said to be superior to e2(β) if I1 − I2 is positive definite, since this essentially means that

β̂1 has a smaller asymptotic variance than β̂2. If I1 − I2 is positive definite for all possible
e2(β), then we say that e1(β) has the maximal Godambe information and is an optimal

estimating function. The resulting estimator β̂1 is then the asymptotically most efficient.
Consider an m-dimensional data vector Y with covariance matrix V and mean vector

µ, a differentiable function of some p-dimensional parameter vector β. Let D = dµT/dβ
be the m × p matrix of partial derivatives dµi/dβj . The quasi-likelihood score function is
then

(Y − µ)V−1D, (6)

which is optimal among all estimating functions of the form (Y − µ)A for some m × p
matrix A (e.g. Heyde, 1997).

3. AN OPTIMAL FIRST-ORDER ESTIMATING EQUATION

The estimating function given in (5) can be rewritten as

ef (β) =
∑

u∈X∩W

f(u)−
∫

W

f(u)λ(u;β)du, (7)

where f(u) = λ′(u;β)/λ(u;β). In general, f(u) can be any 1×p real vector valued function,
where p is the dimension of β. We call (7) a first-order estimating function. Our aim is to
find a function φ so that eφ is optimal within the class of first-order estimating functions; in
other words, the resulting estimator of β associated with eφ is asymptotically most efficient.

The estimating function (7) can be further re-expressed in terms of the residual measure
(Baddeley et al., 2005; Waagepetersen, 2005) defined for bounded B ⊂ R2 as

R(B) =
∑

u∈X∩W

1[u ∈ B]−
∫

B

λ(u;β)du.

Thus ef (β) =
∫

W
f(u)R(du) so our estimating function can be viewed as a linear trans-

formation of the residual measure. Hence just like the quasi-likelihood score for ordinary
numerical data is the optimal linear transformation of the residual vector (Section 2.3),
our optimal estimating function will be the optimal linear transformation of the residual
measure.

Let Σf = Varef (β), Jf = −def (β)/dβ
T and Sf = EJf . Note that Σf , Jf and Sf all

depend on β but we suppress the dependence on β in this section for ease of presentation.
Recalling the definition of optimality in Section 2.3, for eφ to be optimal we must have that

SφΣ
−1
φ Sφ − SfΣ

−1
f

Sf (8)

is non-negative definite for all f : W → Rp. A sufficient condition for this is

Σφf = Sf (9)

for all f where Σφf = Cov[eφ(β), ef (β)]. To understand the intuition behind (9), view eφ
as the score function from maximum likelihood estimation (MLE) and ef as an arbitrary
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unbiased estimating function not necessarily in the form of (7). It is then well known that
(9) holds and in fact leads to the optimality of the MLE score function among all unbiased
estimating functions. In our setting, (9) therefore suggests that eφ plays the role of the
MLE score function and is expected to be optimal within the class of first-order estimating
functions ef defined by (7). This type of condition is also provided in Theorem 2.1 in Heyde
(1997) for both discrete and continuous vector-valued data. In Appendix A, we give a short
self-contained proof of the sufficiency of (9) in our setting.

By the Campbell formulae (e.g. Møller and Waagepetersen, 2004, Chapter 4),

Σφf =

∫

W

fT(u)φ(u)λ(u;β)du+

∫

W 2

fT(u)φ(v)λ(u;β)λ(v;β)[g(u− v)− 1]dudv,

Sf =

∫

W

fT(u)λ′(u;β)du.

Hence, (9) is equivalent to
∫

W

fT(u)
{

λ′(u;β)− φ(u)λ(u;β)− λ(u;β)

∫

W

φ(v)λ(v;β)[g(u− v)− 1]dv
}

du = 0

for all f : W → Rp, which is true if

λ′(u;β)− φ(u)λ(u;β)− λ(u;β)

∫

W

φ(v)λ(v;β)[g(u− v)− 1]dv = 0 (10)

for all u ∈ W . Since λ > 0, (10) implies that φ is a solution to the Fredholm integral
equation (e.g. Hackbusch, 1995, Chapter 3)

φ =
λ′

λ
−Tφ, (11)

where T is the operator given by

(Tf)(u) =

∫

W

t(u,v)f(v)dv with t(u,v) = λ(v;β)[g(u− v) − 1]. (12)

By continuity of g, T is compact in the space of continuous functions on W (Hackbusch,
1995, Theorem 3.2.5). Moreover, −1 is not an eigenvalue of T since g(·) − 1 is positive
definite (Section 3.1). It then follows by Theorem 3.2.1 in Hackbusch (1995) that (11) has
a unique solution

φ = (I+T)−1λ
′

λ
,

where I is the identity operator (or, depending on context, the identity matrix) and (I+T)−1

is the bounded linear inverse of I+T. We define

e(β) = eφ(β) =
∑

u∈X∩W

φ(u)−
∫

W

φ(u)λ(u;β)du, (13)

Σ = Vare(β), J = −de(β)/dβT, S = EJ,

where by the above derivations,

S = Σ =

∫

W

φT(u)λ′(u;β)du. (14)
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In the Poisson process case where g(·) = 1, (13) reduces to the Poisson likelihood score (5).
We develop a more explicit expression for φ by using Neumann series expansion in

Appendix B. The Neumann series expansion is also useful for checking the conditions for
our asymptotic results; see Section 1 in the supplementary material. However, it is not
essential for our approach so we omit the detailed discussion here.

