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Summary.This report describes a simulation study of the results in Waagepetersen and Guan
(2008). We refer to this paper and Waagepetersen (2007) for background on the simulation
study.

1. Simulation study

To check how the asymptotic results in Waagepetersen and Guan (2008) apply in finite-
sample settings we consider simulation studies for an inhomogeneous Thomas process and
an LGCP with exponential correlation function. The set-up for the simulation study is
similar to the one in Waagepetersen (2007) with altitude and slope covariates and a 1000
m by 500 m simulation window. The altitude and slope parameters β∗

2 and β∗

3 used in the
simulations are given by the parameter estimates in Waagepetersen (2007). In the case of
the Thomas process we let ψ = (log κ, logω) while ψ = (log σ2, logφ) for the LGCP. In

the simulation study we focus on the asymptotic normality of ψ̂, the asymptotic standard
errors for ψ̂, and the coverage properties of approximate confidence intervals based on the
asymptotic normality of the parameter estimates. In all cases, the model fitted to the
simulated data coincides with the model that was used to generate the simulated data.
That is, issues of model misspecification is not considered in the simulation study.

In the case of an inhomogeneous Thomas process we vary (κ∗, ω∗) and the expected
number of points µ∗ to reflect varying degrees of clustering and tree abundance. We let
ω∗ equal to 10 or 20 while κ∗ is 1×10−4 or 5×10−4 corresponding to expected numbers 50
or 250 of mother points within the plot and recall that larger κ∗ and ω∗ results in less
clustering. The expected number µ∗ of simulated points is either 200 or 800 corresponding
to “sparse” and “moderately abundant” point patterns. For each combination of κ∗, ω∗,
and µ∗ we generate 1000 synthetic data sets and obtain simulated parameter estimates by
applying our estimation procedure with r = 100 and c = 0.25. We compute the empirical
standard deviation of the simulated parameter estimates and we evaluate for each simulation
the asymptotic covariance matrix by plugging in the corresponding simulated parameter
estimate. Approximate 95 % confidence intervals are constructed using standard errors
extracted from the the estimated asymptotic covariance matrices. We only report results
obtained with Σ̃n since similar results are obtained with Σn.
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Table 1. Columns 4-6: standard deviation for ψ̂1 = log κ̂ estimated
from simulations, median of standard deviations obtained from es-
timated asymptotic covariance matrices, coverage of nominal 95 %
approximate confidence intervals. Columns 7-9: as columns 4-6 but
for ψ̂2 = log ω̂.
κ∗ ω∗ µ∗ sd1 ŝd1 cvrg

1
sd2 ŝd2 cvrg

2

1×10−4 10 200 0.28 0.28 0.94 0.15 0.16 0.96
1×10−4 10 800 0.25 0.24 0.94 0.12 0.12 0.96
1×10−4 20 200 0.39 0.38 0.95 0.19 0.2 0.96
1×10−4 20 800 0.30 0.30 0.94 0.12 0.13 0.96
5×10−4 10 200 0.47 0.48 0.98 0.30 0.32 0.95
5×10−4 10 800 0.25 0.24 0.94 0.14 0.14 0.96
5×10−4 20 200 1.72 2.24 1.00 0.72 1.44 1.00
5×10−4 20 800 0.43 0.43 0.95 0.22 0.23 0.96

Table 2. Columns 4-6: standard deviation for ψ̂1 = log σ̂2 estimated from sim-
ulations, median of standard deviations obtained from estimated asymptotic
covariance matrices using Σn (and Σ̃n in parentheses), coverage of nominal
95 % approximate confidence intervals. Columns 7-9: as columns 4-6 but for
ψ̂2 = log φ̂.
σ2,∗ φ∗ µ∗ sd1 ŝd1 cvrg

1
sd2 ŝd2 cvrg

2

0.5 15 800 0.34 0.34 (0.34) 0.96 0.39 0.41 (0.42) 0.97
0.5 30 800 0.24 0.25 (0.26) 0.97 0.35 0.36 (0.37) 0.95
1.5 15 800 0.17 0.20 (0.23) 0.98 0.21 0.23 (0.25) 0.96
1.5 30 800 0.18 0.19 (0.23) 0.95 0.24 0.24 (0.28) 0.92

Except for the 7th row, the simulation results in Table 1 shows fine agreement between
the empirical standard errors and the median asymptotic standard errors for the simulated
parameter estimates. The coverages of the confidence intervals are also fairly close (in
general within 1%) to the nominal coverages of 95%. The problems in row 7 is probably
due to that the parameter values κ∗ = 5×10−4 and ω∗ = 20 corresponds to the least clustered
case and with only 200 simulated points on average it may often be hard to distinguish the
estimated K-function from that of a Poisson process. This leads to rather extreme values of
the parameter estimates and for 3% of the simulated point patterns for row 7, the minimum
contrast procedure did in fact not converge.

Quantile plots based on the simulated parameter estimates are shown in Figure 1 and
Figure 2. The distributions of the parameter estimates are in general fairly close to normal.
Bivariate scatter plots (omitted) of (log κ̂, log ω̂) indicate that the joint distribution is well
approximated by a bivariate normal and that log κ̂ is strongly negatively correlated with
log ω̂. However, for reasons discussed in the above paragraph, the case κ∗ = 5×10−4,
ω∗ = 20, and µ∗ = 200 is an exception where the distributions of both log κ̂ and log ω̂ are
very heavy tailed.

For the LGCP we restrict attention to the case µ∗ = 800 and values of σ2,∗ = 0.5, 1.5
and φ∗ = 15, 30. Proceeding as for the Thomas process we obtain Table 1. The asymptotic
results work rather well for σ2,∗ = 0.5. For σ2,∗ = 1.5 the asymptotic standard errors
tend to overestimate the true standard errors and this is especially so for the asymptotic
standard errors obtained with Σ̃n. The quantile plots in Figure 3 show some deviations from
normality both when σ2,∗ = 0.5 and σ2,∗ = 1.5 but the deviations seem rather modest.
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Fig. 1. Empirical quantiles of the simulated parameter estimates for log κ against quantiles for a
standard normal distribution. Upper row, κ∗ = 1×10−4, lower row: κ∗ = 5×10−4. First two columns:
ω∗ = 10 and second two columns: ω∗ = 20. First and third column: µ∗ = 200, second and fourth
column: µ∗ = 800.
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Fig. 2. Empirical quantiles for the simulated parameter estimates for log ω against quantiles of a
standard normal distribution. Upper row, κ∗ = 1×10−4, lower row: κ∗ = 5×10−4. First two columns:
ω∗ = 10 and second two columns: ω∗ = 20. First and third column: µ∗ = 200, second and fourth
column: µ∗ = 800.
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Fig. 3. Empirical quantiles for simulated parameter estimates of log σ2 (upper row) and log φ
(lower row) against quantiles of a standard normal distribution. From left to right: (σ,2,∗, φ∗) =
(0.5, 15), (0.5, 30), (1.5, 15), (1.5, 30).
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