Estimating functions for inhomogeneous spatial point processes with incomplete covariate data

Rasmus Waagepetersen Department of Mathematics Aalborg University Denmark

May 1, 2007

1/29

Data (Barro Colorado Island Forest Dynamics Plot)

Observation window: $S = [0, 1000] \times [0, 500] \text{m}^2$

Question: tree intensities related to elevation and gradient ?

Outline:

- estimation of log linear parameters for intensity function
- incomplete covariate data: deterministic approx. of score function
- Monte Carlo approx. of score
- distribution of parameter estimates
- numerical examples

Log-linear models for intensity function

 $z(u) = (z_1(u), \dots, z_p(u))$ vector of covariates for each location u in observation window W.

E.g. $z(u) = (1, z_{elev}(u), z_{grad}(u))$ for rain forest example

Log-linear model for intensity function:

$$\lambda(u;\beta) = \exp(z(u)\beta^{\mathsf{T}})$$

イロン スピン スピン スピン 一番

4 / 29

Poisson process case: log likelihood function and derivatives

x observation of **X** Poisson $(W, \lambda(\cdot; \beta))$.

Density wrt. unit rate Poisson process:

$$f(\mathbf{x};\beta) = \exp(|W| - \int_{W} \lambda(u;\beta) \mathrm{d}u) \prod_{u \in \mathbf{x}} \lambda(u;\beta)$$

log likelihood function:

$$I(\beta) = \sum_{u \in \mathbf{x}} z(u)\beta^{\mathsf{T}} - \int_{W} \lambda(u;\beta) \mathrm{d}u$$

Score function and Fisher information:

$$u(\beta) = \sum_{u \in \mathbf{x}} z(u) - \int_{W} z(u)\lambda(u;\beta) du \quad j(\beta) = \int_{W} z(u)^{\mathsf{T}} z(u)\lambda(u;\beta) du$$
$$\hat{\beta} \approx \mathcal{N}(\beta, V) \quad V = j(\beta)^{-1}$$

Case of second-order reweighted stationary point processes

Solution of

$$u(\beta) = \sum_{u \in \mathbf{x}} z(u) - \int_{W} z(u)\lambda(u;\beta) du = 0$$

yields asymptotically normal estimate of β for wide class of non-Poisson processes satisfying certain mixing conditions.

Examples: second order reweighted stationary Poisson cluster processes and log Gaussian Cox processes (Waagepetersen, 2007, Guan and Loh, 2007).

(second order reweighted stationary: translation invariant pair correlation function).

Missing covariate data

Elevation covariate

interpolated from elevation observations on grid.

However, evaluating

$$u(\beta) = \sum_{u \in \mathbf{x}} z(u) - \int_{W} z(u)\lambda(u;\beta) du$$

requires z(u) observed for any $u \in W$!

Approximations of log likelihood I

Suppose z(u) observed at finite set of locations $\mathbf{Q} \subset W$.

Rathbun (1996) approximate

$$\int_{W} z(u)\lambda(u;\beta) \mathrm{d}u \approx \int_{W} z(u)\overline{\lambda(u;\beta)} \mathrm{d}u$$

where $z(u)\lambda(u;\beta)$ unbiased prediction of $z(u)\lambda(u;\beta)$, $u \in W$ given z(u), $u \in \mathbf{Q}$.

Approximations of log likelihood I

Suppose z(u) observed at finite set of locations $\mathbf{Q} \subset W$.

Rathbun (1996) approximate

$$\int_{W} z(u)\lambda(u;\beta) \mathrm{d}u \approx \int_{W} z(u)\overline{\lambda(u;\beta)} \mathrm{d}u$$

where $z(u)\lambda(u;\beta)$ unbiased prediction of $z(u)\lambda(u;\beta)$, $u \in W$ given z(u), $u \in \mathbf{Q}$.

Riemann approximation:

$$\int_{W} z(u)\lambda(u;\beta) \mathrm{d}u \approx \sum_{u \in \mathbf{Q}} w(u)z(u)\lambda(u;\beta)$$

where w(u) quadrature weight for $u \in \mathbf{Q}$.

