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Lectures:

1. Intro to point processes, moment measures and the Poisson process
2. Cox and cluster processes

3. The conditional intensity and Markov point processes

4. Likelihood-based inference and MCMC

Aim: overview of stats for spatial point processes - and spatial
point process theory as needed.

Not comprehensive: the most fundamental topics and our favorite
things.
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1. Intro to point processes, moment measures and the Poisson process
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Data example (Barro Colorado Island Plot)
Observation window W = [0,1000] x [0.500]m?

Beilschmiedia Ocotea
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Sources of variation: elevation and gradient covariates and

clustering due to seed dispersal.
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Whale positions
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Aim: estimate whale intensity A
Observation window W = narrow strips around transect lines
Varying detection probability: inhomogeneity (thinning)

Variation in prey intensity: clustering
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Golden plover birds in Peak District

Birds in 1990 and 2005 Cotton grass covariate
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What is a spatial point process ?
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What is a spatial point process ?

Definitions:

1. a locally finite random subset X of R? (#(X N A) finite for all
bounded subsets A C R?)

2. a random counting measure N on R?

Equivalent provided no multiple points: (N(A) = #(X N A) )
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What is a spatial point process ?

Definitions:

1. a locally finite random subset X of R? (#(X N A) finite for all
bounded subsets A C R?)

2. a random counting measure N on R?
Equivalent provided no multiple points: (N(A) = #(X N A) )
This course: appeal to 1. and skip measure-theoretic details.
In practice distribution specified by an explicit construction (this

and second lecture) or in terms of a probability density (third
lecture).

9/130



Moments of a spatial point process

Fundamental characteristics of point process: mean and covariance
of counts N(A) = #(X N A).
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Moments of a spatial point process

Fundamental characteristics of point process: mean and covariance
of counts N(A) = #(X N A).

Intensity measure

w(A) = EN(A), ACR?
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Moments of a spatial point process

Fundamental characteristics of point process: mean and covariance
of counts N(A) = #(X N A).

Intensity measure
u(A) = EN(A), ACR?

In practice often given in terms of intensity function

H(A) = /A p(u)du
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Moments of a spatial point process

Fundamental characteristics of point process: mean and covariance
of counts N(A) = #(X N A).

Intensity measure
u(A) = EN(A), ACR?

In practice often given in terms of intensity function

H(A) = /A p(u)du

Infinitesimal interpretation: N(A) binary variable (presence or
absence of point in A) when A very small. Hence

p(u)dA =~ EN(A) ~ P(X has a point in A)
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Second-order moments
Second order factorial moment measure:

£
pP(AxB)=E) 1luecAveBl ABCR?
u,veX



Second-order moments
Second order factorial moment measure:

£
pP(AxB)=E) 1luecAveBl ABCR?
u,veX

://p(z)(u, v)dudv
AJB

where p(2)(u, v) is the second order product density
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Second-order moments
Second order factorial moment measure:

#
pP(AxB)=E) 1luecAveBl ABCR?
u,veX

://p(z)(u, v)dudv
AJB

where p(2)(u, v) is the second order product density

NB (exercise):
Cov[N(A), N(B)] = u®(A x B) + u(A B) — u(A)(E)

16 /130



Second-order moments
Second order factorial moment measure:

#
pP(AxB)=E) 1luecAveBl ABCR?
u,veX

://p(z)(u, v)dudv
AJB

where p(2)(u, v) is the second order product density

NB (exercise):
Cov[N(A), N(B)] = u®(A x B) + u(A B) — u(A)(E)

Campbell formula (by standard proof)

E i h(u,v) = // h(u, v)p® (u, v)dudv

u,veX
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Pair correlation function and K-function
Infinitesimal interpretation of p(®) (u€ A v € B):

p®(u, v)dAdB ~ P(X has a point in each of A and B)
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Pair correlation function and K-function
Infinitesimal interpretation of p(®) (u€ A v € B):
p®(u, v)dAdB ~ P(X has a point in each of A and B)

Pair correlation: tendency to cluster or repel relative to case where
points occur independently of each other

u.v) = p(2)(u’ v)
8uV) = )
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Pair correlation function and K-function
Infinitesimal interpretation of p(®) (u€ A v € B):
p®(u, v)dAdB ~ P(X has a point in each of A and B)

Pair correlation: tendency to cluster or repel relative to case where
points occur independently of each other

u.v) = p(2)(u’ V)
8uV) = )

Suppose g(u,v) = g(u — v). K-function (cumulative quantity):
1oy Ulu—vli<d
K(©):= [ 1l < dg)du = zE 3o St

1Bl Se  Pn(v)
veX

(= non-parametric estimation if p(u)p(v) known)
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The Poisson process

Assume 1 locally finite measure on R? with density p.

