Decomposition of variance for spatial Cox processes

Rasmus Waagepetersen Department of Mathematical Sciences Aalborg University

Joint work with Abdollah Jalilian and Yongtao Guan

December 13, 2010

◆□ → ◆聞 → ◆臣 → ◆臣 → □ 臣

Tropical rain forest example: Capparis Frondosa

- observation window W
 = 1000 m × 500 m
- ► seed dispersal ⇒ *clustering*
- ► environment ⇒ inhomogeneity

Elevation

Potassium content in soil.

How much variation due to environmental variables and how much due to seed dispersal ?

Framework: spatial Cox point processes.

Poisson and Cox processes

Poisson process with intensity function $\rho(\cdot)$:

counts N(B) independent and Poisson distributed with mean

$$\mathbb{E}N(B) = \int_B \rho(u) \mathrm{d}u$$

Cox process **X** with random intensity function Λ : conditional on $\Lambda = \lambda$, **X** Poisson process with intensity function λ .

Additive model for Λ

Additive model:

$$\Lambda(u) = \tilde{Z}(u) + \Lambda_0(u)$$

 \tilde{Z} contribution from environment:

$$\tilde{Z}(u) = \beta Z(u)^{\mathsf{T}} \quad Z(u) = (Z_1(u), \dots, Z_p(u))$$

 $\Lambda_0:$ structured variation (e.g. seed dispersal) not due to environment.

Cox process **X** union of independent Cox processes with random intensity functions $\tilde{Z}(u)$ and $\Lambda_0(u)$.

Assume \tilde{Z} and Λ_0 non-negative and stationary.

Log-linear model

$$\Lambda(u) = \Lambda_0(u) \exp[\tilde{Z}(u)]$$

Interpretation in terms of survival of seedlings:

 \boldsymbol{X}_0 seedlings: stationary Cox process with random intensity function $\Lambda_0.$

X thinning of X_0 with survival depending on environment \tilde{Z} .

Example: Cox/cluster process: Inhomogeneous Thomas process

 $\Lambda_0 \text{ shot-noise process} \Rightarrow \boldsymbol{X}_0 \text{ cluster} \\ \text{process:} \\$

Offspring distributed around Poisson parents mothers according to Gaussian density

イロト イヨト イヨト イヨト

Example: Cox/cluster process: Inhomogeneous Thomas process

 $\Lambda_0 \text{ shot-noise process} \Rightarrow \boldsymbol{X}_0 \text{ cluster} \\ \text{process:} \\$

Offspring distributed around Poisson parents mothers according to Gaussian density

Inhomogeneity: offspring in \boldsymbol{X}_0 survive according to probability

```
p(u) \propto \exp[\beta Z(u)^{\mathsf{T}}]
```

depending on covariates (independent thinning).

Х

Prediction of count N(B) given Λ :

$$\hat{N}(B) = \mathbb{E}[N(B)|\Lambda] = \int_{B} \Lambda(u) \mathrm{d}u$$

Prediction of count N(B) given Λ :

$$\hat{N}(B) = \mathbb{E}[N(B)|\Lambda] = \int_{B} \Lambda(u) \mathrm{d}u$$

 $\operatorname{Var} N(B) =$ variation =

イロト イポト イヨト イヨト

Prediction of count N(B) given Λ :

$$\hat{N}(B) = \mathbb{E}[N(B)|\Lambda] = \int_{B} \Lambda(u) \mathrm{d}u$$

 $\mathbb{V}\mathrm{ar}N(B) = \mathbb{V}\mathrm{ar}\hat{N}(B)$
variation = variation A

Prediction of count N(B) given Λ :

$$\hat{N}(B) = \mathbb{E}[N(B)|\Lambda] = \int_{B} \Lambda(u) \mathrm{d}u$$

 $\mathbb{V}\mathrm{ar} N(B) = \mathbb{V}\mathrm{ar} \hat{N}(B) + \mathbb{V}\mathrm{ar} [N(B) - \hat{N}(B)]$ variation = variation Λ + 'Poisson noise'

Further, $\hat{\Lambda}(u) = \mathbb{E}[\Lambda(u)|Z]$

Prediction of count N(B) given Λ :

$$\hat{N}(B) = \mathbb{E}[N(B)|\Lambda] = \int_{B} \Lambda(u) \mathrm{d}u$$

 $\mathbb{V}\mathrm{ar} N(B) = \mathbb{V}\mathrm{ar} \hat{N}(B) + \mathbb{V}\mathrm{ar} [N(B) - \hat{N}(B)]$ variation = variation Λ + 'Poisson noise'