Approximations of log likelihood II: spatstat

Approximation of score function used in R package spatstat (Baddeley and Turner)

$$u(\beta) pprox u^{\mathsf{spat}}(\beta) = \sum_{u \in \mathbf{X}} z(u) - \sum_{u \in \mathbf{Q}} z(u)\lambda(u;\beta)w(u)$$

but now $\mathbf{Q} = \mathbf{X} \cup \mathbf{D}$ includes observed points in addition to 'dummy' points \mathbf{D} .

Two types of weights: grid or dirichlet

Quadrature schemes in spatstat

+	+	+	+
+	+	+	+
+ *	+	+ *	+
+	* * +	+	* * *

$$w(u) = \frac{|C_v|}{\#(\mathbf{X} \cap C_v) + 1}, \ u \in C_v$$

where $W = \bigcup_{v \in \mathbf{D}} C_v$

Dirichlet

w(u) area of *Dirichlet cell* for u in Dirichlet tesselation generated by **Q**.

spatstat: relation to generalized linear models and iterative weighted least squares

- Z: matrix with rows z(u), $u \in \mathbf{X} \cup \mathbf{D}$
- A: diagonal matrix with diagonal entries $w(u)\lambda(u;\beta)$, $u \in \mathbf{X} \cup \mathbf{D}$.

$$u^{\text{spat}}(\beta) = Z^{\mathsf{T}}(\mathbb{1}[u \in x] - w(u)\lambda(u;\beta))_{u \in \mathbf{X} \cup \mathbf{D}} = Z^{\mathsf{T}}Ay$$

where
$$y = A^{-1} (1[u \in x] - w(u)\lambda(u; \beta))_{u \in \mathbf{X} \cup \mathbf{D}}$$

Derivative

$$\frac{\mathrm{d}}{\mathrm{d}\beta}u^{\mathsf{spat}}(\beta) = Z^{\mathsf{T}}AZ$$

Newton-Raphson iterations

$$Z^{\mathsf{T}} \mathcal{A} Z(\beta^{m+1} - \beta^m) = Z^{\mathsf{T}} \mathcal{A} y$$

equivalent to iterative weighted least squares (Berman and Turner, 1992) - hence implementation straightforward using e.g. glm() in R.

Distribution of parameter estimates from approximate score functions

?

Problem: hard to obtain distribution of parameter estimates from approximate score functions

Monte Carlo approximation of integral

Consider *M* random uniform dummy points on *W* (binomial point process **D** of intensity M/|W|).

Rathbun et al. (2006): Monte Carlo approx. of integral:

$$u^{rath}(\beta) = \sum_{u \in \mathbf{X}} z(u) - \sum_{u \in \mathbf{D}} \frac{z(u)\lambda(u;\beta)}{M/|W|}$$

CLT for Monte Carlo approximation:

$$n^{1/2} \left[\sum_{u \in \mathbf{D}_n} \frac{f(u)}{n\rho} - \int_W f(u) \mathrm{d}u\right] \stackrel{d}{\to} N(0, G_f/\rho)$$

where

$$G_f = \int_W f(u)^{\mathsf{T}} f(u) \mathrm{d}u - \frac{1}{|W|} \int_W f(u)^{\mathsf{T}} \mathrm{d}u \int_W f(u) \mathrm{d}u.$$

Stratified dummy points

Alternative: one uniformly sampled dummy point in each cell (stratified dummy points)

+	+	+	+
+	÷	+	÷
+	+	+	+
+	+	+	+

Suppose covariates continuously differentiable. Then CLT

$$n^{1/2}\left[\sum_{u\in\mathbf{D}_n}rac{f(u)}{n^{1/2}
ho}-\int_W f(u)\mathrm{d}u
ight]\stackrel{d}{
ightarrow} N(0,G_f/
ho^2)$$

where $n^{1/2}\rho$ increasing intensity of dummy point process \mathbf{D}_n and

$$G_f = \frac{1}{12} \int_W A_f(u) du \quad A_f(u_1, u_2) = \left[\frac{\partial f_i}{\partial u_1} \frac{\partial f_j}{\partial u_1} + \frac{\partial f_i}{\partial u_2} \frac{\partial f_j}{\partial u_2} \right]$$

(faster rate of convergence).

