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ABSTRACT
Phenotypic plasticity and canalization are important topics in quantitative genetics and evolution. Both

concepts are related to environmental sensitivity. The latter can be modeled using a model with genetically
structured environmental variance. This work reports the results of a genetic analysis of adult weight in
the snail Helix aspersa. Several models of heterogeneous variance are fitted using a Bayesian, MCMC
approach. Exploratory analyses using posterior predictive model checking and model comparisons based
on the deviance information criterion favor a model postulating a genetically structured heterogeneous
environmental variance. Our analysis provides a strong indication of a positive genetic correlation between
additive genetic values affecting the mean and those affecting environmental variation of adult body
weight. The possibility of manipulating environmental variance by selection is illustrated numerically using
estimates of parameters derived from the snail data set.

PHENOTYPIC plasticity and its counterpart, pheno- and the environment, can be described by including a
typic stability, are concepts related to environmental genetic component in a regression model, i.e., using a

sensitivity and play important roles in mechanisms so-called reaction-norm model (see, e.g., Gavrilets and
linked to adaptation and evolution (Falconer and Scheiner 1993a,b). The second definition of environ-
Mackay 1996; Roff 1997). Important questions from mental sensitivity gives rise to a model for residual varia-
a breeding point of view are related to performance of tion. Given the genotype of an individual a certain value
plants or domestic animals under either homogeneous of the phenotype is expected. In practice the observed
environments (often associated with intensive produc- phenotype differs from the expected phenotype and
tion systems) or a wide range of environmental condi- this deviation may be attributed to the sum of influences
tions. The latter are often low-input production systems. of all the environmental conditions that the individual
From an evolutionary point of view, one is interested has been exposed to from the time of conception. The
in understanding the processes by which organisms deviation is then modeled as random residual noise,
adapt and genetic variation is maintained in complex, whose variation may be a function of covariates and of
temporally or spatially changing environments. a genetic component. In this model, different genotypes

Environmental sensitivity can be defined either as confer a difference in both mean and residual (or envi-
mean phenotypic changes of a given genotype in differ- ronmental) variation.
ent environments or as differences in the residual vari- Several experiments have been conducted to eluci-
ance of different genotypes in the same environment date whether environmental sensitivity is under genetic
(Jinks and Pooni 1988). These two definitions give rise control. In the context of phenotypic plasticity/stability
to two different genetic statistical models. In the first Waddington (1960), for example, demonstrated that
one, the phenotypic expression of a particular genotype it is possible to select for phenotypic stability toward
is assumed to depend on the type of environment the different temperature environments. Specifically, Wad-
individual is exposed to. One typically has specific types

dington (1960) selected for number of eye facets in
of environment in mind, for example, low and high

bar-eyed Drosophila mutants in two rearing environ-temperature. Then the phenotypic plasticity of a geno-
ments: 18� and 25�. Unselected individuals reared at 18�type, defined by the relationship between phenotype
had 182% more facets than those reared at 25�. Selec-
tion for stability to variations of the environment was
performed by splitting each family in two (one part

1Corresponding author: Laboratoire de Génétique des Poissons, Insti- reared at 18�, the other at 25�). The family averagetut National de la Recherche Agronomique, 78552 Jouy en Josas
Cedex, France. E-mail: ros@diamant.jouy.inra.fr differences were used to select the less sensitive animals.
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pick than smaller ones. The pedigree file includes 22,454After five generations of selection the difference in mean
individuals.number of eye facets in the two environments was re-

Animals were housed in a room kept at a temperature/
duced to 11%. Another divergent selection experiment relative humidity of 20�/70% during the day and 17�/90%
in Drosophila involving plasticity of thorax size in two during the night. Feeding was ad libitum with a commercial

compound feed. Further details about rearing conditions aredifferent temperatures (19� and 25�) produced very sig-
given in Dupont-Nivet et al. (1997). After eclosion, snailsnificant responses in both the upward and the down-
were maintained in boxes of 30 individuals during the growthward direction (Scheiner and Lyman 1991). Empirical
period and boxes were randomly distributed over shelves.