Further, $\hat{\Lambda}(u) = \mathbb{E}[\Lambda(u)|Z]$ $\mathbb{V}ar\Lambda(u) =$ structured variation = SST =

Prediction of count N(B) given Λ :

$$\hat{N}(B) = \mathbb{E}[N(B)|\Lambda] = \int_{B} \Lambda(u) \mathrm{d}u$$

 $\mathbb{V}\mathrm{ar} N(B) = \mathbb{V}\mathrm{ar} \hat{N}(B) + \mathbb{V}\mathrm{ar} [N(B) - \hat{N}(B)]$ variation = variation Λ + 'Poisson noise'

- 4 同 6 4 日 6 4 日 6

Further, $\hat{\Lambda}(u) = \mathbb{E}[\Lambda(u)|Z]$ $\mathbb{V}ar\Lambda(u) = \mathbb{V}ar\hat{\Lambda}(u)$ structured variation = variation due to environment SST = SSR

Prediction of count N(B) given Λ :

$$\hat{N}(B) = \mathbb{E}[N(B)|\Lambda] = \int_{B} \Lambda(u) \mathrm{d}u$$

 $\mathbb{V}\mathrm{ar} N(B) = \mathbb{V}\mathrm{ar} \hat{N}(B) + \mathbb{V}\mathrm{ar} [N(B) - \hat{N}(B)]$ variation = variation Λ + 'Poisson noise'

Further, $\hat{\Lambda}(u) = \mathbb{E}[\Lambda(u)|Z]$ $\mathbb{V}ar\Lambda(u) = \mathbb{V}ar\hat{\Lambda}(u) + \mathbb{V}ar[\Lambda(u) - \hat{\Lambda}(u)]$ structured variation = variation due to environment + other sources SST = SSR + SSE Measure of influence of environmental covariates Z:

$$R^{2} = \frac{SSR}{SST} = \frac{\mathbb{V}\mathrm{ar}\mathbb{E}[\Lambda(u)|Z]}{\mathbb{V}\mathrm{ar}\Lambda(u)}$$

(right hand side does not depend on u in case of stationary environment)

R^2 for additive and log-linear models

Additive:

$$R^2 = \frac{\sigma_{\tilde{Z}}^2}{\sigma_{\tilde{Z}}^2 + \sigma_0^2}$$

$$\sigma_{\tilde{Z}}^2 = \mathbb{V}\mathrm{ar}\tilde{Z}(u) \quad \text{ and } \sigma_0^2 = \mathbb{V}\mathrm{ar}\Lambda_0(u)$$

Log-linear:

$$R^{2} = \frac{\sigma_{\exp \tilde{Z}}^{2}}{\sigma_{\exp \tilde{Z}}^{2} + \sigma_{0}^{2} [\sigma_{\exp \tilde{Z}}^{2} + \rho_{\exp \tilde{Z}}^{2}]}$$

 $\sigma^2_{\exp \tilde{Z}} = \mathbb{V}\mathrm{ar}\exp[\tilde{Z}(u)] \quad \text{ and } \rho_{\exp \tilde{Z}} = \mathbb{E}\exp[\tilde{Z}(u)]$

<ロ > < 部 > < 書 > < 書 > こ > < き > こ の Q (や 16/25

Estimation: environmental variances

Z observed on grid $G = \{u_i\}_{i=1,...,M}$

$$\widehat{\sigma}_{\widetilde{Z}}^2 = \frac{1}{M} \sum_{u \in G} \widehat{\widetilde{Z}}(u)^2$$

and

$$\widehat{\sigma}_{\exp\widetilde{Z}}^{2} = \frac{1}{M} \sum_{u \in G} \left\{ \exp\left[\widehat{\widetilde{Z}}(u)\right] - \widehat{\rho}_{\exp\widetilde{Z}} \right\}^{2}$$

where

$$\widehat{\rho}_{\exp\widetilde{Z}} = \frac{1}{M} \sum_{u \in G} \exp\left[\widehat{\widetilde{Z}}(u)\right]$$

and $\widehat{\widetilde{Z}}(u) = \widehat{\beta} Z(u)^{\mathsf{T}}$.

Estimation: β

Estimate β conditioning on Z.

