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Introduction

Geostatistics is a branch of statistics which include a wide range of methods for
simulation and prediction of spatial stochastic processes. The aim of these notes is
to give a survey of a selection of topics related geostatistics. Many important issues
like e.g. estimation are not or only very cursorily treated, and the selection of topics
considered here, is largely determined by those topics which I went through at the
Ph.D.-course on Geostatistics in the autumn 1993 at the Dept. of Theoretical Statistics.
More thorough references on geostatistics are Journel & Huijbregts (1978) and Cressie
(1991). The last and newest reference contains a vast amount of informations on the
subject, but could have been more well-arranged.

Chapter 1 in these notes deals with linear prediction of second order stationary
and intrinsically stationary stochastic processes. In connection with linear prediction of
such processes the covariogram, semivariogram or the generalized covariance must be
modelled and it is therefore important to be able to decide for a given candidate function
whether this function is a valid covariogram, smivariogram or generalized covariance
model. Chapter 2 is concerned with this problem. Finally, in Chapter 3, various methods
for simulation of Gaussian random fields are considered. Simulation is an important tool
for model selection and Monte Carlo calculations of analytically intractable problems.
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1 Optimal linear prediction of
nonstationary processes

1.1 Some basic definitions

In these notes three types of stochastic processes will be considered. We let
Z={Z(s):se D}

denote a stochastic process with D C R and Z(s) € R. Under the assumption
Vse D: E(Z(s))* < o, then Z is second order stationary if

(1.1.1) VseD : E(Z(s)=u

(1.1.2) Vs,t € D: Cov(Z(s), Z(t)) = C(s —t)

C(-) is called the covariogram of Z. If Z is Gaussian, that is, all the finitely dimensional
distributions are Gaussian, then Z is fully characterized by the mean and covariance,
and in this case (1.1.1) and (1.1.2) also imply strict stationarity (this means, that the
finitely dimensional distributions are translation invariant).

If we only assume V' s,t € D : E(Z(s) — Z(t))? < oo and replace (1.1.2) by
(1.1.3) Vs,t € D: Var(Z(s) — Z(t)) = 2vy(s — t)

then Z is intrinsically stationary, and 2+(-) is called the variogram of Z. The assumption
of intrinsically stationarity is less restrictive than that of second order stationarity, and the
class of linear predictors available for intrinsically stationary processes is not essentially
smaller than the class of linear predictors for second order stationary processes. This
hypothesis is therefore often preferred in practice.

An intrinsically stationary stochastic process is a special case of a class of stochastic
processes called the intrinsic random functions of order k or IRF-k where k € Ng. The
stochastic process Z is an IRF-k, if the stochastic process Y given by

Y(s)=Y_ NZ(si+5s)
i=1

is second order stationary foralln € N, s; = (s71,...,814),---,8n = (Sn1y.+,824) € D
and all A = (Aq,...,A,) € R™ such that

n
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d
for all a = (a1,...,a4) € N§:a. 3 a; < k. The latter condition could also be put
j=1
in matrix form

(1.1.4) AX =0
with
Losu — sif-oesig - sig
(1.15) X =(sf---s3)  ictim, = || |
T T ehga e |y g mgme gk

For an IRF-k there exists a function K(-) called the generalized covariance (Matheron
n

(1973)) such that for every A where (1.1.4) holds, the variance of > X;Z(s;) is given by
=1

Var Z XiZ(si) =2njzn:AiAjK(s,- —5;)

i=1 i=1 j=1

An intrinsically stationary process Z is an IRF-0 as easy calculations show: AConsider
Y(s) = E AiZ(s; +s) where Z Ai = 0. The mean of Y(s) is then 0 and the

covar1ance of Y(s) is (with s,t and sp € D)
n n

Cov(Y (), Y (1)) = Cov [ > X(Z(si + ) — Z(s0)), Y _ N(Z(s5 + 1) — Z(s0)) | =
‘ s

DD T Aidi(v(si + 5 — s0) + (sj +t— s0) — (55 — 85 + (s —1))) =

i=1 j=1

- Z Z Aid;v((si — s5) + (s — 1))

i=1 j=1

Thus, Y is second order stationary and it follows, that the intrinsically stationary process
Z is an IRF-0. An IRF-0 need on the other hand not to be intrinsically stationary. For
an IRF-0 Z let for s,t € D, Y(u) = Z(s + u) — Z(t + u). Then for all s',# € D
with s —t = & — ¢

Var(Y(0)) = Var(Y(s' — s)) & Var(Z(s) — Z(t)) = Var(Z(s') = Z(t'))

so that (1.1.3) holds. The mean of Z(s), s € D may however not be finite, and in the
case where it is finite, it could be nonconstant. In the case D = R, E(Z(s)), s € D
could e.g. be a linear function of s. Note, that for £ > 0, the class of IRF-%£’s is
contained in the class of IRF-k 4 1’s. That is the assumption that a random function
is an IRF-k becomes weaker as k increases.



1.2 Linear prediction of nonstationary processes

Assume that Z = {Z(s)|s € D} is a stochastic process with a nonstationary mean.
Given observations Z(s1), ..., Z(s,) of Z at locations s1,...s, € D, one may wish
to find a predictor of Z(sg) at some location sy where Z is not observed. An opfimal

~ n
linear predictor Z(sg) is a linear combination (or weighted average) > A\;Z(s;) of
i=1
Z(s1),...,2Z(sn), such that Z(sp) is

(1.2.1) unbiased, i.e. E(Z(s0)) = E(Z(sp)) and

(1.2.2) among all linear predictors, Z(so) minimizes the mean square prediction error
(m.s.p.e.), ie. E(Z(s0) — Z(s0))? < E(Z(s0) — 1 i Z(s;))2) for every
linear combination 3. ;;Z(s;).

The predictor that minimizes the m.s.p.e. among all predictors of Z(sg) is the con-
ditional expectation E(Z(sg)|Z(s1),...,Z(sn)). For a zero-mean Gaussian process,
the conditional expection is a linear combination of Z(s;),...,Z(s,, and the optimal
linear predictor is therefore in this case also the predictor which minimizes the m.s.pe.
among all predictors.