results like these require modeling environmental sensi- Animals were checked once a week for peristome reflection,
tivity at the level of the mean. and those that were judged to have reached the appropriate

weight were placed in a starving box for 3 days before beingWe are here concerned with the second interpreta-
weighed to the nearest 0.01 g.tion above of environmental sensitivity. In this case a

Model with genetically structured variance heterogeneity:number of models describing genetic control of envi-
The analysis is based on the model introduced by San Cristo-

ronmental or residual variance have been studied. Early bal-Gaudy et al. (1998). It is assumed that conditionally on
models assumed that residual variance decreases with vectors of location and dispersion parameters, the vector of

the n phenotypes (adult weights) y � {yi}n
i�1 is Gaussian,the number of heterozygous loci (Lerner 1954; Lewon-

tin 1964; Zhivotovsky and Feldman 1992). An exten-
y|b, a, p, b*, a*, p* � �(�, diag({� 2

i }n
i�1)), (1)

sion postulates that a finite number of loci have pleiotro-
where diag ({� 2

i }n
i�1) is a diagonal matrix with diagonal entriespic effects on the mean and variance (Gavrilets and

� 2
i ,Hastings 1994; Hill 2002). Recently, San Cristobal-

Gaudy et al. (1998) proposed an infinitesimal model � � {�i}n
i�1 � Xb � Za � Wp

with a genetically structured residual variance, thus gen-
anderalizing the classical infinitesimal model used in quanti-

tative genetics (Fisher 1918). With the exception of {log � 2
i }n

i�1 � Xb* � Za* � Wp*.
recent work by Garreau et al. (2003) and Sorensen

The vectors b and b* contain effects associated with generationand Waagepetersen (2003), there is limited convinc- (11 levels) and whether each of the two snails laid eggs or
ing experimental evidence for genetic control of resid- not (2 levels) and X, Z, and W are known incidence matrices.
ual variability. The genetic effects (a�, a*�) are assumed to be Gaussian,

In this article we report results of an analysis of adult
weight in a nonlaboratory species, the snail Helix aspersa. �aa*�|G � ���00�, G � A�, G � ��

2
a ��a�a*

��a�a* � 2
a*

� , (2)
The objective is to investigate whether the residual vari-
ance of adult weight is under genetic control. The data where A is the additive genetic relationship matrix, � 2

a is the
additive genetic variance affecting mean adult weight, � 2

a* isare analyzed with the genetically structured residual
the additive genetic variance affecting environmental variancevariance model proposed by San Cristobal-Gaudy et
of adult weight, and � is the coefficient of genetic correlation.al. (1998), based on earlier work of Foulley and Quaas The vectors p and p* contain box effects on body weight and

(1995). Maximum-likelihood inference for this model log-variance, respectively, and are assumed to be independent
is highly intractable. Instead we implement a Bayesian with
inference using Markov chain Monte Carlo (MCMC) as

p|� 2
p � �(0, � 2

pInbox
) and p*|� 2

p* � �(0, � 2
p*Inbox

),proposed by Sorensen and Waagepetersen (2003).
where nbox is the number of boxes used in the experiment.
This model is labeled model 4. We also fitted three other

MATERIALS AND METHODS models of decreasing complexity: model 3 is as model 4 but
without a*, model 2 is as model 3 but without p*, and modelThe data: H. aspersa snails are protandrous hermaphrodites:
1 is the standard linear mixed model with homogeneous resid-the males mate, fertilizing each other, and later both turn
ual variance [i.e., in model 1 the residual variances � 2

i are allinto females. Under our experimental conditions, �130 eggs
equal to exp(b*) for some parameter b*].on average are laid by each pair of snails (Bonnet et al. 1990).

