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Data example: Capparis Frondosa
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Elevation Pota

observation window W
= 1000 m x 500 m

seed dispersal= clustering

environment =
inhomogeneity

ssium content in soil.

Quantify dependence on environmental variables taking into
account clustering due to e.g. seed dispersal.

Framework: spatial Cox point processes.



Poisson and Cox processes

X random set of points. N(B) random number of points in
B C R2
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X Poisson process with intensity
function p(-):

counts N(B) independent and
Poisson with mean

EN(B) = /Bp(u)du
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X is a Cox process driven by the random intensity function A if,
conditional on A = A\, X is a Poisson process with intensity
function A.



Example: log Gaussian Cox process

log Gaussian Cox process (“point process GLMM")

Nu) = exp[BZ(u)" + Y (u)]
where {Y'(u)} Gaussian random field




Shot-noise Cox process
Au) = Z’yvk(u —v)
veC
where
» C homogeneous Poisson with intensity x
» k(-) probability density.
> ~, iid positive random variables
independent of C
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Shot-noise Cox process

Au) = Z'yvk(u —v)

veC
where
» C homogeneous Poisson with intensity x
» k(-) probability density.
> 7, iid positive random variables
independent of C

NB: equivalent to cluster process with parents C, random cluster
size 7, and dispersal density k.



Shot-noise Cox process
Nu) = Z'yvk(u —v)
veC
where
» C homogeneous Poisson with intensity x
» k(-) probability density.
> 7, iid positive random variables
independent of C

NB: equivalent to cluster process with parents C, random cluster
size 7, and dispersal density k.

Inhomogeneous shot-noise:

A(u) = exp[5Z(u)]' S ok(u — v)

veC



Moments for Cox processes
Intensity function

plu) = EA(u)

Second-order product density

PP (u,v) = EN)A(v) = Cov[A(u), A(v)] + p(u)p(v)
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Moments for Cox processes
Intensity function

plu) = EA(u)

Second-order product density

PP (u,v) = EN)A(v) = Cov[A(u), A(v)] + p(u)p(v)

Pair correlation function
) — p(2)(u, v) Cov[A(u), A(v)]
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Moments for Cox processes
Intensity function

plu) = EA(u)

Second-order product density

PP (u,v) = EN)A(v) = Cov[A(u), A(v)] + p(u)p(v)

Pair correlation function
) — p(2)(u, v) Cov[A(u), A(v)]
)= e) =T o)

Cov[N(A), N(B)] = /A | EA(uMu+ /A /B Cov[A(u), A(v)]dudv
— /A e+ /A /B p()p(V)|&(u, v) — 1dudv

= Poisson variance + over dispersion due to A
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Log-linear model

Both log Gaussian and shot-noise Cox process of the form
A(u) = No(u) exp[BZ ()]

where Ag stationary non-negative reference process.

Log-linear intensity (assume EAg(u) = 1)

p(u) = EA(u) = exp[BZ(u)"]

Pair correlation function (EAg(u) = 1):
g(h) =1+ Co(h) Co(h) = (COV[/\()(U),/\()(U + h)]

Interpretation: Cox process X independent inhomogeneous
thinning of stationary Xg with random intensity function Ayg.
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Thinning interpretation: inhomogeneous Thomas process
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Ao shot-noise process = Xq cluster

Offspring distributed around Poisson
parents according to Gaussian density
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Thinning interpretation: inhomogeneous Thomas process
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Inhomogeneity: offspring in Xg survive

according

depending on covariates (independent

thinning).

to probability

p(u) o exp[8Z(u)']

Ao shot-noise process = Xq cluster
process:

Offspring distributed around Poisson
parents according to Gaussian density
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Specific models for g(u — v) =1+ Cov[Ag(u), Ao(V)]

Log-Gaussian:
No(u) = exp[Y (u)]

where Y Gaussian field.

Pair corrrelation (Laplace transform)

g(h) = exp[Cov (Y (u), Y (u + h))]
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Specific models for g(u — v) =1+ Cov[Ag(u), Ao(V)]

Log-Gaussian:
No(u) = exp[Y (u)]

where Y Gaussian field.

Pair corrrelation (Laplace transform)
g(h) = exp[Cov(Y(u), Y(u+ h))]

Shot-noise:

No(u) = Z’yvk(u —v)

veC

Pair correlation (convolution):
glu—v) = na2/ k(u)k(u + h)du
R2

(a =E~v,)
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Estimation of intensity function

Want to estimate 3 in regression model for intensity function:

pp(u) = EA(u) = exp[5Z(u)"]

MLE is possible via numerical approximations (Laplace, MCMC)
but time-consuming.