Consider increasing intensity asymptotics: intensities

$$\lambda_n(u;\beta) = n\lambda(u;\beta), \ \beta \in \mathbb{R}^p$$
 and $\rho_n = n^k \rho$

for observed X_n and dummy D_n (k = 1 (bin.) or 1/2 (strat.)) ρ : controls proportion of dummy points.

Consider increasing intensity asymptotics: intensities

$$\lambda_n(u;\beta) = n\lambda(u;\beta), \ \beta \in \mathbb{R}^p \text{ and } \rho_n = n^k \rho$$

for observed \mathbf{X}_n and dummy \mathbf{D}_n (k = 1 (bin.) or 1/2 (strat.)) ρ : controls proportion of dummy points.

$$u_n^{rath}(\beta) = \sum_{u \in \mathbf{X}_n} z(u) - \sum_{u \in \mathbf{D}_n} \frac{z(u)\lambda(u;\beta)}{n^k \rho} = u_n(\beta) + n[\int_W z(u)\lambda(u;\beta) du - \sum_{u \in \mathbf{D}_n} \frac{z(u)\lambda(u;\beta)}{n^k \rho}]$$

Consider increasing intensity asymptotics: intensities

$$\lambda_n(u;\beta) = n\lambda(u;\beta), \ \beta \in \mathbb{R}^p$$
 and $\rho_n = n^k \rho$

for observed \mathbf{X}_n and dummy \mathbf{D}_n (k = 1 (bin.) or 1/2 (strat.)) ρ : controls proportion of dummy points.

$$u_n^{rath}(\beta) = \sum_{u \in \mathbf{X}_n} z(u) - \sum_{u \in \mathbf{D}_n} \frac{z(u)\lambda(u;\beta)}{n^k \rho} = u_n(\beta) + n[\int_W z(u)\lambda(u;\beta) du - \sum_{u \in \mathbf{D}_n} \frac{z(u)\lambda(u;\beta)}{n^k \rho}]$$

Note $\mathbf{X}_n \sim \bigcup_{i=1}^n \mathbf{X}^i$ where \mathbf{X}^i iid Poisson processes $\lambda(u; \beta) \Rightarrow \text{CLT}$.

Consider increasing intensity asymptotics: intensities

$$\lambda_n(u;\beta) = n\lambda(u;\beta), \ \beta \in \mathbb{R}^p$$
 and $\rho_n = n^k \rho$

for observed \mathbf{X}_n and dummy \mathbf{D}_n (k = 1 (bin.) or 1/2 (strat.)) ρ : controls proportion of dummy points.

$$u_n^{rath}(\beta) = \sum_{u \in \mathbf{X}_n} z(u) - \sum_{u \in \mathbf{D}_n} \frac{z(u)\lambda(u;\beta)}{n^k \rho} = u_n(\beta) + n[\int_W z(u)\lambda(u;\beta) du - \sum_{u \in \mathbf{D}_n} \frac{z(u)\lambda(u;\beta)}{n^k \rho}]$$

Note $\mathbf{X}_n \sim \bigcup_{i=1}^n \mathbf{X}^i$ where \mathbf{X}^i iid Poisson processes $\lambda(u; \beta) \Rightarrow CLT$. Hence,

$$n^{-1/2} u_n^{rath}(\beta) \xrightarrow{d} N(0, j(\beta) + G_k/\rho^{1/k}),$$

$$n^{1/2}(\hat{\beta}_n - \beta) \xrightarrow{d} N(0, V + VG_k V/\rho^{1/k}) \quad V = j(\beta)^{-1}$$

Monte Carlo versions of spatstat (Waagepetersen, 2007)

 ${\bf D}$ point process of dummy points of intensity $\rho.$ Monte Carlo version of dirichlet

$$u^{\operatorname{dir}}(eta) = \sum_{u \in \mathbf{X}} z(u) - \sum_{u \in \mathbf{X} \cup \mathbf{D}} z(u)\lambda(u;eta) \frac{1}{\lambda(u;eta) +
ho}$$

(either binomial or stratified dummy points)

Monte Carlo versions of spatstat (Waagepetersen, 2007)