One way to model Z is by
(1.2.3) Z(s) = Bf(s)" +6(s),

where 8 = (f1,..., ) is a vector of regression coefficients, f(s) = (fi(s),.-., f4(s))
is a known function from R? into R? and §(-) is a zero-mean stochastic process
where either the covariances C(s,t) = Cov(Z(s),Z(t)), s,t € D or the variances
of increments 2v(s,t) = Var(Z(s) — Z(t)), s,t € D exist. If we assume that the
covariance exists and is known, the optimal linear predictor can be expressed in terms
of the covariance function C(-,-) as

(1.2.4) 2(50) = Bf(s0)" + (Zaws — BF) C2¢!

where Zda,t = (Z(Sl),...,Z(Sn)), C = (C(Si,Sj))i’j=1,.__7n, c = (C(So,si))izl,_",n,
F = (fY(s1),...,fsy)) and

(1.2.5) B = ZyuCT FH(FCIFY) T

This is of course only valid when C is positive definite and F' has full rank. In the case
where C(s, s), s € D, is constant, the predictor (1.2.4) can also be written in terms of
the variances of increments 2v(s,t) = Var(Z(s)— Z(t), s,t € D, by using the relation

2v(s,t) = C(s,s) + C(t,t) — 2C(s, t).

The predictor (1.2.4) is obtained by minimizing the m.s.p.e. under the unbiasedness
condition (1.2.1) using Lagrange multipliers, see e.g. Cressie (1991, p. 154). . The
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unbiasedness condition here takes the form (A1,...,A\)F* = f(sg). Another way to
arrive at the predictor (1.2.4) is to consider (Z(sp), Z4.:) as Gaussian distributed

(Z(50), Zdat) ~ N(ﬁ(f(so)t, F), (C(SO{ o) é))

c

Then (1.2.5) is the maximum likelihood estimate of &, and by substitution of 3 with
3 in the conditional expectation of Z(sg) given Z,4, the predictor (1.2.4) is obtained.
This approach did of course not 4 priori guarantee to lead to the optimal linear predictor.

If only the variances of increments exist we must demand that .- ; A; = 1 in order
that E(Z(so) — Y11 AiZ(si))? is well defined. Minimizing the mean square prediction
error under this constraint on the weights A; and the unbiasedness condition (1.2.1) gives

(1.2.6) 2(s0) = B (s0)" + (Zaat - BF)r-1yt
where F' is as before, I' = (v(s;, 55))i j=1,...n» ¥ = (¥(50, 81))i=1,...,n and
B = Zgo ' FHFT R

Also in this case, Lagrange multipliers can be used for the minimization, c.f. Cressie
(1991, p. 152). Note that the constraint Y .- ; A; = 1 is implied by the unbiasedness
condition whenever one of the functions f;(-), i =1,...,q, is identically one. Normally
this is not a severe restriction.

Another way to model nonstationarity is by modelling Z as an IRF-k as defined
in the first section. In this case only linear predictors > i ,A;Z(s;) where A =
(=1, X, ..., Ay) satisfies (1.1.4) of Section 1 are available. The m.s.pe. may otherwise
not be well-defined. A linear predictor is thus found by minimizing the m.s.p.e under
the constraints

n
(1.2.7) D O Aisf s =5 s
i=1
7
for every (a1,...,aq) € N¢: >~ a; < k. Under these constraints the mean square

1=1
prediction error is well-defined and given in terms of the generalized covariance K ().
Note, that (1.2.7) does not guarantee unbiasedness. Assuming that K(-) is known, that
X is of maximal rank, and that K is invertible, the linear predictor is given by

(1.2.8) 2(s0) = Ba' + (Zaae - BX) KK

(c.f. Delfiner, 1976), where z = (¢! - - '533)(a1,...,ad)eNg:a.5k =(80y,---, 80 """ 500y slgd),
K = (K(s4,85)ij=1,.n), k= (K(so, $i)i=1,..n), X is given by (1.1.5) and

B=Z, K ' X(XK1X)™,
If Z is of the form

Z(s) = Bf(s)" +6(s)
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where f(s) is a vector of mononomials of degree less than & in the coordinates of s
(e. fi(s) =s7¥ - 555, Zf=1 aij <k, j=1,...¢9) and 6(-) is a IRF-k where the
mean exists and is zero, then the constraints (1.2.7) entails unbiasedness.

Prediction using the predictors (1.2.4) and (1.2.6) is termed universal kriging,
whereas prediction using (1.2.8) is called IRF-kriging.

1.3 Comparison of universal kriging and IRF kriging

If we consider an IRF-k Z where Z can be represented as
(1.3.1) Z(s) = p(s) + 6(s)

where () is a deterministic trend and é(s) is a zero-mean second order process then Z
posses both a generalized covariance K'(-) and an ordinary covariance function C(,-).
These to functions are related by

Var (; /\iZ(si)) = Z Z AN C (84, 85) = Z Z MK (s — s55)

i=1 j=1 i=1 j=1

forall A = (A1,..., Ap) satisfying (1.1.4). In other words, with X again given by (1.1.5),
L = span{rows of X), and P the projection on L', then C = (C(s;, s)); j=1,...n and
K = (K(s4,55))i,j=1,..,n are related by

PCP = PKP

Christensen (1990) considers the model (1.3.1) where u(s) is given by Bf(s)! where
f(s) is a polynomial in the coordinates of s. He shows that the predictors obtained
by universal kriging and IRF-kriging are equivalent. Christensen (1990) argues that
the crucial point concerning the hypothesis that Z is an IRF is that it allows for a
nonstationary covariance, while it is not so important that it allows for nonexistence
of the covariance. His argument follows these lines: observable random variables
are bounded because our ability to observe them is bounded. The variances of an
observable process therefore exist. This argument does not take into account the
possibility of considering some observations as censored by the observation method.
Christensen (1990) does not assume that the trend model includes all mononomials of
order less or equal than k. This is a mistake because then the unbiasedness condition
AX = f(so) does not imply the conditions (1.2.7) which are necessary in order that
n

Var| Z(so) — >_ AiZ(s;) ) is given in terms of the generalized covariance K, so that
=1

the IRF—predictzar can be obtained.