3.1. Condition for non-negative eigenvalues of T
In general it is difficult to assess the eigenvalues of T given by (12). However, since g − 1
is non-negative definite, Ts is a positive operator (i.e.,

∫

W
fT(u)(Tsf)(u)du ≥ 0) where Ts

is given by the symmetric kernel ts(u,v) = λ(u;β)1/2λ(v;β)1/2
[

g(u − v) − 1
]

. Then all
eigenvalues of Ts are non-negative (Lax, 2002, Corollary 1, p. 320). In particular, −1 is
not an eigenvalue. The same holds for T since it is easy to see that the eigenvalues of T
coincide with those of Ts.

For the wide class of second-order re-weighted stationary Cox point processes, g(r) =
1 + Cov[Λ(u),Λ(u + r)]/[λ(u)λ(u + r)] where Λ denotes the random intensity function of
the Cox process. Hence g(·)− 1 is non-negative definite for this class of processes.

3.2. Relation to Existing Methods

Guan and Shen (2010) consider a subset of first-order estimating functions of the form

∑

u∈X∩W

w(u)
λ′(u;β)

λ(u;β)
−
∫

W

w(u)λ′(u;β)du (15)

obtained by introducing a weight function w(·) in the composite likelihood estimating func-
tion (5). They then seek to minimize the parameter estimation variance with respect to
w(·) and obtain an approximate solution of this minimization problem. In contrast, our es-
timating function (13) is optimal among all first-order estimating functions including those
of the form (15).

An approximate version of our estimating function coincides with the one obtained by
Guan and Shen (2010). This follows by approximating the operator T by

(Tf)(u) =

∫

W

f(v)λ(v;β)[g(u− v) − 1)]dv ≈ λ(u;β)f(u)

∫

W

[g(u− v) − 1]dv. (16)

This is justified if f(v)λ(v;β) is close to f(u)λ(u;β) for the v where g(u − v) − 1 differs
substantially from zero. Then the Fredholm integral equation (11) can be approximated by

φ = λ′

λ − λAφ, where

A(u) =

∫

W

[

g(u− v) − 1
]

dv. (17)

We hence obtain an approximate solution φ = wλ′/λ with w(u) = [1 + λ(u;β)A(u)]−1.
Using this approximation in (13) the resulting estimating function is precisely of the form
(15) suggested by Guan and Shen (2010).

Mrkvička and Molchanov (2005) derived optimal intensity estimators in the situation of
λ(u; ρ) = ργ(u) for some known function γ(u) and unknown parameter ρ > 0. Since ρ is
the only unknown parameter, a direct application of (11) yields

ρφ(u) + ρ2
∫

W

φ(v)γ(v)
[

g(u− v)− 1
]

dv = 1,
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which is essentially Corollary 3.1 of Mrkvička and Molchanov (2005). It is uncommon for
an intensity function to be known up to a one-dimensional scaling factor. In contrast, our
proposed modeling framework for the intensity function closely mimics that used in classical
regression analysis and is more general. As a result, our method of derivation is completely
different from that in Mrkvička and Molchanov (2005).

4. IMPLEMENTATION

In this section we discuss practical issues concerning the implementation of our proposed
optimal estimating function. In particular we show in Section 4.2 that a particular numer-
ical approximation of our optimal estimating function is equivalent to a quasi-likelihood
for binary spatial data for which an iterative generalized least squares solution can be im-
plemented. An R implementation ql.ppm() will appear in future releases of spatstat

(Baddeley and Turner, 2005).

4.1. Numerical Approximation

To estimate φ, consider the numerical approximation

(Tφ)(u) =

∫

W

t(u,v)φ(v)dv ≈
m
∑

i=1

t(u,ui)φ(ui)wi, (18)

where ui, i = 1, . . . ,m, are quadrature points with associated weights wi. Inserting this
approximation in (11) with u = ul we obtain estimates φ̂(ul) of φ(ul), l = 1, . . . ,m, by
solving the system of linear equations,

φ(ul) +
m
∑

i=1

t(ul,ui)φ(ui)wi =
λ′(ul;β)

λ(ul;β)
, l = 1, . . . ,m.

Then (Tφ)(u) ≈
∑m
i=1 t(u,ui)φ̂(ui)wi and plugging this further approximation into (11),

the Nyström approximate solution of (11) directly becomes

φ̂(u) =
λ′(u;β)

λ(u;β)
−

m
∑

i=1

t(u,ui)φ̂(ui)wi. (19)

In (13) we replace φ by φ̂ and we approximate the integral term applying again the quadra-

ture rule used to obtain φ̂. This leads to

ê(β) =
∑

u∈X∩W

φ̂(u)−
m
∑

i=1

φ̂(ui)λ(ui;β)wi. (20)

To estimate β, we solve ê(β) = 0 iteratively using Fisher scoring. Suppose that the

current estimate is β(l). Then β(l+1) is obtained by the Fisher scoring update

β(l+1) = β(l) + ê(β(l))Ŝ−1, (21)

where

Ŝ =

m
∑

i=1

φ̂(ui)
Tλ′(ui;β

(l))wi (22)
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is the numerical approximation of the sensitivity matrix S =
∫

W
φT(u)λ′(u;β(l))du.