The phenotypic variance is the variance of the conditionalThe definition of sexual maturity was the standard one based
distribution of yi given b and b*, and the heritability parameteron judging whether the peristome (edge of the aperture of
h2 is the usual ratio of additive to phenotypic variance. Underthe shell) was reflected. A sexually mature snail weighs 10 g
model 4, these parameters areon average with an empirical standard deviation of 1.8 g and

is 8–20 weeks old.
�ar[yi |b, b*] � � 2

a � � 2
p � exp((Xb*)i � � 2

a*/2 � � 2
p*/2) (3)

The data consist of 22,033 adult weights collected over 11
discrete generations, spanning the period from 1991 until and
2002. Animals were reared at the experimental unit of INRA-
Le Magneraud. The line was maintained with 120 animals h2

i �
� 2

a

� 2
a � � 2

p � exp((Xb*)i � � 2
a*/2 � � 2

p*/2)
, (4)chosen from 30 families, with an equal number from each

family. Mating among the 120 snails was at random, with the
respectively, where (Xb*)i is the ith row of Xb*. The parame-restriction that full-sibs were not allowed to mate. Even though
ter h2 features in the response to selection for the mean ofthe 120 parents should have been randomly chosen with re-
the trait (Sorensen and Waagepetersen 2003). The thirdspect to weight by design, a slight positive trend was detected

(not shown), presumably because larger snails are easier to central moment is



2091Genetic Control of Plasticity

�[(yi � (Xb)i)3|b, b*] � 3��a�a*exp((Xb*)i � � 2
a*/2 � � 2

p*/2).
(5)

The conditional distribution of yi given b and b* therefore
has negative, zero, or positive skewness,

�[(yi � (Xb)i )3|b, b*]/�ar[yi|b, b*]3/2, (6)

depending on whether � is negative, zero, or positive.
In our statistical analysis we use the Bayesian approach de-

scribed in Sorensen and Waagepetersen (2003). A priori b
and b* were assigned normal distributions with zero mean
vector and diagonal matrix with very large diagonal elements.
The variance parameters � 2

a, � 2
a*, � 2

p, and � 2
p* were assigned

scaled inverted chi-square distributions and � was assigned a
uniform prior bounded between �1 and 1. Posterior distribu-
tions are computed using the MCMC algorithm proposed by
Sorensen and Waagepetersen (2003), where further details
concerning the model and its implementation can be found.
Briefly, the vector b was sampled using a Gibbs update, and
the vectors (a�, a*�) and (p�, p*�) were reparameterized with
the intention of reducing their posterior correlation and sam-
pled subsequently using Metropolis-Hastings with Langevin-
Hastings proposals. The vector b* was sampled using Metropo-
lis-Hastings with a Langevin-Hastings proposal as well, and the
log-variance components and the correlation coefficient were
sampled using Metropolis-Hastings with random-walk pro-
posals.

In the rest of the article, the residual variance, that is, the
variance of the conditional distribution of the data, given the
parameters and the model, is interpreted and referred to as
the environmental variance.

RESULTS

Figure 1A shows a histogram of the 22,033 residuals
obtained from a least-squares analysis, accounting for
generation effects and for egg-laying pattern. The histo-
gram displays a heavy tail to the right, which is indicative
of a positive genetic correlation � under the San Cristo-
bal-Gaudy et al. (1998) model, cf. (5) and (6).

To give an idea of the effective population size, aver-
Figure 1.—(A) Residuals from a least-squares analysis ofage inbreeding coefficients per generation are shown in adult weights. (B) Average percentage of inbreeding per gen-

Figure 1B. The average effective size implied by Figure 1 eration, from generations 3–11.
is of �94 breeding individuals per generation.

Inferences about chosen parameters based on the
four models fitted: The results reported for each model expected since model 4 includes an additional variance

component � 2
a* ). To give an idea of the precision ofare obtained from MCMC runs consisting of between

4,000,000 and 12,000,000 iterations. Table 1 shows the Monte Carlo computations we show in the final row
confidence intervals for the estimated posterior meansMonte Carlo estimates of posterior means and Monte

Carlo estimates of 95% posterior intervals for chosen under model 4, reflecting Monte Carlo noise.
A few interesting observations can be derived fromparameters based on models 1, 2, 3, and 4. The Monte