Sofar we have assumed that either C(-,-), y(-,-) or K(-) is known. In practice,
when applying universal kriging or IRF-kriging, these functions are unknown and must
be replaced by suitable estimates. In order to be able to estimate C(-,-) or (-, -) from
a single outcome of Z it is in most cases necessary to make the simplifying assump-
tions that the fluctuation process §(-) is either second order stationary or intrinsically
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stationary. Recalling the result of Christensen (1990) it seems, that the real difference
between universal kriging and IRF-kriging appears when the covariance, variance of in-
crements or the generalized covariance of the fluctuation process 6(-) is to be modelled.
Therefore IRF-kriging, where it is only necessary to assume second order stationarity
of certain generalized increments may seem more generally applicable than universal
kriging. On the other hand universal kriging offers a larger class of trend models than
the polynomial models which one has in mind when applying IRF-kriging.

1.4 Estimation of the fluctation process

Assume that the fluctuation process ¢ from Section 1.3 is either second order
or intrinsically stationary. One particular problem concerning the estimation of the
covariogram C(-) or variogram 2+(-) are biased estimators, where the bias is caused by
the presence of the nonstationary mean. Armstrong (1984) remarks, that this is the case
when one applies the empirical estimators of the variogram or the covariogram given by

50 = O (2069 = Bi(ss) = ()~ Bi(sy))

N(R) (i,7)EN(h)
. and
o0 =xm, 2 (260 - Bs(s0)) (2059) - BF(s5))

where N(h) = {(4,]) :|| si — s; ||= h} and B is some initial estimate of 3. Delfiner
(1976) also mentions this problem. Unfortunately none of these two references mentions
how the initial estimator ﬂ is obtained (if a bad 3 is chosen, it does not seem surprising
that the empirical estimators will be biased). If a parametric model for the covariogram
has been chosen, i.e.

C()=C(50)

where 6 is some unknown parameter, maximum likelihood estimation under the as-
sumption of Gaussianity could be tried, but also in this case the resulting estimates
tends to be biased (Cressie, 1991, p. 92)

A way to deal with the biasedness problems is to base inference on contrasts AZ ..
Here A is a vector such that

E()‘Zg!at) =0

that is A € span(rows of F)* with F' as in Section 1.2. Under the assumption that Z
is Gaussian such that

Zaat ~ N(BF, C(0))

where C(0) = (C(si,55;0))i,j=1,...n, then restricted maximum likelihood estimation
(REML) is performed by maximum likelihood estimation of # based on the transformed



data

Yaar = (M Zhats - -1 An—qZhar)

where MZ!,,...,\—gZ5, are linearly independent error contrasts, that is
Al,-..,Aqn—q are linearly independent vectors in R"™, and ¢ = rank(F). If we
denote by A the matrix with rows Ay,..., A,_4 then the distribution of Y is Gaussian

Yot ~ N(0,AC(8)AY)

and does not depend on 3, and we can hope to obtain less biased results from the
maximum likelihood estimation based on the data Yy,;. The idea of REML bears
resemblance to that of IRF kriging in that we in both cases consider linear combinations
of the data where a nonstationary mean is filtered out.

Another estimation method based on contrasts is minimum norm quadratic (MINQ)
estimation as described in Stein (1987). This method demands that the semivariogram
is of the form

k
v() = Z 0ivi (")
i=1

where the +.s are semivariograms and 6 = (01,...,0k).

Typically when applying IRF-kriging polynomial models are used for the general-
ized covariance and in this case the coefficients of the polynomium can be determined
by minimizing an weighted sum of squares corresponding to a set of regression equa-
tions, see Delfiner (1976). Alternatively one can assume that the generalized increments
are Gaussian and then perform maximum likelihood estimation.



2 Validity of models for the variogram
and the covariogram

In most practical applications of models based on the stochastic processes defined
in the first chapter we have to model the covariogram C(-), the variogram 2v(-) or the
generalized covariance K (-) by some parametric function. In this chapter different
criteria for a given function to be a valid covariogram or semivariogram will be
considered.

2.1 Valid covariograms and semivariograms

First of all it is of course necessary to define what is meant by a valid covariogram
or variogram model. The following definitions are reasonable as will be shown
subsequently.

V1 C: R? — R is a valid covariogram if C(-) is symmetric and nonnegative definite.
V2 v : R% — R is a valid semivariogram if ¥(0) = 0, v is symmetric and —~(-) is
conditionally nonnegative definite.

That C(-) is nonnegative definite means that for every n € N, s1,...,s, € R,
and (a1,...,0,) € R™,

n n
(2.1.1) > aia;C(si —5;) >0
i=1 j=1
and —v(-) is conditionally nonnegative definite if for every n € N, s1,...,s, € R?,
and (a3,...,a,) € R™ with >°7" , a; = 0,
(2.1.2) =3 aiajy(si — s5) > 0
i=1 j=1

The definitions V1 and V2 entails nonnegative prediction variances when a valid
covariogram or variogram model is used for linear prediction as described in Chapter 1.

The definitions V1 and V2 will now be justified. We consider first V1. V1 is a
natural definition of validity because the following two conditions are equivalent:

a) C(-) is the covariogram of some second order stationary process Z = {Z(s) : s € D}.
b) C(-) is symmetric and nonnegative definite.

That a) implies b) follows because given n € N, s1,...,s, € R%, and (a1,...,a,) €
R"™, we have

0< Var (Z aiZ(si)> = Z Z a;a;C(s; — s;5)

i=1 i=1 j=1



and it is clear that C(-) is symmetric. To show that b) implies a) we simply construct
a Gaussian process with C(-) as its covariogram. For every si,...,s, € R?% we
let 3,5, = (C(8i — 8j))ij=1,.m and Xy, . 1is then a nonnegative definite and
symmetric matrix to which there corresponds a n-dimensional Gaussian distribution
N(0,%s,, . s.). The set of distributions obtained by varying n and si,...,s, is a
consistent set of distributions and by Kolmogorovs consistency theorem there exists a
stochastic process Z on R? with these Gaussian distributions as the finite-dimensional
distributions. Z is second order stationary, and the covariogram of Z is of course C(-).