Provided the quadrature scheme is convergent, it follows by Lemma 4.7.4, Lemma 4.7.6
and Theorem 4.7.7 in Hackbusch (1995) that ‖φ− φ̂‖∞ converges to zero as m → ∞ where
‖ · ‖∞ denotes supremum norm of a function. This justifies the use of the Nyström method
to obtain an approximate solution of the Fredholm integral equation.

4.2. Implementation as quasi-likelihood

Suppose that we are using simple Riemann quadrature in (18). Then the wi’s correspond
to areas of sets Bi that partition W and for each i, ui ∈ Bi. Let Yi denote the number of
points from X falling in Bi and define µi = λ(ui;β)wi. If the Bi’s are sufficiently small so
that the Yi’s are binary then (20) is approximately equal to

m
∑

i=1

φ̂(ui)(Yi − µi). (23)

Further, by (1) and (2), EYi ≈ µi and

Cov(Yi, Yj) = 1(i = j)

∫

Bi

λ(u;β)du+

∫

Bi×Bj

λ(u;β)λ(v;β)
[

g(u− v) − 1
]

dudv

≈ Vij = µi1(i = j) + µiµj
[

g(ui,uj)− 1
]

.

Define Y = (Yi)i, µ = (µi)i and V = [Vij ]ij . Then EY ≈ µ and CovY ≈ V. Moreover,

from (19), [φ̂(ui)]i = V−1D where D = dµT/dβ is the m× p matrix of partial derivatives
dµi/dβj . Hence, (22) becomes

DTV−1D (24)

and (23) becomes
(Y − µ)V−1D, (25)

which is formally a quasi-likelihood score for spatial data Y with mean µ and covariance
matrix V (Gotway and Stroup, 1997).

4.3. Computational details

With the quasi-likelihood formulation discussed in the previous section, Ŝ and ê in (21) are
given by respectively (24) and (25). The Fisher scoring updates (21) thus take the form of
generalized least squares updates

(β(l+1) − β(l))D(β(l))TV(β(l))−1D(β(l)) = [Y − µ(β(l))]V(β(l))−1D(β(l)), (26)

where we here use the notation D(β), V(β) and µ(β) to emphasize the dependence of D,
V, and µ on β.

Let V = V
1/2
µ (I + G)V

1/2
µ where Vµ = Diag(µi) and Gij =

√
µiµj

[

g(ui,uj) − 1
]

so
that G = [Gij ]ij is the matrix analogue of the symmetric operator Ts from Section 3.1. A
computational difficulty in (26) arise from the inversion of the high-dimensional matrix I+G.
However, we can approximate G by a sparse matrix Gtaper obtained using tapering (e.g.

Furrer et al., 2006). Thus in (26) V is replaced by Vtaper = V
1/2
µ (I+Gtaper)V

1/2
µ . A sparse

matrix Cholesky decomposition I +Gtaper = LLT is obtained using the R Matrix package
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by Doug Bates and Martin Maechler. The matrix product V−1
taperD can then be efficiently

computed by solving the equation xV
1/2
µ LLT = V

−1/2
µ D with respect to x by using forward

and backward substitution for the sparse Cholesky factors L and LT, respectively.

In practise, it is often assumed that g(r) = g0(‖r‖) for some function g0. If g0 is a
decreasing function of ‖r‖ then we may define the entries in Gtaper as Gij1[‖ui − uj‖ ≤
dtaper], where dtaper solves [g0(d)− 1]/[g0(0)− 1] = ǫ for some small ǫ. That is, we replace
entries Gij by zero if g0(‖ui−uj‖)−1 is below some small percentage of the maximal value
g0(0)− 1. In general g inside Gtaper is unknown and must be replaced by an estimate. We
replace β and g in Gtaper by preliminary estimates (see Section 4.4) which are fixed during
the generalized least squares iterations. This yields further computational simplification
since the Cholesky factorization of I+Gtaper then only needs to be computed once.

By the asymptotic result (29) in Section 5 the asymptotic covariance matrix of β̂ is given
by the inverse sensitivity where the sensitivity is estimated by (24). When V is replaced

by Vtaper in (26) we need the following adjusted estimate of the covariance matrix of β̂:

S−1
taperD

TV−1
taperV V−1

taperDS−1
taper, (27)

where Staper = DTV−1
taperD. Parameter standard errors are given by the square roots of the

diagonal elements in (27). Note that it is not required to invert the non-sparse covariance
matrix V in order to compute (27). Nevertheless, the computation of (27) can still be
computationally intensive as shown in the practical examples in Section 6.2.

The discretization of W should be chosen as fine as possible and the tapering parameter
ǫ as small as possible given the available computational resources. Typically the discretiza-
tion of W is generated by the cells Bi of a regular grid. In the practical data example in
Section 6.2 we investigate the sensitivity of the parameter estimates and parameter stan-
dard errors to the choice of grid size and ǫ. In the data example very similar results are
obtained with ǫ = 0.002, 0.01 and ǫ = 0.05 suggesting that ǫ = 0.05 is in fact sufficiently
small. Tapering entails a loss of statistical efficiency relative to quasi-likelihood estimation
without tapering. However, valid parameter estimates and standard errors from the ad-
justed covariance matrix (27) are obtained regardless of the chosen value of the tapering
tuning parameter ǫ.

