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Tropical rain forest ecology

Fundamental questions: which factors influence the spatial
distribution of rain forest trees and what is the reason for the high
biodiversity of rain forests ?

Key factors:
> environment: topography, soil composition,...

» seed dispersal limitation: by wind, birds or mammals...
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Tropical rain forest ecology

Fundamental questions: which factors influence the spatial
distribution of rain forest trees and what is the reason for the high
biodiversity of rain forests ?

Key factors:

> environment: topography, soil composition,...

» seed dispersal limitation: by wind, birds or mammals...
Outline:

» data examples

» introduction to spatial point processes

» applications to tropical rain forest data
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Example: Capparis Frondosa and environment

» observation window W
= 1000 m x 500 m

» seed dispersal= clustering

» environment =
inhomogeneity

10

-10 0

-20

Elevation Potassium content in soil.

Quantify dependence on environmental variables and seed dispersal
using statistics for spatial point processes.



Example: modes of seed dispersal and clustering

Three species with different modes of seed dispersal:

Acalypha Diversifolia explosive

capsules .
Loncocharpus Heptaphyllus wind

Is degree of clustering related to
mode of seed dispersal ?
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Spatial point process

Spatial point process: random
collection of points

(finite number of points in
bounded sets)
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Intensity function and product density

X: spatial point process. A and B small subregions.
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Intensity function and product density

X: spatial point process. A and B small subregions.

Intensity function of point process X

p(u)|A| = P(X has a point in A),

ue A

41



Intensity function and product density

X: spatial point process. A and B small subregions.

Intensity function of point process X LT T

p(u)|A] = P(X has a pointin A), uecA e L

Second order product density

p@ (u, v)|A||B| ~ P(X has a point in each of Aand B) uc A, veB
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Pair correlation and K-function
Pair correlation function

PP (u,v)
p(u)p(v)
NB: independent points = p®)(u,v) = p(u)p(v) = g(u,v) =1

g(uv V) =
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Pair correlation and K-function
Pair correlation function

PP (u,v)
p(u)p(v)
NB: independent points = p®)(u,v) = p(u)p(v) = g(u,v) =1

g(uv V) =

K-function

K(t) = /”h||<tg(h)dh

(provided g(u,v) = g(u — v) i.e. X second-order reweighted
stationary, Baddeley, Mgller, Waagepetersen, 2000)
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Pair correlation and K-function
Pair correlation function

PP (u,v)
p(u)p(v)
NB: independent points = p®)(u,v) = p(u)p(v) = g(u,v) =1

g(uv V) =

K-function

K(t) = /”h||<tg(h)dh

(provided g(u,v) = g(u — v) i.e. X second-order reweighted
stationary, Baddeley, Mgller, Waagepetersen, 2000)
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Mean and covariances of counts

A and B subsets of the plane. N(A) and N(B) random
numbers/counts of points in A and B.

E[N(A)] = u(A) = /A p(u)du

Cov[N(A), N(B)] = /A e /A /B p(0)p(v) e, v)~1]dudv

NB: can compute means and covariances for any sets A and B !
(in contrast to quadrat count methods)
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The Poisson process

X is a Poisson process with intensity function p(-) if for any
bounded region B:

1. N(B) is Poisson distributed with mean p(B) = [z p(u)du
2. Given N(B) = n, the n points are independent and identically

distributed with density proportional to intensity function p(-).

Homogeneous: p = 150/0.7 Inhomogeneous: p(x,y) o e~10-6¥
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Back to rain forest: parametric models for intensity and
pair correlation

Study influence of covariates

Z(u) = (Z1(u), ..., Zp(u))

using log-linear model for intensity function:

log p(u; B) = BZ(u)" < p(u; B) = exp(BZ(u)")

where

BZ(u)" = B1Z1(u) + BaZo(u) + ... + BpZy(u)
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Capparis Frondosa and Poisson process ?

Fit model with covariates elevation and Potassium.