If we assume that C(-) is also continuous we can also show that b) implies a) in
another way. Bochners theorem (see the Appendix) states that for C(-) symmetric and
continuous, nonnegative definiteness of C(-) is equivalent to:

(2.1.3) Vte R%: C(t) = / cos(t e s)dF(s)
Re
where F(-) is some positive and bounded measure on R?. That is, C(-) is the Fourier-

transform of F'(-) (the spectral measure).
Assume that C(0) > 0. Then, with ® ~ R([0,27]) and Q ~ F/C(0), Y given by

Y(s) =v2cos(®+Qes),

is a second order stationary process with covariogram C(-) (see the section on the
spectral method in Chapter 3). Here e denotes the usual inner product in R™

The definition V2 can be justified in a similar way because we have equivalence
of the following two statements:

c) 2v(-) is the variogram of an intrinsically stationary stochastic process Z.
d) 2(0) = 0, 27(-) is symmetric and —2+(-) is conditionally nonnegative definite.

That c) implies 2v(0) = 0 and symmetry of 2-y(-) i follows because 2v(%) is the variance
of the increments Z(s + h) — Z(s) of Z for h € R™. From Section 1 of Chapter 1 we
have that the process Z is an IRF-0, and for

Y(S) = Z aiZ(Si + 8)

=1
where > 1, a; = 0, the variance of Y(s), sinD is
Var(Y(s)) = - Z Z aiaj'y(s,- = Sj),
i=1 j=1

so that —2+(-) is conditionally nonnegative definite.
To show that d) implies c), let for some fixed but arbitrary sy € R%, the function
C(-,-) be given by

C(s,t) =v(s — s0) + ¥(t — s0) — ¥(s — 1)

9



Then C(:,-) is nonnegative definite: With (a1,...,a,) € R", s1,...,s, € R?% and

0 — _Z:}lzl g,
SN aia;C(si,55) = Zzazay(v(sz — s0) +¥(s5 — s0) — ¥(si — 5)) =

=1 j=1 i=1 j=1
n n
Z Zaiaj(’y(si —50) +7(sj — s0) — ¥(si — §5)) Z Z aia;(v(si —s5)) >0
i=0 j=0 =0 j=0

As before there exists some Gaussian process Z with covariance function given by
C(-,-). The variance of Z(s + h) — Z(s) is easily seen to be 2v(h) so that Z is
intrinsically stationary with variogram 2(:).

2.2 Criteria of validity

The definitions V1-V2 are usually not very operational, as may be difficult in
a direct way from the definitions to decide whether some function is nonnegative
definite or conditionally nonnegative definite. In the next paragraphs different criteria for
nonnegative definiteness or conditionally nonnegative definiteness of a given function
will be described.

We consider first some criteria of validity which can be applied for functions
proposed as covariograms.

First criteria of validity (Bochners theorem) According to Bochners theorem we
have for C(-) real and continuous, that C(-) is nonnegative definite if and only if
C(-) has the representation (2.1.3). If the spectral measure F'(-) has a density f(-) then

f(-) is given by

ft) = (—2#/005 (s 8 t)C(s)ds

Rn

We can thus try to calculate f(-). If f(-) is nonnegative and integrable it follows that
C(-) is a valid covariogram.

The following criteria is sufficient but not necessary for C(-) to be a valid covar-
iogram.

Second criteria of validity This criteria of validity is due to Christakos (1984). A
wide class of isotropic covariance models on R can be expressed as

(2.2.4) C(r)=c / wH (7 /u)dP(u)

10



where

Hr ) = B(#, %) /1 (1 - )2,

B(:,-) is the beta function and P(-) is a positive measure (see Matérn, 1960). The
second criteria of validity is obtained by assuming that P is absolutely continuous with
respect to the Lebesgue measure, solving (2.2.4) with respect to dP/du, and finding the
solutions for which dP/du > 0. We then get the following results for d < 3:

C(-) is a valid covariogram if

d=1:C"(") >0

d=2:

cO
Vr >0: /u(u2 - r2)_%dC"(u) >0

Vr>0: C'"(r)—=rC"(r) >0

I will only show the result in the case d = 1:
We let f = dP/du. Then

Clr) = c]ouf(u) /1 dvdu = c]ouf(u)(l —r/u)du
r riu r

:c(/uf(u)du—T/f(lL)dU) = c([F(w)]° — 7[Fa(w)],°)

i) r

= C"(r) = cf(r)

as the derivatives of F1(r) and Fy(r) are 7 f(r) and f(r), respectively. That is, f(r) =
C"(r)/c s a solution to (2.2.4). The constant c is positive, so C(-) is a valid covariogram
when C"(u) > 0 Yu > 0.

If we wish to apply the second criteria of validity a necessary condition is that
C'(0) < 0.
We get this from (2.2.4) as follows (d = 1):

o0

C'(0) = }i_l%c (/ uH(r/u)dP(u) — /uH(O)dP(u)) /T =
0

r

i1



Jim ¢ ( / Y (H(r/u) ~ H(O)dP(w) - / §H(o)dp(u))

T 0

The integral

! ;H(O dP(u)

is positive and since H(r/u) — H(0) = —2 fT/“ dv = —2r/u

c}i_%/ %(H(r/u) — H(0))dP(u) = —2c/dP(u) <0
0

It thus follows that C'(0) < 0.

Third criteria of validity (Schonberg, 1938)) This criteria can be applied for func-
tions C : RY — R with C(s) = C%||s||) Vs € R? (i.e. isotropic functions). It then
holds (Schonberg, 1938) that C(-) is nonnegative definite Vn = 1,2, ... if and only if
C%(|| - ) is completely monotone. A function f : R — R is completely monotone if

f(0) = f(0+) and (-1)"f"(¢) > 0for0 <t <ooand n =0,1,2,....