4.4. Preliminary Estimation of Intensity and Pair Correlation

To obtain a preliminary estimate of g we assume that g(r) = g(r;ψ) where g(·;ψ) is
a translation invariant parametric pair correlation function model. We replace ψ and β
inside G by preliminary estimates β̃ and ψ̃ which are fixed during the iterations (26). The
estimates β̃ and ψ̃ can be obtained using the two-step approach in Waagepetersen and Guan
(2009) where β̃ is obtained from the composite likelihood function and ψ̃ is a minimum
contrast estimate based on the K-function. That is,

ψ̃ = argmin
ψ

∫ rmax

0

[K(t;ψ)− K̂(t)]1/4dt

where

K(t;ψ) =

∫

‖r‖≤t

g(r;ψ)dr (28)
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is the K-function and K̂ is a non-parametric estimate of the K-function (Baddeley et al.,
2000). If translation invariance can not be assumed, ψ may instead be estimated using a
second-order composite likelihood as in Jalilian et al. (2013).

5. ASYMPTOTIC THEORY

Let Wn ⊂ R2 be an increasing sequence of observation windows in R2. Following Section 4.4
we assume that the true pair correlation function is given by a parametric model g(r) =
g(r;ψ) for some unknown parameter vector ψ ∈ Rq. Let θ = (β,ψ) ∈ Rp+q. We denote
the true value of θ by θ∗ = (β∗,ψ∗). In what follows, E and Var denote expectation and
variance under the distribution corresponding to θ∗.

Introducing the dependence on n and θ in the notation from Section 3, we have

φn,θ(u,β) =
[

(I+Tn,θ)
−1λ

′(·;β)
λ(·;β)

]

(u), (Tn,θf)(u) =

∫

Wn

tθ(u,v)f(v)dv

and
tθ(u,v) = λ(v;β)

[

g(u− v;ψ)− 1
]

.

Following Section 4.4 we replace θ in the kernel tθ by a preliminary estimate θ̃n = (β̃n, ψ̃n).
The estimating function (13) then becomes en,θ̃n(β) where

en,θ(β) =
∑

u∈X∩Wn

φn,θ(u,β)−
∫

Wn

φn,θ(u,β)λ(u;β)du.

Let β̂n denote the estimator obtained by solving en,θ̃n(β) = 0. Further, define

Σ̄n = |Wn|−1
Varen,θ∗(β

∗), Jn,θ(β) = − d

dβT
en,θ(β) and S̄n,θ(β) = |Wn|−1

EJn,θ(β).

Note that Σ̄n and S̄n,θ(β) are ‘averaged’ versions of Σn = Varen,θ∗(β
∗) and Sn,θ(β) =

EJn,θ(β).
In Section 2 in the supplementary material we verify the existence of a |Wn|1/2 consistent

sequence of solutions β̂n, i.e., |Wn|1/2(β̂n−β∗) is bounded in probability. We further show

in Section 3 in the supplementary material that |Wn|−1/2en,θ̃n(β
∗)Σ̄

−1/2
n is asymptotically

standard normal. The conditions needed for these results are listed in Section 1 in the
supplementary material. By a Taylor series expansion,

|Wn|−1/2en,θ̃n(β
∗)Σ̄

−1/2
n = |Wn|1/2(β̂n − β∗)

Jn,θ̃n
(bn)

|Wn|
Σ̄

−1/2
n

for some bn ∈ Rp satisfying ‖bn − β∗‖ ≤ ‖β̂n − β∗‖. Invoking further the convergence
Jn,θ̃n(bn)/|Wn|− → S̄n,θ∗(β

∗) (results R2 and R3 in Section 2 in the supplementary ma-

terial) and that Σ̄n = S̄n,θ∗(β
∗) by (14), we obtain

|Wn|1/2(β̂n − β∗)S̄n,θ∗(β∗)1/2 → Np(0, I). (29)

Hence, for a fixed n, β̂n is approximately normal with mean β∗ and covariance matrix

estimated by |Wn|−1S̄−1

n,(ψ̃n,β̂n)
(β̂n).
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6. SIMULATION STUDY AND DATA EXAMPLE

To examine the performance of our optimal quasi-likelihood estimator relative to composite
likelihood and weighted composite likelihood, we carry out a simulation study under the
Guan and Shen (2010) setting. We refrain from a comparison with maximum likelihood
estimation due to the lack of a computationally feasible implementation of this method. In
addition to the simulation study we demonstrate the practical usefulness of our method and
discuss computational issues in a tropical rain forest data example.