Here: estimating functions based on first and second order

properties of Cox processes (like quasi-likelihood or GEE for
generalized linear mixed models).
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Campbell formula and first-order estimating functions

Campbell:

B (0) = [ F)os(u)da

ueX

Then

S ) - /W () (u)du

ueXNw

unbiased estimating function:

Eef(,B) =0

Parameter estimate /3 solution

er(B) =0
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Poisson score/composite likelihood estimating function

Choice ' ()
) = 15108 () = e

leads to composite likelihood/Poisson likelihood score

S ooyt

vexnw PP

This is optimal choice for Poisson process (MLE) but what is
optimal f5 in the clustered case ?

18
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Optimal first-order estimating equation
Optimal choice of f3: smallest variance

Varfi = Vy = S; 15651
where

d

Sf - —}EW

er(8) Xf = Varer(B)
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Optimal first-order estimating equation
Optimal choice of f3: smallest variance

Varfi = Vy = S; 15651

where
d

Sf - —EW

ef(,B) Zf = Varef(,B)

Optimal fg solution of Fredholm equation

d
f3(u) +/ t(u, v)fg(v)du = — log pg(u), uve W,
% dp
where integral equation kernel is

t(u,v) = ps(v)lg(u, v) — 1]

Note: optimal f3 depends on pair correlation (second
order/covariance property)!
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Numerical approximation and quasi-likelihood

Approximate solution of Fredholm

equation using numerical quadrature:

Riemann sum dividing W into cells C;

with representative points u;.
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Numerical approximation and quasi-likelihood

Approximate solution of Fredholm

equation using numerical quadrature:
Riemann sum dividing W into cells C;

with representative points u;.

Resulting estimating function is

quasi-likelihood

(N—=p)V™'D

based on
N=(Ny,...,Np),

N; count of points in C;.
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Numerical approximation and quasi-likelihood
Approximate solution of Fredholm T ADRR
equation using numerical quadrature:
Riemann sum dividing W into cells C;
with representative points u;.

Resulting estimating function is quasi-likelihood
(N—=p)V™'D
based on
N = (Ni,...,Ny), N;count of points in C;.

1 mean of N:
pi = EN; = pg(u;)|Gi| and D = [du(u;)/dBi],

V' covariance of N:

Vij = Cov[N;, N;] = pilli = j] + pipjlg(ui, uj) — 1]
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Practical implementation: IGLS

Solve
(N —pu(B)V(B)*D(B) =0

using iterative generalized least squares:

(8D =g D) TV () D(ED) = (N-n(8) v (D) (")

One issue: use fine discretization (large m) = V highdimensional
matrix - e.g. V 10000 x 10000.

Use tapering and sparse matrix Cholesky from Matrix library in R.
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Simulation study

Consider variance of /3 obtained from either composite likelihood or
quasi-likelihood.

Simulations of inhomogeneous modified Thomas process
depending on spatial covariates.

Reduction in variance for quasi-likelihood relative to composite
likelihood: 10% to 65%.

Large reductions when strong clustering and strong inhomogeneity.
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Example: tree species Capparis Frondosa and
Loncocharpus Heptaphyllus

Capparis Frondosa Potassium content in soil.

Covariates pH, elevation,
gradient, potassium,...
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Fitted pair correlation functions g(-)

Use shot-noise Cox process with dispersal kernel given by
variance-gamma density.

Then g(h) — 1 Matérn covariance function depending on
smoothness/shape parameter v.

Loncocharpus:
Matérn v = 0.5

g(h)-1
5

Capparis:
Matérn v = 0.25




Results with composite likelihood and quasi-likelihood

~

species I3
L —6.49 — 0.021Nmin — 0.11P — 0.59pH — 0.11twi
Loncocharpus (81.06%,7.45*,58.78,282.89*,53.19%) x 1073
QL —6.49 — 0.023Nmin — 0.12P — 0.55pH — 0.084twi
(80.15%,6.95*,55.23*, 266.10*, 45.47) x 1073
cL —5.07 + 0.028ele — 1.10grad + 0.0043K
Capparis (79.54*,9.98*,1200.36,1.16*) x 103
QL —5.10 + 0.019ele — 2.50grad + 0.0039K

(77.77%,8.86*,935.02*,1.02*) x 10~3

Estimated standard errors always smallest for QL. Covariate grad
significant according to QL but not for CL.
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Thanks for your attention !
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