The first, second and third criterion of validity can also be applied to functions
proposed as variogram models for second order stationary processes because in this
case the variogram 2v(-) is related to the covariogram C(-) by 2y(h) = C(0) — C(h).
The fourth criterion can be applied to check the validity of a function as a variogram
for an intrinsically but not second order stationary process.

Fourth criterion of validity The fourth criterion of validity is based on an analogue of
Bochners theorem. According to Matheron (1973) we have for v : R — R continuous
and symmetric that v(-) is nonnegative definite if and only if

(2.2.5) VseR: 7y(s) = / s cof (g} *s)
T T

where G(-) is a nonnegatlve measure which is continuous at the origin and such

G(dw) + Ko(s)

that | (1 + ||w]| ) G(dw) < oo and Ky(-) is a conditionally nonnegative definite
polynomial of degree less or equal to four. Following Christakos (1984) we can also
derive some sufficient criteria from (2.2.5) for v(-) to be a valid variogram. These
sufficient criteria are:

a) v(-) has a spectral representation

v(s) = /cos (w e s)I'(w)dw
R<

12



where I'(-) < 0 and continuous at the origin.
b) lim 28 = o

||s||—oo lls]

Proof: By a) and b) it follows that with e an unit vector in R? and » > 0 sufficiently
large:

v(eh) = /cos (w e eh)["(w)dw < ah?
RZ

for some @ > 0. The function f(h) = h? induces a measure on R which for ¢ < 0 has
the Laplacetransform 2/t?. Let e; be the vector in R¢ for which the ’th coordinate is
one, and all other coordinates are zero. Then with w; = w e ¢;,

thd (“/ cos (e ® wh)l' /et L/ sin (hw;)w;T )dw) dh =
. 0

- / w;T(w) / sin (hwi)ethdh) dw = — / ﬁ;—gf‘(w)dw

R< 0 R4

where the first and second equality follows by Tonelli-Fubinis theorem. Summing over
all 2 = 1,...,n we get

2t2
Z / 7 F(w)dw < ad2/t* = /Z v +w —I'(w))dw < 2ad =
i=1 R =
[ —lwlirwyio < 200 < oo
R4

(By letting ¢ — —oo and monotone convergence theorem). We can now write
9(h) = (1= cos (w e )(-Tw))dw — [ (~Tw))dw
R¢ R4

Since y(0) = 0 the last integral is zero and hence

o) = [ L2220 () i

AT

It follows that (:) is of the form (2.2.5) so that ~(-) is a valid variogram. O
The condition b) is in fact necessary (Matheron, 1973, Section 2.2).

13



2.3 Construction of isotropic covariogram and variogram models

From the first criteria of validity it is clear that any Fourier-transform of a positive
bounded measure will yield a valid continuous covariogram. Similarly, any function
7(-) obtained from the expression (2.2.5) is a valid variogram. We can e.g. consider
the isotropic covariogram C(-) obtained as the characteristic function of Ny(0,1):

VheRY: C(h) = /exp (ih o w)exp (~|uwl[*/2) dw = exp (1] /2)
R4
Every covariogram obtained from an isotropic spectral distribution is isotropic. This is
easily seen because if G(-) is isotropic then for every orthogonal matrix A

C(h) = /cos (w e h)G(dw) = /cos (wA o RA)G(dwA) =
R4 R
/ cos (hA » v)G(dv) = C(hA)

Rd

Another way to construct an isotropic covariogram on R? is by considering a
covariogram C1(-) on R and then let

C(h) = E(C1(h « ©))

where © is a stochastic vector uniformly distributed on the unit sphere. The function
C(:) is then the covariogram of some stochastic process on R? and is given by the
formula

I ()

1
/Cl(vr) (1- v2)(d_3)/2dv
T (41)

-1

(see the section on the turning bands method in Chapter 3). The covariogram C1(-)
also has a spectral representation

(2.2.6) Ci(r) = /cos (rs)F(ds)
0

By combining these formulae and using a series-expansion of cos and a look-up in a
table of integrals, we obtain that C(-) can be written in the form

(2.2.7) C(r) =2427'1(d/2) / (s7)' "2 J4j5_1 (rs)F(ds)
0

where Jy/9_1(-) is the Bessel function of the first kind of order d/2 — 1. This is the
spectral representation of an isotropic covariogram because the Fourier-transform of an

14



isotropic covariogram is a Hankel-transform. We thus see that for every covariogram
Ci(-) there corresponds a covariogram C(-) on RY, and on the other hand: for
every isotropic and continuous covariogram C(-) on R¢ there corresponds a uniquely
determined covariogram C;(-) given as the Fourier-transform of the spectral measure
F(:) related to C(-) through (2.2.7).

15



3 Simulation of Gaussian random fields

Simulation of a stochastic process (random field) can be useful for many purposes.
One application is model identification where comparisons between the actual data
and simulated realizations of a proposed model may help to choose a suitable model.
Another important application is Monte Carlo estimation of properties concerning a
stochastic process when these properties can not be evaluated analytically.

In this chapter different methods for simulation of a second order Gaussian random
field Z = {Z(s) : s € D}, D C R? will be considered. In practice D is bounded

and will be approximated by a finite set of sites s1,...,s, € D, where these sites
could e.g. constitute a rectangular grid. We then wish to simulate the random vector
(Z(s1),-- -, Z(sn)) which has a muitidimensional Gaussian distribution N,,(u, ©) where

2 = (C(si — 84))ij=1,..n and C(-) is the covariogram of Z. If n is small, methods
based on the Cholesky decomposition of ¥ can be applied, but such methods are
computationally prohibitive when n is large. In the following I will describe four
methods which can be applied for large n. In all cases we assume that p = 0.