6.1. Simulation Study

Following Guan and Shen (2010), realizations of Cox processes are generated on a square
window W. Each simulation involves first the generation of a zero-mean Gaussian random
covariate field Z = {Z(u)}u∈W with exponential covariance function c(u) = exp(−‖u‖/γ),
γ > 0, and then the generation of an inhomogeneous Thomas point process given Z with
intensity function λ(u;β) = exp

[

β0 + β1Z(u)
]

and pair correlation function

g(r) = 1 + exp
[

− ‖r‖2/(4ω2)
]

/(4πω2κ), (30)

where κ > 0 is the intensity of the parent process and ω > 0 is the dispersal parameter
(Waagepetersen, 2007). For each simulation, preliminary estimates β̃ and ψ̃ of β and
ψ = (κ, ω) are obtained using the two-step method in Waagepetersen and Guan (2009)
(i.e. β̃ is the composite likelihood (CL) estimate of β). These preliminary estimates are
then used to further obtain weighted composite likelihood (WCL) and quasi-likelihood (QL)
estimates, see Section 3.2 and Section 4.3-4.4 for details.

The root mean square error (RMSE) of the CL, WCL and QL estimates is computed from
1000 simulations for different settings of parameters and observation windows W = [0, 1]2

or W = [0, 2]2. We consider covariate spatial correlation scales γ∗ = 0.05, 0.1, 0.2. The
combinations of parent point intensities κ∗ = 100, 200 and dispersal parameters ω∗ =
0.02, 0.04 further create a wide selection of clustering behaviours given Z as reflected by the
corresponding pair correlation functions. We moreover consider different inhomogeneity
levels β∗

1 = 0.5, 1 and adjust the intercept β∗
0 so that the expected number of points is

always 400 in the case of W = [0, 1]2 and 1600 in the case of W = [0, 2]2. The integral
terms in the CL, WCL and QL estimating functions are approximated using a 50 × 50
grid for W = [0, 1]2 and a 100 × 100 grid for W = [0, 2]2. Tapering for QL is carried
out as described in Section 4.4 using dtaper obtained with ǫ = 0.01 for each estimated pair

correlation function g(·; ψ̃). For WCL we use A(u) ≈ K(dtaper; ψ̃)− πd2taper where A(u) is
given by (17) and K by (28).

The intercept β0 is typically not of prime interest when it comes to statistical inference
in regression models so in the following we focus on the results for β1. Table 1 shows for
each setting of (γ∗, κ∗, ω∗, β∗

1 ) and size of window W the root mean square errors (RMSEs)
of the QL estimates for β1 as well as the increases in RMSE for WCL and CL relative to
QL. The table also shows empirical standard errors (SD) for the QL estimates as well as the
square root of the average of the estimated variances obtained for the QL estimates using
(27) (column ASD in Table 1). The RMSE and the empirical standard errors coincide which
confirms the unbiasedness of the QL estimates. There is further close agreement between

SD and ASD as expected from the formula

√

Varβ̂1 =

√

EVar[β̂1|Z] + VarE[β̂1|Z] since the
expression (27) provides an estimate of Var[β̂1|Z] and VarE[β̂1|Z] is zero by unbiasedness
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Table 1. RMSE for QL estimates of β1 and the increase (in %) in RMSE for WCL and CL

relative to QL. The empirical standard error (SD) and asymptotic standard error (ASD) for

the QL estimates are shown too.

ψ∗ γ∗ β∗

1

W = [0, 1]2 E[N(W )] = 400 W = [0, 2]2 E[N(W )] = 1600
QL WCL CL SD ASD QL WCL CL SD ASD

(100, .02)

.05
.5 .08 21 24 .08 .08 .04 21 26 .04 .04
1 .09 22 44 .09 .08 .04 25 59 .04 .04

.1
.5 .09 13 21 .09 .09 .04 15 25 .04 .04
1 .10 17 39 .10 .10 .05 17 61 .05 .05

.2
.5 .11 11 15 .11 .10 .05 11 20 .05 .05
1 .12 13 31 .12 .12 .06 12 49 .06 .06

(100, .04)

.05
.5 .06 23 20 .06 .06 .03 19 21 .03 .03
1 .07 29 26 .07 .07 .03 31 40 .03 .03

.1
.5 .08 23 23 .08 .07 .04 22 28 .04 .04
1 .08 29 34 .08 .08 .04 24 42 .04 .04

.2
.5 .09 14 20 .09 .09 .05 18 25 .05 .04
1 .11 16 25 .11 .10 .05 14 38 .05 .05

(200, .02)

.05
.5 .07 7 9 .07 .07 .03 10 13 .03 .03
1 .08 12 23 .08 .07 .04 21 34 .04 .04

.1
.5 .08 7 10 .08 .08 .04 7 11 .04 .04
1 .09 6 19 .09 .08 .04 13 43 .04 .04

.2
.5 .09 4 7 .09 .09 .04 6 11 .04 .04
1 .11 8 19 .11 .10 .05 4 30 .05 .05

(200, .04)

.05
.5 .06 9 8 .06 .07 .03 11 10 .03 .03
1 .07 20 10 .07 .06 .03 25 21 .03 .03

.1
.5 .07 9 10 .07 .07 .03 11 13 .03 .03
1 .08 13 9 .08 .07 .04 16 25 .04 .03

.2
.5 .08 7 8 .08 .08 .04 9 9 .04 .04
1 .10 14 11 .10 .08 .04 11 23 .04 .04

of β̂1 given Z. The standard errors increase with increasing γ∗ but there is not a strong
dependence of the standard errors on (κ∗, ω∗, β∗

1). For the larger observation window the
standard errors are half as big as for the smaller. This is in accordance with the asymptotic
result (29) which implies that the standard deviation is inversely proportional to the square
root of the observation window size.