Carlo estimates of the posterior means of b* and of the numbers in Table 1. One is the rather high propor-
tion of additive genetic variation at the level of the meanexp(b*) based on model 1 are 0.003 and 1.00, respec-

tively (not shown in Table 1). For models 2–4, the pa- of the trait. Thus, under model 4 the posterior mean/
credibility interval of h2 � 0.63 (0.59; 0.68) for genera-rameters b*egg and b*1,11 are, respectively, the effects on the

log-environmental variance of moving from level 1 to 2 tion 11 and level 2 of egg. For generation 1 and level
2 of egg we obtain 0.51 (0.48; 0.55). Under model 1,for the egg factor and from level 1 to 11 for the genera-

tion factor. The estimates of the posterior means for the the numbers are 0.53 (0.46; 0.58). The result under
model 1 is in agreement with that in Dupont-Nivet etvarious components of variance are fairly stable across

models, perhaps with the exception of � 2
a that shows an al. (1997). The other interesting observation pertains

to � whose posterior mean of 0.81 and rather tightincrease in going from model 1 to 2 and � 2
p* that de-

creases going from model 3 to 4 (the latter is to be credibility interval disclose a large positive additive ge-
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TABLE 1

Monte Carlo estimates of posterior means (first row for each model) and of 95% posterior intervals
(second row for each model) of chosen parameters of models 1, 2, 3, and 4

Model b*egg b*1,11 � 2
a � 2

p � 2
a* � 2

p* �

1 — — 1.70 0.49 — — —
— — 1.50; 1.90 0.43; 0.55 — — —

2 �0.16 �0.45 1.84 0.48 — — —
�0.25; �0.06 �0.65; �0.25 1.60; 2.07 0.42; 0.53 — — —

3 �0.13 �0.43 1.70 0.46 — 0.39 —
�0.25; �0.01 �0.69; �0.20 1.51; 1.86 0.41; 0.52 — 0.30; 0.49 —

4 �0.02 �0.82 1.71 0.47 0.29 0.17 0.81
�0.15; 0.10 �1.20; �0.45 1.62; 1.81 0.41; 0.52 0.23; 0.35 0.14; 0.21 0.73; 0.87

�0.03; �0.02 �0.90; �0.75 1.70; 1.72 0.46; 0.47 0.29; 0.30 0.17; 0.18 0.79; 0.82

The third row of model 4 shows confidence intervals for the estimated posterior means, reflecting Monte
Carlo sampling variance. b*egg (b*1,11), egg effect (generation effect); � 2

a (� 2
a*), additive variance at the level of

the mean (variance); � 2
p (� 2

p*), variance due to box effects at the level of the mean (variance); �, genetic
correlation.

netic association between genetic values affecting the Figure 2A obtained from MCMC samples of the poste-
mean of the trait and those affecting its environmental rior predictive distributions of Tj � Tj

rep exhibit an in-
variation. The estimated posterior distribution of � is creasing trend that is indicative of a positive association
shown in Figure 2B. between environmental variation and additive genetic

Assessment of models and priors: Graphical evidence values affecting mean adult weight, as postulated by
in support of model 4 showing a positive association the fitted model 4. More details on this approach to
between environmental variation and additive genetic posterior predictive model checking are provided in
values affecting mean adult weight is provided in Figure Sorensen and Waagepetersen (2003).
2A. The plot is obtained under model 3 as follows. The four models fitted are compared using the devi-
Conditional on parameters and random effects we de- ance information criterion (DIC), recently proposed by
fine averaged squared standardized residuals, Spiegelhalter et al. (2002). Briefly, the DIC is a mea-

sure that combines the fit of a model with its complexity,
Tj �

1
mIj

�
i :ai�Ij

(yi � �i)2

� 2
i

, j � 1, 2, . . . , 10, (7) where the latter involves the number of parameters.
Smaller values indicate a “better” model. The Monte
Carlo estimates of the differences DICi � DIC1 arewhere mIj is the number of observations with ai � Ij and
�1629, �5327, and �5692, respectively, where DICi isIj � [tj, tj�1[ are subintervals of the real line with �∞ �
the DIC for model i, i � 2, 3, 4. Spiegelhalter et al.t1 	 t2 	 · · · 	 t10 	 t11 � ∞ and tj � �1.6 � 0.4(j �
(2002) suggest that differences in DIC 
7 should be2), j � 2, . . . , 10. In each Monte Carlo round, the
taken as important. Thus, in agreement with the poste-sampled additive genetic values are ordered from the
rior predictive model, checking the comparison basedsmallest to the largest in these intervals. Thus Tj mea-
on the DIC favors model 4.sures the average environmental variation in groups