3.1 The spectral method

This method can be applied when C(-) is continuous and C(0) > 0 (C(0) is of
course always different from zero in cases of interest). Then C(-) has the spectral
representation (2.1.3) and the normed spectral measure F'(-)/C(0) is a probability
distribution. With Q ~ F(-)/C(0) and ® ~ R([0, 27[) independent, the random field

(3.1.1) Y(s) =/2C(0)cos(Qes+®), s€ D
has C(-) as its covariogram.
Proof:

¢(t) = E(cos (2 e s+ @)|Q =t) = E(cos (s o t + ®)) = E(cos (?)) =0
so
B(cos (o s+ 8)) = E(B(cos (2w 5 + #)|9)) = B($() = 0
and hence,
B(Y ()Y (s + 1)) = 2C(0)E(cos (2 » s + ) cos (e (5 + h) + B)) =
| 20(0)15(%@05(—9 e h)+0os(2(Qes+ D)+ e h))) _
C(0)E(cos (—2 o h))+C(0)E(cos (2(2 @ s + @) + Q o h)) = C(0)E(cos (— @ h)) = C(h)

where we have used (2.1.3) in the last identity. O
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If we average a sample Y7,...,Y,, of independent realizations of Y then by the
central limit theorem the resulting stochastic process

1 n
7'===3"Y
Vi

has a distribution which is approximately Gaussian, and Z’ has the covariogram C(-).
Example: For the exponential covariogram C(h) = C(0) exp(—||h||/a), a > 0, the
spectral density is given by

C(0)a®
() = — 208
71'2(1 + a2||s]| )
which is the density of a Cauchy-distribution (Lantuéjoul, 1994).

s € R?

3.2 The turning bands method

The turning bands method (Matheron, 1973) can be applied for simulation of an
isotropic Gaussian random field by simulating anothe stochastic process on a one
dimensional domain. The random field is isotropid if C(k) = CO(||r|), ~ € R%
Let C1 : R — R be the covariance function determined by

O(r =———F(%) 1C vr)(l—w

As stated in Section 3 of Chapter 2, (3.2.1) is the general form of an isotropic continuous
covariance function on R? so the covariance function Cj(-) corresponding to co(4)
always exists and is given by (2.2.6) where F is the measure related C% by (2.2.7).
If Y1 is a zero-mean second order stationary process on R with C1(-) as covariance
function and if © = (6y,...,0,) is uniformly distributed on the unit sphere in R? and
independent of Y3, then the stochastic process Y given by

(3.2.1) e, 2)@=9/2 4,

Y(s) =Y1(Oe5)

is a zero-mean second order stationary process with C'(-) as its covariance function.
Proof: Note first that

E(Y(s)) = E(E(Y1(Oes)|©)) =0
Let further e; = (1,0,...,0) € R%. Then

E(Y(s)Y(s+h)) = E(E(Y1(© #5)Y1(O e (s+ 1)) |©)) =

B(C1(O b)) =E(01 (e- WZﬂnhu)) — E(C1(||H]]© o 1)) = B(C1(@nI1]])) =

=22 (1 = o)V 20, o Rl dv = CO(|JR]).

bl—\\,__,
=
—
3=
s
-
~—
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The fourth equality is due to the rotation invariance of the distribution of ©, and the
second last equality holds because the density of ©; is

I'(4)

v

(1-o2)4Y2 1<

O

As for the spectral method we have to average independent realizations of Y in
order to obtain a simulation of a stochastic process which is (approximately) Gaussian
and has the covariogram C(-).

Practical experience (Lantuéjoul, 1994) shows that averaging a sample of ¥ cor-
responding to a fixed set of regularly dispersed directions in R? is more efficient than
averaging over the same number of randomly chosen directions.

For d = 3, Cy(-) is easy to find and it is given by

Cr(r) = r-0%r)

The simulation of Y¥; may e.g. be performed by the spectral method or the dilution
method but other alternatives exist (see Lantuéjoul, 1994).

3.3 The dilution method

The dilution method can be applied if the covariogram is of the form

(33.1) C(h) = A / o(2)g(z + h)dz
Rd

for some real function g and a constant A > 0. Let

(3.3.2) Y(s)= Z e(u)g(z — u)
ued

where ® is a homogenuous Poisson point process in R® with intensity A and ¢ =
(€s)scrd is a second order stochastic process where the €. s are iid with zero mean and
variance equal to one. Then Y is a zero-mean stochastic process with covariogram C'(-).
Proof: The mean of Y is zero because ¢ is zero-mean, and

EY(s)Y(s+h)=FE (E ( Z e(u)e(v)g(s —w)g(s+h—u)|® | | =

u€d, ved

E(Zg(s—u)g(s+h—u)) = /g(s—u)g(s—l—h—u)du:A/g(v)g(v+h)dv
Rd

ued R

The second last equality follows by Slivnyaks theorem (see e.g. Stoyan et al., 1987, p.
50). O
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To obtain a sample which is approximately Gaussian we again have to average
independent realizations of Y.

A similar approach is described in Ripley (1987). Ripley (1987) considers a
stochastic process X on R, given as a stochastic integral

(3.33) X(s) = / 4z - )W (1)

where W is a standard Wiener-process. By Yaglom (1960, p.451-453) any second
order stationary process to which there corresponds a spectral density f(-) can be
represented in this way where g(-) is the Fouriertransform of any function A(-) satisfying
|R(A)|?2 = f(A). The stochastic integral (3.3.3) is well-defined as the limit in mean
square

n—1
2N 2N
3. = 1i li — P P
(3.3.4) X(s) = lim lim E g(s N+ ~ >\/ €5 s €R,

3=0

where (¢;) j=1,..n 18 @ sequence of independent standard Gaussian random variables

(see Adler, 1981, p. 28). Using (3.3.4) and the Cauchy-Schwarz inequality it follows
that the covariance function of X is given by

C(h) = / o(z +R)g(x)dz, heR.
R
An approximate simulation of X is obtained using (3.3.4). That is,

e N\ [2N
(3.3.4) X(s) ~ Zg(s— N+j—n—)\/76j

§=0
for large N and n.
For the exponential covariogram g(-) is given by

g(z) = ﬁexp (—%> %

while for the spherical covariogram

3lp 1 |h|3
— — — <
C(h) = (1 5 + e 1(|h| a), a>0,

g(-) is given by

9(s) = $1{js]<a)
(see Lantuéjoul, 1994)
It is in practice preferable that g has a bounded support so that (3.3.2) can be
approximated by a finite sum (and the approximation (3.3.4) works well). Therefore

the dilution method is not recommendable for an exponential covariogram while it may
be suitable for the spherical covariogram.
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3.4 Comparison of the spectral method, the turning
bands method and the dilution method

The use of the dilution method is restricted by the assumption that the covariance
is of the form (3.3.1), where it is in practice required that ¢ has a bounded support. In
contrary, the spectral method is quite general requiring only that the covariance function
is continuous. The turning bands method seems less general requiring also isotropy, but
a version of the turning bands method for nonisotropic covariograms has been developed
(Mantouglou & Wilson, 1982). We can rewrite Y (s) from (3.1.1) as

Y(s)=X(Oes)
where
X(t) = \/2C(0) cos (Rt + P)

and (R, ©) is the polar coordinates of 2. An advantage of the turning bands method
compared to the spectral method is that Y3 can be chosen to be ergodic, while X is in
general not ergodic. In Mantouglou & Wilson (1982) it is demonstrated, that the turning
bands method is as accurate but less computationally expensive than the spectral method.