As expected from the theoretical results, the QL estimator has superior performance
compared with both CL and WCL in all cases. The improvement over CL is especially sub-
stantial in the more clustered (corresponding to small κ∗ and ω∗) and more inhomogeneous
(corresponding to β∗

1 = 1) cases where CL has up to 44% larger RMSE than QL in case of
W = [0, 1] and up to 61% larger RMSE in case of W = [0, 2]2. As we alluded in Section
3.2, the performance of WCL may rely on the validity of the approximation (16). In case
of a longer dependence range, the approximation is expected to be less accurate and this
explains the large drop in efficiency of WCL relative to CL when ω∗ increases from 0.02 to
0.04. In particular, WCL even performs worse than CL when ψ∗ = (200, 0.04). In contrast,
QL still fares better than CL with increases in RMSE of 8-11% (W = [0, 1]2) and 9-25%
(W = [0, 2]2) for CL relative to QL. There is not a clear pattern regarding the dependence
on γ∗ of the relative increases.
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6.2. Data Example

A fundamental problem in biological research is to understand the very high biodiversity in
tropical rain forests. One explanation is the niche assembly hypothesis, which states that
different species coexist by adapting to different environmental niches. Data available for
studying this hypothesis consist of point patterns of locations of trees as well as observa-
tions of environmental covariates. Figure 1 shows the spatial locations of three tree species,
Acalypha diversifolia (528 trees), Lonchocarpus heptaphyllus (836 trees) and Capparis fron-

dosa (3299 trees), in a 1000m×500m observation window on Barro Colorado Island (Condit
et al., 1996; Condit, 1998; Hubbell and Foster, 1983). Also one example of an environmental
variable (potassium content in the soil) is shown.

In order to study the niche assembly hypothesis we use our quasi-likelihood method
to fit log-linear regression models for the intensity functions depending on environmental
variables. In addition to soil potassium content (K, divided by 1000), we consider nine
other covariates for the intensity functions: pH, elevation (dem, divided by 100), slope
gradient (grad), multi-resolution index of valley bottom flatness (mrvbf), incoming mean
solar radiation (solar), topographic wetness index (twi) as well as soil contents of copper
(Cu), mineralized nitrogen (Nmin, divided by 100) and phosphorus (P). The quasi-likelihood
estimation was implemented as in the simulation study using a 100×50 grid for the numerical
quadrature and tapering tuning parameter ǫ = 0.01.

6.2.1. Modeling of pair correlation function

For each species we initially fit using the two-step procedure in Waagepetersen and Guan
(2009) the following pair correlation functions of normal variance mixture type (Jalilian
et al., 2013):

g(r;ψ) = 1 + c(r;ψ), r ∈ R
2,

where the covariance function c(r;ψ) is either Gaussian

c(r; (σ2, α)) = σ2 exp
[

− (‖r‖/α)2
]

,

Matérn

c(r; (σ2, α, ν)) = σ2 (‖r‖/α)νKν(‖r‖/α)
2ν−1Γ(ν)

,

(Kν is the modified Bessel function of the second kind) or Cauchy

c(r; (σ2, α)) = σ2
[

1 + (‖r‖/α)2
]−3/2

.

These covariance functions represent very different tail behaviour ranging from light (Gaus-
sian), exponential (Matérn), to heavy tails (Cauchy). The pair correlation function obtained
with the Gaussian covariance function is just a re-parametrization of the Thomas process
pair correlation function (30). For the Matérn covariance we consider three different val-
ues of the shape parameter ν = 0.25, 0.5 and 1. With ν = 0.5 the exponential model
c[r; (σ2, α, 0.5)] = σ2 exp(−‖r‖/α) is obtained while ν = 0.25 and 1 yields respectively a log
convex and a log concave covariance function.

The solid curves in Figure 2 show g(·; ψ̂) for the best fitting (in terms of the minimum
contrast criterion for the corresponding K-function) pair correlation functions: Cauchy for

Acalypha (ψ̂ = (15.4, 4.6)), Matérn (ψ̂ = (2.3, 15.4, 0.5)) for Lonchocarpus and Matérn

(ψ̂ = (1.3, 22.9, 0.25)) for Capparis. The tapering distances corresponding to ǫ = 0.01 are
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Fig. 1. Locations of Acalypha, Lonchocarpus, and Capparis trees and image of interpolated potas-

sium content in the surface soil (from top to bottom).

respectively 20.1, 71.3 and 84.9 for the three species. Hence Capparis is the computationally
most challenging case.
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Fig. 2. Solid curves: best fitting pair correlation functions g(·; ψ̂)−1 for Acalypha (left), Lonchocarpus

(middle), and Capparis (right). Dotted curve: non-parametric estimate of the pair correlation function.

Shaded area: 95% point-wise envelopes based on 199 simulations of fitted model. Dashed curve:

mean of non-parametric estimates of pair correlation functions obtained from the simulations.