 ${\bf D}$ point process of dummy points of intensity $\rho.$ Monte Carlo version of dirichlet

$$u^{\mathsf{dir}}(\beta) = \sum_{u \in \mathbf{X}} z(u) - \sum_{u \in \mathbf{X} \cup \mathbf{D}} z(u)\lambda(u;\beta) \frac{1}{\lambda(u;\beta) + \rho}$$

(either binomial or stratified dummy points)

Monte Carlo version of grid:

$$u^{\mathsf{grid}}(eta) = \sum_{u \in \mathbf{X}} z(u) - \sum_{u \in \mathbf{X} \cup \mathbf{D}} z(u) \lambda(u; eta) rac{1}{
ho(\#(\mathbf{X} \cap C_{v(u)}) + 1)}$$

 $(v(u) = v \text{ if } u \in C_v, \text{ only stratified dummy points})$

Advantage: implementation (IWLS) just as for usual spatstat except that weights depend on β for dirichlet.

Asymptotic distribution of parameter estimates I (Poisson process case)

Grid version

$$u^{\mathsf{grid}}(\beta) = \sum_{u \in \mathbf{X}} z(u) - \sum_{v \in \mathbf{D}} \frac{z(u)\lambda(u;\beta) + \sum_{u \in \mathbf{X} \cap C_v} z(v)\lambda(v;\beta)}{\rho(\#(\mathbf{X} \cap C_v) + 1)}$$

Hence assuming continuously differentiable covariates

$$n^{-1/2}u_n^{\mathrm{grid}}(\beta) \sim n^{-1/2}u_n^{\mathrm{rath}}(\beta) \quad n \to \infty$$

and asymptotic covariance matrix becomes

$$V + VG_{1/2}V/\rho^2$$

where $g(u) = z(u)\lambda(u;\beta)$. Tends to MLE asymp. cov. V if $\rho \to \infty$.

Asymptotic distribution of parameter estimates II

Dirichlet estimating function:

$$u_n^{\text{dir}}(\beta) = \sum_{u \in \mathbf{X}_n} z(u) - \sum_{u \in \mathbf{X}_n \cup \mathbf{D}_n} z(u) \frac{\lambda(u;\beta)}{\lambda(u;\beta) + n^{k-1}\rho}$$
$$\sum_{u \in \mathbf{X}_n} z(u) \left(\frac{n^{k-1}\rho}{\lambda(u;\beta) + n^{k-1}\rho}\right) - \sum_{u \in \mathbf{D}_n} z(u) \frac{\lambda(u;\beta)}{\lambda(u;\beta) + n^{k-1}\rho}$$

Asymptotic distribution of parameter estimates II

Dirichlet estimating function:

$$u_n^{\text{dir}}(\beta) = \sum_{u \in \mathbf{X}_n} z(u) - \sum_{u \in \mathbf{X}_n \cup \mathbf{D}_n} z(u) \frac{\lambda(u;\beta)}{\lambda(u;\beta) + n^{k-1}\rho}$$
$$\sum_{u \in \mathbf{X}_n} z(u) \left(\frac{n^{k-1}\rho}{\lambda(u;\beta) + n^{k-1}\rho}\right) - \sum_{u \in \mathbf{D}_n} z(u) \frac{\lambda(u;\beta)}{\lambda(u;\beta) + n^{k-1}\rho}$$

$$n^{-k+1/2} u_n^{\text{dir}}(\beta) \xrightarrow{d} N(0, \rho^2 C_k + \rho^{2-1/k} H_k)$$
$$n^{-k} j_n^{\text{dir}}(\beta) = -n^{-k} \frac{\mathrm{d}}{\mathrm{d}\beta} u_n^{\text{dir}}(\beta) \xrightarrow{p} \rho F_k$$