Estimated K-function and
Fitted intensity function K(t) = mt2-function for

N ” oA A Poisson process:
p(u; B) = exp(Bo+P1Elev(u)+GK(v)) :
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Not Poisson process - aggregation due to unobserved factors (e.g.
seed dispersal)
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Cluster process: Inhomogeneous Thomas process (W,

2007)

= & % . . .

. %ﬁg % Parents stationary Poisson point process
fgwf@g ’ intensity &
"% o F o

7o Offspring distributed around mothers
v e according to Gaussian density with
x ) standard deviation w
° s

Inhomogeneity: offspring survive
according to probability

p(u) oc exp(Z(u)3")

depending on covariates (independent
thinning).
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Cox processes

X is a Cox process driven by the random intensity function A if,
conditional on A = A, X is a Poisson process with intensity
function .

Example: log Gaussian Cox process (Mgller, Syversveen, W, 1998)
log A(u) = BZ(u)T + Y (u)

where {Y'(u)} Gaussian random field.




Intensity and pair correlation function for Cox processes

Log linear intensity (both log Gaussian Cox and inhomogeneous
Thomas):

log p(u; 8) = pu+ Z(u)B"
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Intensity and pair correlation function for Cox processes

Log linear intensity (both log Gaussian Cox and inhomogeneous
Thomas):

log p(u; 8) = pu+ Z(u)B"
Pair correlation function for log Gaussian Cox process:

gu—viv) = exp(c(u—vio®,a)), ¥ =(0%0)

2

where o° variance of Gaussian field and ¢(-; &) covariance function.

Examples: o2 exp(—||u — v||/a) and o2 exp(—||u — v||?/a)
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Pair correlation function for inhomogeneous Thomas:

g(u—viv) = 1+ exp(—||u — v[[2/(4w)?)/ (40 k)
— 14+ o2exp(—|lu— v[P/a), ¥ = (x,w) or & = (0%, a)
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Parameter estimation

Possibilities:

1. Maximum likelihood estimation (Monte Carlo computation of
likelihood function)

2. Simple estimating functions based on intensity function and
pair correlation function - inspired by methods for count
variables: least squares, composite likelihood,
quasi-likelihood, ...
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Example: composite likelihood | (Schoenberg, 2005; W,
2007)

Consider indicators X; = 1[N; > 0] for presence of points in cells
C,'. P(X,' = 1) = pﬁ(u,-)|C,-\.
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Example: composite likelihood | (Schoenberg, 2005; W,
2007)

Consider indicators X; = 1[N; > 0] for presence of points in cells
C,'. P(X,' = ].) = pﬂ(u,-)|C,-\.

Composite Bernouilli likelihood
[1P06 = (PO = 1) X—Hlpﬁ () (1=p5() G
;1_as limit (|G| — 0) |

D=L Aol | ot )

Estimate 3 maximizes L(£3).

NB: L(f3) formally equivalent to likelihood function of a Poisson

process with intensity function pg(-).
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Example: minimum contrast estimation for v

Computationally easy approach if X second-order reweighted
stationary so that K-function well-defined.

Estimate of K-function (Baddeley, Mgller and W, 2000):

- 10 < flu—v| <t
K - u,v
= 2 A

Unbiased if § ‘true’ regression parameter.

Minimum contrast estimation: minimize
squared distance between theoretical K
and K:

— Kestim.
—— Inhom. Thomas

Ko
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1/1:argur)nin/0 ( B(t)—K(t;%b)) dt

0 5000

0 20 40 60 80 100

25 /41



Two-step estimation

Obtain estimates (B,?ﬁ) in two steps

1. obtain /3 using composite likelihood

2. obtain 1/3 using minimum contrast
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Clustering and mode of seed dispersal

Fit Thomas cluster process with log linear model for intensity
function.

Acalypha and Capparis: positive dependence on elevation and
potassium (significantly positive coefficients 5 = (0.02,0.005) and

N

3 = (0.03,0.004)).

Loncocharpus: negative dependence on nitrogen and phosphorous

~

(8 = (—0.03,-0.16)).
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Recall w = ‘width’ of clusters.