Table 2. Quasi-likelihood parameter estimates and standard errors for the selected in-

tensity function models. The table also shows the composite and weighted composite

likelihood estimates and the increases in percent of their standard errors relative to quasi-

likelihood.

Acalypha Lonchocarpus Capparis
K Nmin P dem grad K

Estm.
QL -6.9 4.4 -6.5 -2.8 -0.15 -5.1 2.3 -2.0 4.1
WCL -6.9 4.3 -6.5 -2.8 -0.16 -5.1 2.8 -0.9 4.2
CL -6.9 4.0 -6.5 -2.7 -0.16 -5.1 2.9 -1.1 4.3

se. QL 0.085 1.2 0.088 0.69 0.055 0.066 0.80 0.95 1.0

Incr. se.
WCL 0.0 0.1 0.9 1.4 2.1 1.3 4.6 11.5 5.3
CL 0.0 2.3 1.2 7.0 4.5 1.5 8.5 17.1 7.4

6.2.2. Results of quasi-likelihood estimation and comparison with previous methods

Backward model selection based on the quasi-likelihood estimates is carried out for each
species using significance level 5%. The selected covariates are potassium (K) for Acalypha,
mineralized nitrogen (Nmin) and phosphorous (P) for Lonchocarpus and elevation (dem),
gradient (grad) and potassium for Capparis. The associated parameter estimates and
standard errors are shown in Table 2. The qualitative biological findings from the selected
models and the associated parameter estimates are that Acalypha and Capparis both have a
preference for niches with high levels of potassium. Regarding topography, Capparis prefers
flat areas in high altitudes. Finally, Lonchocarpus appears as a frugal species which is
adapted to low levels of mineralized nitrogen and phosphorous. Table 2 for comparison also
shows the composite and weighted composite likelihood estimates which are in general quite
similar to the quasi-likelihood estimates. One exception is the gradient (grad) regression
parameter estimate for Capparis where the absolute value of the quasi-likelihood estimate
is about twice as large as for the other estimates.

The advantage of using quasi-likelihood instead of composite likelihood or weighted com-
posite likelihood is that we obtain more precise regression parameter estimates as reflected
in smaller estimation standard errors and narrower confidence intervals. Table 2 also shows
parameter estimation standard errors for quasi-likelihood and the increase in percent in
the standard errors when composite or weighted composite likelihood is used instead. As
demonstrated in the simulation study, the advantage of using quasi-likelihood depends much
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Table 3. Computing times (T) in seconds (without computation of standard errors) and

QL parameter estimates for different combinations of grid size and tapering.

Acalypha Lonchocarpus Capparis
Grid ǫ T estm. T estm. T estm.

100×50
0.05 0.3 -6.9 4.4 1.1 -6.5 -2.8 -0.16 1.0 -5.1 2.4 -2.0 4.3
0.01 0.4 -6.9 4.4 2.6 -6.5 -2.8 -0.15 2.2 -5.1 2.3 -2.0 4.1
.002 0.6 -6.9 4.4 4.4 -6.5 -2.8 -0.15 4.3 -5.1 2.3 -2.0 4.1

150×75
0.05 0.5 -6.9 4.3 8.5 -6.5 -2.8 -0.16 10.2 -5.1 2.4 -1.9 4.2
0.01 1.8 -6.9 4.3 23.7 -6.5 -2.8 -0.15 25.0 -5.1 2.3 -1.9 4.1
.002 5.3 -6.9 4.3 41.6 -6.5 -2.8 -0.15 108.2 -5.1 2.3 -1.9 4.0

on the strength of correlation as measured by the pair correlation function. For Acalypha
where the pair correlation function drops off quickly, the standard errors for the composite
likelihood approaches are at most 2.3% larger than for quasi-likelihood. On the other hand,
for Capparis the increase in standard error is up to 17.1%. The differences in the parameter
estimates and standard errors imply that gradient is a significant covariate on the 5% level
according to the quasi-likelihood results but not according to the other two approaches.

We carry out model assessment using the empirical empty space (F ) function and a
non-parametric estimate of the pair correlation function adjusted for the inhomogeneous
intensity function where 95% point-wise envelopes are computed using simulations under
the fitted models (for details see e.g. Sections 4.3.4-4.3.6 in Møller and Waagepetersen,
2004). For Lonchocarpus and Capparis the non-parametric estimates of the pair correlation
function are contained within the envelopes while a few minor excursions occur for Acalypha
(Figure 2). Plots based on the F function (not shown) did not reveal any deficiencies of the
fitted models.

6.2.3. Dependence on grid size and tapering parameter

The computing time for the QL estimation depends both on the grid used for the numer-
ical quadrature and the tapering tuning parameter ǫ. We also tried out a 150 × 75 grid
and ǫ = 0.05 and 0.02 for the QL fitting of the final models. Parameter estimates and
parameter estimation computing time (system plus CPU time on a 2.90 GHz lap top) for
all combinations of grid sizes, ǫ and species are shown in Table 3. The computing time
for the parameter estimation depends much on both grid sizes, ǫ and species (i.e. range of
spatial dependence). Computing time including computation of standard errors is shown in
Table 4, together with the computed standard errors for the parameter estimates in Table 3.
The computing time with computation of standard errors is less sensitive to ǫ and species
since in this case the main computational burden arises from the non-sparse matrix in (27).
For the 100× 50 grid and ǫ = 0.01, the maximal computing time of 13.5 seconds (including
computation of standard errors) occurs for Capparis. In contrast to large variations in the
computing time, the parameter estimates and estimated standard errors for each species
are very stable across the combinations of grid sizes and tapering parameter ǫ.