For the three methods mentioned an important question is how big samples should
be averaged in order to approximate well enough the Gaussianity of the process subject
for simulation. Attemps to answer this question via the Berry-Esseén theorem has been
described in Lantuéjoul (1994), but the sample sizes needed according to these results
are much bigger than practical experience suggests. A minimum sample size is 15
(Lantuéjoul, 1994).

3.5 Sequential simulation

A sequential simulation of a random vector Z = (Z1,...,2Zy,) = (Z(s1),... Z(sn)
can be performed by initially simulating a value z; of Z;, then simulate a value of Z
from the conditional distribution of Z; given Z; = z; and soforth ending by simulation
of Z, given Z1 = 21,...,Zpn-1 = Zp—1-

When Z is Gaussian the conditional distributions are also Gaussian and the con-
ditional expectations and variances can be calculated. When n is large however, ap-
proximations are called for in order to reduce the cost of computing the parameters
in the conditional distributions. This can be done by reducing the number of con-
ditioning values, that is, approximate the conditional density f(z; | 21,...,2i—1) by
f(z | zj, j € A) where A is a subset of {z1,...2—1}. One way to choose A is
(Gomez-Hernandéz & Cassigara, 1994) to define an upper limit NV, for the cardinality
of A and then choose A to be the (up to) N, members of {21, .. .21} corresponding to
sites closest to s; in some sense. Often the distance is measured by the variogram. Due
to the approximation applied it its preferable to choose the order in which Z1,..., 7,
are simulated in a random way.
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The search for the conditioning values can be quite expensive on a large grid
and Gémez-Herndndez & Cassigara (1994) therefore proposes that this search is only
performed within a search neighbourhood around the site where simulation is to be
performed. This means that even if more than N, values have been simulated we
sometimes condition on less than N values hoping that values outside the search
neighbourhood does not affect the conditional distribution of the actual random variable
much. The size of the search neigbourhood can e.g. be determined by the range of
the variogram.

Zonal anisotropy is said to occur when the range of the variogram is infinite in
some direction. Then the search neighbourhood is as large as the grid (si,...,s,) in
that direction and computational problems persist. A way to deal with such a problem
is a multigrid approach where simulation is first performed on a coarse grid defined by
a subset of (s1,...,5s,) such that a large search neighbourhood contains a reasonable
number of sites to be inspected in the coarse grid. Subsequently values corresponding
to the rest of the sites is to be simulated and hopefully we can now on the coarse grid
find V. conditioning values not very far away from the actual site. Of course a larger
number of grids of decreasing coarseness may be used.

The screening sequential algorithm (SSA) In Omre, Sglna & Tjelmeland (1992) A
is chosen in a different way and thereby the screening sequential simulation algorithm
is obtained. The set A is chosen in a way inspired by a certain Markov property
called the pseudo-Markov property (Adler, 1981). A short description of this Markov
property will be given. Consider X a stochastic process on R¢ and an infinitely often
differentiable closed surface D which divides R? into a bounded part D~ and an
unbounded part D*. The surface measure on 8D is denoted do and ¢ is the unit normal
vector to 8D at the point ¢ € dD. For every function f with supp(f) C 8D compact
and [ |f(t)]%dt < co we define
oD

F(h) = / FOX (¢ +hi)do(t), he R
oD

and

51 =0 (F'(0) : f as above)
A o-algebra ¥ is called a splitting field for 0D if the conditional independence property

D(X(t):te D™, X(t):te DV |%) =
D(X(t):te D™ | D)D(X(t): t € DT | %)

holds. If F'(-) is continuous at zero then X is pseudo-Markovian of order 1 if the
minimal splitting field of D is ;. Inspired by this Markov property Omre, S¢lna &
Tjelmeland (1992) propose the following algorithm:

1) Define a set of directions
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2) Simulate the values of the border of the grid
3) Repeat until a simulated value for every site in the grid is obtained:

Choose a site inside the grid (e.g via some halfing procedure).
Simulate a value from the conditional distribution, where the
conditioning is on the two closest values on each side of the actual
site in each of the specified directions.

The conditioning is on the two closest values because these values determine a difference
quotient on each side of the actual site (with respect to each of the specified directions).

Evaluation of the sequential algorithms The screening sequential algorithms can
not be justified by theoretical considerations and it must therefore be evaluated in an
empirical manner. This also holds for the algorithms resulting from the approximations
suggested by Gémez-Herndndez & Cassigara (1994). The algorithms can be evaluated
by estimating the finite-dimensional distributions from simulations obtained by the
algorithms and then compare these estimated distributions with the true distributions.
A less ambitious approach is to estimate only the mean, variogram, and univariate
distribution from the simulations. The variogram is well reproduced from simulations
obtained by the SSA and the simulation-algorithms proposed by Gémez-Hernédndez
& Cassigara (1994) when attemps to simulate processes with exponential or doubly
exponential variograms are made. This is not the case for the spherical variogram where
the estimates are seriously biased. In Omre, Sglna & Tjelmeland (1992) no attemps are
made to check the Gaussianity of the simulations while Gémez-Herndndez & Cassigara
(1994) asses the Gaussianity by considering histograms of the univariate distributions.