Figure 3 shows the estimated marginal posterior distri-obtained by ordering the observations according to the
butions of � 2

a, � 2
p, � 2

a*, and � 2
p* based on model 4. Thesize of the Monte Carlo sampled genetic values ai. To

solid lines superimposed on each plot of the figureassess whether the observed values of Tj are consistent
represent the density of the prior �S��2

� scaled invertedwith the assumptions of model 3 one might check
chi-square distribution of the parameters, where � andwhether the observed Tj are atypical compared with
S are degrees of freedom and the scale parameter, re-their sampling distributions, which are �2(mIj)/mIj under
spectively, assumed known. For the four histograms ofmodel 3. Equivalently one might check whether zero is

an atypical value for the differences Figure 3A the parameters of the prior distributions are
� � 4 and S � 0.45. This results in a prior mode equal

Tj � T rep
j , to 0.30. To study the influence of the prior distribution

on the inferences, we considered also S � 0.05, whichwhere T rep
j is �2(mIj)/mIj . In practice, of course, the ran-

gives a prior mode equal to 0.033. The estimated mar-dom effects and parameters are unknown so we use
ginal posterior distributions of the same parameters un-the idea of posterior predictive model checking (Rubin
der this prior are shown in Figure 3B. The results under1984; Gelman et al. 1996) and consider the posterior

predictive distribution of Tj � Tj
rep. The boxplots in the two different prior assumptions are almost indistin-
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Figure 2.—(A) Boxplots for posterior MCMC
realizations (under model 3) of averaged squared
standardized residuals plotted against index of 10
groups of additive genetic values ordered ac-
cording to increasing size. (B) Estimated marginal
posterior distribution for � under model 4.

guishable so our results appear to be rather insensitive that |�| � 1 (corresponding to u � 0) results in a deter-
to the choice of these priors. ministic relationship between mean and variance.

Assessment of mean-variance relation: As mentioned A further criticism of the postulated model could
in Sorensen and Waagepetersen (2003), focus on the choice of functional relationship between

mean and variance. If the choice of the log function is
exp(a*) � exp(a��*a /�a � u), appropriate then the posterior results and the DIC give

strong evidence for the presence of u/a*. However, awhere u � a* � �[a*|a] is N(0, � 2
a*(1 � �2)A) and inde-

wrong choice of functional relationship might inducependent of a. Our model thus postulates a linear, sto-
spurious results where variation in u could occur tochastic relationship between the mean and the log-vari-
compensate for the wrong functional relationship. Thisance. It is precisely the presence of the stochastic term u
is not implied by Figure 2A, which, with the exceptionthat opens the possibility of changing the environmental

variance by selection, without changing the mean. Note of the last interval, shows a fairly steady linear trend.
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Figure 3.—(A, top) Monte Carlo estimates of
� 2

a (additive genetic variance at the level of the
mean) and � 2

p (variance due to box effects at the
level of the mean); bottom, � 2

a* (additive genetic
variance at the level of the variance) and � 2

p* (vari-
ance due to box effects at the level of the vari-
ance). The lines represent the prior �S��2

� densi-
ties for the variances with parameters � � 4
(degrees of freedom) and S � 0.45 (scale parame-
ter). (B) Plots are as in A but with alternative
choice of prior (� � 4 and S � 0.05).