7. DISCUSSION

In contrast to maximum likelihood estimation our quasi-likelihood estimation method only
requires the specification of the intensity function and a pair correlation function. Moreover,
the estimation of the regression parameters can be expected to be quite robust toward



18 Rasmus Waagepetersen

Table 4. Computing times (T) in seconds (including computation of standard errors) and es-

timated standard errors of QL parameter estimates for different combinations of grid size and

tapering

Acalypha Lonchocarpus Capparis
Grid ǫ T sd. T sd. T sd.

100×50
0.05 12.1 0.085 1.2 22.4 0.088 0.69 0.055 13.0 0.067 0.86 1.1 1.0
0.01 12.0 0.085 1.2 24.0 0.088 0.69 0.055 13.5 0.067 0.86 1.1 1.0
.002 12.1 0.085 1.2 25.9 0.088 0.69 0.055 13.6 0.067 0.86 1.1 1.0

150×75
0.05 59.4 0.079 1.1 187.2 0.087 0.69 0.055 158.6 0.066 0.86 1.1 1.0
0.01 58.9 0.079 1.1 204.6 0.087 0.69 0.055 169.5 0.066 0.86 1.1 1.0
.002 63.6 0.079 1.1 226.5 0.087 0.69 0.055 170.7 0.066 0.86 1.1 1.0

misspecification of the pair correlation function since the resulting estimating equation is
unbiased for any choice of pair correlation function. In the data example we considered pair
correlation functions obtained from covariance functions of normal variance mixture type.
Alternatively one might consider pair correlation functions of the log Gaussian Cox process
type (Møller et al., 1998), i.e., g(r) = exp

[

c(r)
]

, where c(·) is an arbitrary covariance
function.

If a log Gaussian Cox process is deemed appropriate, a computationally feasible alter-
native to our approach is to use the method of integrated nested Laplace approximation
(INLA, Rue et al., 2009; Illian et al., 2012) to implement Bayesian inference. However, in
order to apply INLA it is required that the Gaussian field can be approximated well by a
Gaussian Markov random field and this can limit the choice of covariance function. For
example, the accurate Gaussian Markov random field approximations in Lindgren et al.
(2011) of Gaussian fields with Matérn covariance functions are restricted to integer ν in
the planar case. In contrast, our approach is not subject to such limitations and is not
restricted to log Gaussian Cox processes.

We finally note that for the Nyström approximate solution of the Fredholm equation we
used the simplest possible quadrature scheme given by a Riemann sum for a fine grid. This
entails a minimum of assumptions regarding the integrand but at the expense of a typically
high-dimensional covariance matrix V. There may be scope for further development con-
sidering more sophisticated numerical quadrature schemes.
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APPENDIX A. Condition for optimality

To show that (9) implies non-negative definiteness of (8), let êφ(β) = ef (β)Σ
−1
f

Σfφ be the
optimal linear predictor of eφ(β) given ef (β). Then

Var[êφ(β)− eφ(β)] = Σφ −ΣφfΣ
−1
f

Σfφ

is non-negative definite whereby

SφΣ
−1
φ Sφ − SφΣ

−1
φ ΣφfΣ

−1
f

ΣfφΣ
−1
φ Sφ

is non-negative definite too. Hence, (8) is non-negative definite provided

SφΣ
−1
φ Σφf = Sf

which follows from (9) (in particular, (9) implies Σφ = Σφφ = Sφ).

APPENDIX B. SOLUTION USING NEUMANN SERIES EXPANSION

Suppose that ‖T‖op = sup{‖Tf‖∞/‖f‖∞ : ‖f‖∞ 6= 0} < 1. Then we can obtain the
solution φ of (11) using a Neumann series expansion which may provide additional insight
on the properties of φ. More specifically,

φ =

∞
∑

k=0

(−T)k
λ′

λ
. (31)

If the infinite sum in (31) is truncated to the first term (k = 0) then (13) becomes the
Poisson score. Note that

‖T‖∞ ≤ sup
u∈W

∫

W

|t(u,v)|dv.

Hence, a sufficient condition for the validity of the Neumann series expansion is

sup
u∈W

λ(u;β)

∫

R2

∣

∣g(r)− 1
∣

∣dr < 1. (32)
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Condition (32) roughly requires that g(r)−1 does not decrease too slowly to zero and/or
that λ is moderate. For example, suppose that g is the Thomas process pair correlation
function (30). Then,

∫

R2

∣

∣g(r)− 1
∣

∣dr =
1

4πκω2

∫

R2

exp(−‖r‖2
4ω2

)dr = 1/κ

and (32) is equivalent to supu∈W λ(u;β) < κ. In this case, Condition (32) can be quite
restrictive. However, the Neumann series expansion is not essential for our approach and
we use it only for checking the conditions for asymptotic results; see Section 1 in the
supplementary material.