It is expected that the approximations to the sequential simulation method work well
for the exponential and double-exponential variograms since second order stationary
processes with these variograms posses certain Markov properties (G6mez-Hernandéz
& Cassigara, 1994).

If the simulations are Gaussian (which is not well justified) the sequential simulation
approaches proposed by Gémez-Hernindez & Cassigara (1994) and Omre, Sglna &
Tjelmeland (1992) has the advantage, compared to the three other simulation methods
described in this chapter, that no averaging over independent samples is needed in
order to obtain Gaussianity. On the other hand the approximations to the sequential
simulation method which are proposed may only be suitable for simulation of processes
with exponential or double exponential variograms.
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Appendix Bochners theorem and the spectral
representation of stationary processes

In this appendix a proof of Bochners theorem (Bochner, 1933) will be given in the
onedimensional case. We state the theorem once more:

Theorem A continuous function C' : R® — C is non-negative definite if and only
if it has the representation

Al Ve RY: O(f) = / exp (it « NAF(\)
Rn

where F'(-) is a bounded and positive measure.

Proof: (n = 1) The proof is due to Cramér (see Cramér & Leadbetter, 1967).

We consider first the “if’-part. Let (ay,...,a,,) be an arbitrary vector in C™ not
equal to zero. Then

ZZ a;a;C(t; —

where g;(\) = exp(it;A) and || - || denotes Ly(F') norm.
If on the other hand C(-) is nonnegative definite and continuous it follows for
every function f(-) continuous on ]a, b| that

//C(t—u )f () f(t)dtdu > 0

Then in particular for every 7' > 0 and A € R,

) T T
- _ —'l,/\ (t—u) >
5T / / C(t dtdu > 0
0 0

By a change of variable z = ¢t — u we obtain

g\ T) = % /T ( ';')C( Je Nz = % 7h(%)0(z)e‘iz>‘dz

-T —c0o

where

h(x)={1—lxl lz] <1

0 otherwise
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We now want to show that g(A,T) is integrable over R. Let M > 0, then we get

7 h(ﬁ)gu, T)d\ = -21? i h(%) C(t) /Oo h (ﬁi) e‘it)‘d)\) dt =

—00

L 711(.12) c<t)<SintMt)2dt < o) 7 <§?—t)2dt 0

—00

By letting M — oo we get by the monotone convergence theorem that

(o9}

/ (A, TYdA < C(0)

-0

The functions g(-,T) and h(t/T)C(t) are both integrable and g(-,T) is the Fourier-
transform of h(t/T)C(t). By the inversion theorem for Fourier transforms

h (%) C(t) = /0’0 g\, T)etdA

—00

and fort = 0

C(0) = / (A, TYdA

such that h(|t|/T)C(t)/C(0) is the characteristic function of the density g(-,T)/C(0). If
we let T' — oo then h(t/T)C(t)/C(0) — C(t)/C(0) which is continuous as a function
of ¢. It follows that C(¢) /C(0) is the characteristic function of some distribution function
F(-) and the theorem is proved. O
In analogy with the spectral representation of the covariance function given by
Bochners theorem the second-order stationary processes themselves have a spectral
representation which is fundamental to the study of such processes. This spectral
representation is given by the following theorem (see e.g. Adler, 1981).

Theorem For every zero-mean, second order stationary process (X (¢));cr» which is
mean square continuous there exists a stochastic process (Z(t));cr» With orthogonal
increments such that

A2 Ve R": X(£) % / exp (it @ \dZ(})
Rn
Setting Z(—o0,...,—00) = 0 then Z is uniquely determined and
A3 B(Z) =0, B(1ZW*) = F(, E(1Z(D]") = P(1)
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where [ is any interval in R™ and F(.) is the spectral distribution function determined
by Al where F((—o0,...,—00)) = 0.

For an interval I =]a1,b1] X - - X]an, by], Z(I) is given by Z(I) = Z(b1,...,b,) —
(Z(a1,b2,...,bn)+ - +Z(b1,...,bp—1,an))+ - -+(—=1)"Z(ay,...,a,). The stochastic
process Z then has orthogonal increments if for all disjoint intervals I; and I in R",

E(Z(II)TIQ)) =0

The integral on the right hand side of A2 is a mean-square integral (see e.g. Adler,
1981, p. 28) which is welldefined because

/ loxp (it ® \)PdF(\) = / AF(\) < oo
Rn

Rn

Here only a brief survey of the proof of the theorem will be given. Only the case
n = 1 is considered. The full proof can be found in Cramér & Leadbetter (1967).
Let H(X) denote the Hilbert space spanned by X(¢),t € R. We now establish a
correspondence between H(X) and Lo(F). First for every ¢ € R we let X (¢) and
exp(4tA) be corresponding elements. By Bochners theorem inner products are preserved
by this correspondence as

E(X(t)m) = 7eit'\(ai_t/\dF(/\)

—00

This implies also that the correspondence is one-to-one (with respect to the distance
measures induced by the inner products on H(X) and Lo(F')). The correspondence is
now extended to all finite linear combinations of elements in H(X) and Lo (F') and limits
of sequences of such linear combinations and a one-to-one correspondence between the
whole of the two spaces is thus established. For every Ao € R there to the indicator
function 1(- < Ag) corresponds an element Z(\g) € H(X) and from the preservation
of inner products it follows that (Z(\)),er has orthogonal increments and that the
relations A3 hold. Finally, let {7, },>1 be an increasing sequence of positive numbers
such that 7, — oo asn — oo and let foreach n, —T, = A\ < Ag < -+ - < Ay 41 = Ty,
be a subdivision of the interval | — T;,, Ty [ such that sup;—; . |Aj41 — Aj| — oo as
n — oo. The stochastic variable

Y, = Zneit’\j (Z(Xj+1) — Z(Ny))
j=1

corresponds to the stepfunction

gn(A)z{eit/\j /\J<AS)\]+1]=17amn
0 otherwise
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and

o
gn(A) — € € Ly(F) and Y, — / e dZ()\) € H(X)
—oo
as n — oo (the last convergence in mean-square). Since ¢ corresponds to X (¢) and
the correspondence is one-to-one the theorem is proved L
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