First-order log composite likelihood:

$$\mathsf{CL}_1(\beta) = \sum_{u \in \mathbf{X}} \log \rho(u|Z; \beta) - \int_W \rho(u|Z; \beta) \mathrm{d}u$$

 $\rho(\cdot|Z,\beta) = \mathbb{E}[\Lambda(u)|Z]$ intensity function for $\mathbf{X}|Z$.

For additive model:

$$\rho(u|Z,\beta) = \rho_0 + \beta Z(u)^{\mathsf{T}}$$
 $\rho_0 = \mathbb{E}\Lambda_0(u)$

Parametric models for $c_0(u - v) = \mathbb{C}ov[\Lambda_0(u), \Lambda_0(v)]$

Any positive definite function is a covariance function but not necessarily for a non-negative random process Λ_0 . Use covariance functions from explicit constructions of Λ_0 .

Log-Gaussian:

$$\Lambda_0(u) = \exp[Y(u)] \quad c_0(u-v) = \rho_0^2 \big\{ \exp[\mathbb{C}ov(Y(u), Y(v))] - 1 \big\}$$

where Y Gaussian field and $\rho_0 = \mathbb{E}\Lambda_0(u)$.

Shot-noise:

$$\Lambda_0(u) = \sum_{v \in C} \alpha k(u-v) \quad c_0(u-v) = \kappa \alpha^2 \int_{\mathbb{R}^2} k(w) k(w+v-u) \mathrm{d}w$$

where C homogeneous Poisson with intensity κ and $k(\cdot)$ probability density.

Bessel shot-noise/Matérn covariance

 Λ_0 Bessel shot-noise process: sum of $K_{(\nu-1)/2}$ Bessel densities centered around points of homogeneous Poisson process.

Matérn covariance function:

$$c_0(h) = \sigma_0^2 rac{(\|h\|/\eta)^
u K_
u(\|h\|/\eta)}{2^{
u-1} \Gamma(
u)}$$

$$u = 1/2$$
: exponential model

'
$$\nu = \infty$$
': 'Gaussian'

$$c_0(h) = \sigma_0^2 \exp(-\|h\|/\eta)$$
 $c_0(h) = \sigma_0^2 \exp[-(\|h\|/\eta)^2]$

Estimation of ψ

Second-order log composite likelihood (given $\hat{\beta}$, conditioning on Z):

$$CL_{2}(\psi|\hat{\beta}) = \sum_{\substack{u,v \in \mathbf{X} \\ ||u-v|| \leq R}}^{\neq} \log \rho^{(2)}(u,v|Z;\hat{\beta},\psi)$$
$$- \iint_{||u-v|| \leq R} \rho^{(2)}(u,v|Z;\hat{\beta},\psi) du dv$$

 $\rho^{(2)}(u, v|Z; \beta, \psi) = \mathbb{E}[\Lambda(u)\Lambda(v)|Z]$ second-order product density for $\mathbf{X}|Z$.

For additive model:

$$\rho^{(2)}(u,v|Z;\beta,\psi) = \rho(u|Z,\beta)\rho(v|Z,\beta) + c_0(u-v;\psi)$$

Three species with different modes of seed dispersal:

Acalypha Diversifolia explosive capsules

Capparis Frondosa bird/mammal

Loncocharpus Heptaphyllus wind

Results for rain forest data

Species	model for Λ	<i>c</i> ₀	$CL_2(\widehat{\psi} \widehat{eta})$	R^2
	log-linear	'Gaussian'	-1239.8	0.01
Acalypha		Matérn	-1221.0	0.02
	additive	'Gaussian'	-1641.7	0.01
		Matérn	-1623.4	0.01
	log-linear	'Gaussian'	-3204	0.17
Loncocharpus		Matérn	-3156	0.10
	additive	'Gaussian'	-4081	0.11
		Matérn	-4055	0.07
	log-linear	'Gaussian'	-76657	0.37
Capparis		Matérn	-76325	0.19
	additive	'Gaussian'	-81139	0.23
		Matérn	-80685	0.16

Some conclusions

Covariance functions for loncocharpus

Best fit with Matérn (heavy tails for covariance/cluster density).

Best fit with log-linear model (interpretation in terms of survival).

Largest R^2 for Capparis (bird/mammal seed dispersal), smallest for Acalypha (explosive capsules).

イロト イポト イヨト イヨト

Ph.D.-scholarship in Spatial Statistics

Department of Mathematics, Aalborg University, Denmark