<ロト <回 > < 臣 > < 臣 > 王 の Q () 24 / 29

Asymptotic distribution of parameter estimates II

Dirichlet estimating function:

$$u_n^{\text{dir}}(\beta) = \sum_{u \in \mathbf{X}_n} z(u) - \sum_{u \in \mathbf{X}_n \cup \mathbf{D}_n} z(u) \frac{\lambda(u;\beta)}{\lambda(u;\beta) + n^{k-1}\rho}$$
$$\sum_{u \in \mathbf{X}_n} z(u) \left(\frac{n^{k-1}\rho}{\lambda(u;\beta) + n^{k-1}\rho}\right) - \sum_{u \in \mathbf{D}_n} z(u) \frac{\lambda(u;\beta)}{\lambda(u;\beta) + n^{k-1}\rho}$$

$$n^{-k+1/2} u_n^{\text{dir}}(\beta) \xrightarrow{d} N(0, \rho^2 C_k + \rho^{2-1/k} H_k)$$
$$n^{-k} j_n^{\text{dir}}(\beta) = -n^{-k} \frac{\mathrm{d}}{\mathrm{d}\beta} u_n^{\text{dir}}(\beta) \xrightarrow{p} \rho F_k$$

Hence

$$n^{1/2}(\hat{\beta}_n - \beta) \xrightarrow{d} N(0, F_k^{-1}C_kF_k^{-1} + F_k^{-1}H_kF_k^{-1}/\rho^{1/k})$$

Case $k = 1/2$: $F_k^{-1}C_kF^{-1}$ differs from V even when $\rho \xrightarrow{\rightarrow} \infty$.

Cluster processes

Consider cluster process $\mathbf{X} = \mathbf{X}_{c \in \mathbf{Y}}$ where \mathbf{Y} stationary Poisson point process of intensity $\kappa > 0$.

Given \mathbf{Y} , clusters \mathbf{X}_c are independent Poisson processes with intensity functions

$$\lambda_{c}(u) = \alpha \exp(z_{2:p}(u)\beta_{2:p}^{\mathsf{T}})h(u-c)$$

Intensity function of **X** is then of log-linear form $\exp(z(u)\beta^{\mathsf{T}})$ where $\beta_1 = \log(\kappa \alpha)$ and $z_1(u) = 1$.

Estimates $\hat{\beta}_n$ using Monte Carlo spatstat still asymptotically normal (consider increasing 'mother intensity' $\kappa_n = n\kappa$).

Asymptotic covariance=Asymptotic covariance for Poisson + extra term due to clustering.

Numerical example: Poisson process

Case of Poisson process with covariate vector $(1, z_{\text{elev}}) \beta_{\text{elev}} = 0.1$.

Ratios of asymptotic standard errors for estm. funct. estimate $\hat{\beta}_{\text{elev}}$ relative to asymptotic standard error for MLE.

	bin.				str.			
Est. fct. $\setminus q$	0.25	1	10	100	0.25	1	10	100
$u^{\text{rath}}(u^{\text{grid}})$	2.47	1.51	1.06	1.01	1.08	1.01	1.00	1.00
u ^{dir}	2.12	1.43	1.06	1.01	1.56	1.53	1.53	1.53

 $q = \#\mathbf{D}/\#(\mathbf{X} \cup \mathbf{D})$ proportion of dummy points.

 u^{dir} slightly better than Rathbuns Monte Carlo approximation u^{rath} but not useful in case of stratified dummy points.

Numerical example: Clustered point process

Ratios of standard errors for $\hat{\beta}_{elev}$ (relative to complete covariate data case) in case of clustered point process with varying values of 'mother' intensity and varying numbers M of dummy points.

	κ	8e-5			8e-4			8e-3		
	М	450	800	1800	450	800	1800	450	800	
u ^{rath}	(bin.)	1.06	1.03	1.01	1.44	1.26	1.12	2.49	1.98	
u ^{dir}	(bin.)	1.01	0.99	0.97	1.35	1.20	1.08	2.32	1.86	
u ^{grid}	(str.)	1.00	1.00	1.00	1.04	1.01	1.00	1.17	1.06	

In highly clustered case $\kappa = 8e-5$ not big loss of efficiency due to missing covariate data: term due to clustering V_{clust} dominating in asymptotic covariance matrix

$$V + V_{incompl} + V_{clust}$$

Perspective

- methodology available for handling missing covariate
- implementation straightforward
- random sampling schemes required
- need to take this into account in future experiments

References:

Waagepetersen, R. (2007). An estimating function approach to inference for inhomogeneous Neyman-Scott processes, *Biometrics*, **63**, 252-258.

Waagepetersen, R. (2007) Estimating functions for inhomogeneous spatial point processes with incomplete covariate data, submitted.