The plots of posterior realizations of u vs. corresponding model 4 was checked by plotting posterior realizations
posterior realizations of a in Figure 4 give further sup- of u vs. those of a (see Figure 4). The lack of systematic
port for a lack of systematic relation between the values relation between the values of u and a does not lead to
of u and a. questioning the adequacy of the exponential relation-

ship.
Second, the model comparisons based on the DIC

DISCUSSION criterion (Spiegelhalter et al. 2002) favored model 4.
Third, the posterior distribution of � 2

a* and of the ge-This work provides evidence that environmental vari-
netic correlation are shifted a long way from zero (seeance for adult weight in the snail H. aspersa is partly
Figure 3A and Figure 2B). In particular, Figure 2B mustunder genetic control, as postulated by model 4. This
be seen in connection with Figure 3A. Indeed, the poste-conclusion is supported, first, by the posterior predictive
rior analysis indicates that additive genetic values affect-model-checking study. We constructed discrepancy sta-
ing environmental variance are strongly, positively cor-tistics specifically designed to test for genetically struc-
related (posterior mean of � � 0.81, see also Table 1)tured variance heterogeneity, and the test was positive
with those affecting mean adult weight.(see Figure 2A). Further, the validity of the functional

form of the mean-variance relationship postulated by According to the inferred model 4, the genetic contri-
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Figure 4.—Kernel-smoothed
scatter plots of posterior real-
izations of u (vector of devia-
tions of realized values of addi-
tive genetic effects affecting
the variance, from their condi-
tional expectations, given a;
see Assessment of mean-variance
relation) vs. corresponding pos-
terior realizations of a (vector
of additive genetic values af-
fecting the mean). Both plots
are based on independent pos-
terior realizations of (a�, u�).

bution to heterogeneity of environmental variance is of provide evidence of genetic variance heterogeneity for
both transformed data sets with a positive � for theconsiderable magnitude: given � 2

a*, each component of
a* is a priori N(0, � 2

a*). Replacing � 2
a* by the posterior square-root-transformed data and a negative � for the

log-transformed data. This result can be explained bymean equal to 0.29 leads to an a priori 95% confidence
interval for a component of a* ranging from �1.06 to employing a Taylor series expansion to approximate

the variance of the transformed data. Choosing between1.06. This corresponds to a ratio exp(1.06)/exp(�1.06) �
8 between the environmental variances for components the different transformations may be viewed as a model

selection exercise. According to the DIC, the best fit isof a* in the lower and upper ends of the confidence
interval. obtained using the untransformed data.

The possibility of manipulating environmental varia-A referee raised the important point of whether the
simple model 1 might be appropriate for log-trans- tion via selection, conditionally on the inferred parame-

ters of model 4 and the data, can be studied as follows.formed data since the log-transformation is often used
to remove variance heterogeneity. Indeed, one might Consider directional selection of, for example, 240

snails out of the initial 2195 snails available in the data.even consider the whole class of Box-Cox transforma-
tions (Box and Cox 1964), which is commonly used The maximum possible (negative) response in the envi-

ronmental variance is obtained when selection is basedfor analysis of positive-valued data. The study of the
interplay between variance heterogeneity and possibly on the smallest ranking posterior means of the additive

genetic values affecting environmental variation (i.e.,heavy-tailed sampling distributions is a research project
in its own right. We here confine ourselves to consider- the smallest �[a*|y]), disregarding the posterior means

of the additive genetic values controlling mean adulting the results of fitting model 4 to log- and square-
root-transformed data for which residuals from least- weight (i.e., �[a|y]). The change in �[a*|y] translates

into a reduction of the environmental variance of 43%,squares analyses were heavy tailed to the left and close
to symmetric, respectively. The posterior distributions with a correlated reduction in the mean adult weight
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Figure 4.—Continued.

of �13%. We may alternatively consider a restricted means of selection. However, they do not carry the same
strength of evidence as that provided by a well-designedindex I � a* � ka with k chosen so that Cov(a, I) � 0.

Then, upon replacing the unknown quantities with their selection experiment. To the best of our knowledge,
such an experiment has not been reported; it would be aposterior means, selection based on I should leave mean

adult weight approximately unchanged (a more refined welcome contribution to the literature on this important
topic.criterion of selection would involve using the posterior

mean of the index, computed via MCMC). Selection of
the 240 snails on this index generates a change in
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