Estimates of w for explosive, Estimates of K-functions for
wind and bird/mammal: bird/mammal dispersed species
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Triangles: model without
covariates.
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Decomposition of variance for rain forest tree point
patterns (Shen, Jalilian, W, in progress)

Question: how much of the spatial variation for rain forest trees is
due to environment ?

Variance of a count N(B) (number of points in region B) for a
stationary Cox process (constant intensity p):
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Decomposition of variance for rain forest tree point
patterns (Shen, Jalilian, W, in progress)

Question: how much of the spatial variation for rain forest trees is
due to environment ?

Variance of a count N(B) (number of points in region B) for a
stationary Cox process (constant intensity p):

VarN(B):/pdu
/B

Variance=Poisson variance
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Decomposition of variance for rain forest tree point
patterns (Shen, Jalilian, W, in progress)

Question: how much of the spatial variation for rain forest trees is
due to environment ?

Variance of a count N(B) (number of points in region B) for a
stationary Cox process (constant intensity p):

VarN(B):/deu—i—/B/sz[g(u, v) — 1]dudv

Variance=Poisson variance+Extra variance due to random intensity
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Decomposition of variance for log linear random intensity:
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Decomposition of variance for log linear random intensity:

Varlog A(u) =

Variance=
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Decomposition of variance for log linear random intensity:

Varlog A(u) = VardZ(u)" 4+ VarY(u) = 0% + o2

Variance=Environment+Seed dispersal
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Decomposition of variance for log linear random intensity:
Varlog A(u) = + VarY (u) = 0% + o2
Variance= +Seed dispersal

Note Z(u) = $Z(u)T regarded as stationary random process.
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Decomposition of variance for log linear random intensity:

Varlog A(u) = + VarY (u) = 0% + o2

Variance= +Seed dispersal

Note Z(u) = $Z(u)T regarded as stationary random process.

Estimate 3 and o2 using two-step approach.

Simple empirical estimate of O‘%

1 ~ =
A2 2
6 =— 3 (2(w) - 2)
G ueG
Compute
2 2
o o
2 z ; and — 2
0y +o0 07 +o0
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Decomposition of variance for log linear random intensity:
Varlog A(u) = + VarY (u) = 0% + o2
Variance= +Seed dispersal

Note Z(u) = $Z(u)T regarded as stationary random process.

Estimate 3 and o2 using two-step approach.

Simple empirical estimate of O‘%

1 ~ =
A2 2
6 =— 3 (2(w) - 2)
G ueG
Compute
2 2
202 > and 2(I 2
0y +o0 07 +o0

Can also define closely related “R?" summarizing how much of
variation in A is due to Z.

37/41



Additive model for random intensity function (Jalilian,
Guan, W, in progress)
Alternative to log additive model:
Au) = BZ(u)"T + Y (u)

Cox process superpgsition of point processes with (random)
intensity functions Z(u) = 3Z(u)" and Y (u)

Straightforward variance decomposition for A:
VarA(u) = VarZ(u) + VarY (uv) = 0% + o2

2
0z

2 _
R* = 2 2
07 +o0
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Results

Consider pair correlation functions of the form

g(u—v;o%,a)=1+c%exp(—|ju—v|’/a) d=1o0ord=2

Species A § R?>  Goodness of fit (“AIC")
Acalypha log linear 1 0.01 1178
log linear 2 0.01 1198
additive 1 0.01 1565
additive 2 0.01 1582
Lonchocarpus log linear 1 0.10 3053
log linear 2 0.17 3105
additive 1 0.06 4001
additive 2 0.10 4026
Capparis log linear 1 0.25 4938
log linear 2 0.38 5230
additive 1 0.20 8736
additive 2 0.33 9157

Best fit with log linear model and § = 1. Largest R? for
bird/mammal dispersion. Smallest for explosive capsules.
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Fitted pair correlation functions

Plots show g(u — v) — 1:
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Thanks for your attention !
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