21 /130



The Poisson process

Assume 1 locally finite measure on R? with density p.

X is a Poisson process with intensity measure p if for any bounded
region B with p(B) > 0:

1. N(B) ~ Poisson(u(B))
2. Given N(B), points in X N B i.i.d. with density « p(u), u € B

B = [0,1] x [0,0.7]:

Homogeneous: p = 150/0.7 Inhomogeneous: p(x,y) o e~10-6¥
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Existence of Poisson process on R?: use definition on disjoint
partitioning R? = 1B of bounded sets B;.
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Existence of Poisson process on R?: use definition on disjoint
partitioning R? = 1B of bounded sets B;.

Independent scattering:
» A, B C R? disjoint == XN A and XN B independent
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Existence of Poisson process on R?: use definition on disjoint
partitioning R? = U2, Bi of bounded sets B;.

Independent scattering:
» A, B C R? disjoint == XN A and XN B independent

> p2(u,v) = p(u)p(v) and g(u,v) =1
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Characterization in terms of void probabilities

The distribution of X is uniquely determined by the void
probabilities P(X N B = (}), for bounded subsets B C R2.

Intuition: consider very fine subdivision of observation window —
then at most one point in each cell and probabilities of

absence/presence determined by void probabilities.

Hence, a point process X with intensity measure p is a Poisson
process if and only if

P(XN B =0) = exp(—u(B))

for any bounded subset B.
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Homogeneous Poisson process as limit of Bernouilli trials

Consider disjoint subdivision

W = U™, C; where |G| = [W/|/n. With
probability p|C;| a uniform point is
placed in C;.

Number of points in subset A is b(n|A|/|W|, p|W|/n) which
converges to a Poisson distribution with mean p|A|.

Hence, Poisson process default model when points occur
independently of each other.
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Exercises
1. Show that the covariance between counts N(A) and N(B) is

given by
Cov[N(A), N(B] = (A x B) + (AN B) — j(A)u(B)
2. Show that
_ L 1flu—v] <1
K(t) = /R 1]l < tlg(u)du = E §5—>
veX

What is K(t) for a Poisson process ?

(Hint: use the Campbell formula)

3. (Practical spatstat exercise) Compute and interpret a
non-parametric estimate of the K-function for the spruces
data set.

(Hint: load spatstat using library(spatstat) and the
spruces data using data(spruces). Consider then the
Kest () function.)
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Distribution and moments of Poisson process

X a Poisson process on S with u(S) = fsp u)du < oo and F set
of finite point configurations in S.

29 /130



Distribution and moments of Poisson process

X a Poisson process on S with u(S) = fsp u)du < oo and F set
of finite point configurations in S.

By definition of a Poisson process

P(X € F) (1)

/ 1[{x1,x2, ..., Xn} € F]Hp(x;)dx1 ...dx,
s” i=1

o e_u(s)
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Distribution and moments of Poisson process

X a Poisson process on S with u(S) = fsp u)du < oo and F set
of finite point configurations in S.

By definition of a Poisson process

P(X € F) (1)
2 o—H(S) n
:Ze / 1[{X1,X2,...,X,,}6F]Hp(x;)dxl...dx
n=0 s" i=1
Similarly,
Eh(X)

> e_“(s) n
:z_:o p /5 h({X1,X2,...,xn})ljp(x;)dxl...dx,,
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Proof of independent scattering (finite case)
Consider bounded A, B C R?.

XN (AU B) Poisson process.
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Proof of independent scattering (finite case)
Consider bounded A, B C R?.

XN (AU B) Poisson process. Hence

PXNAe F,XNBeG) (x={x1,...,xn})

n!

n=0 i=1

e~ HAUB) n
227/ 1[xﬂA6F,xﬂB€G]Hp(x,-)dxl...dx,,
(AUB)"
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Proof of independent scattering (finite case)
Consider bounded A, B C R?.

XN (AU B) Poisson process. Hence

P(XﬂAEF XNBeG) (x={x1,...,%n})

e—H(AUB) n
_Z / 1[xﬂA6F,xﬂB€G]Hp(x,-)dxl..

(AUB)" paiey
e~HAUB) [ n!
_nz:% py mz::om!(n—m)! /Aml[{xl,XQ,...,Xm}EF]

/n_m 1{Xm+1s---,%n} € G] Hp(x,-)dxl codxp

i=1

.dx,
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Proof of independent scattering (finite case)
Consider bounded A, B C R?.

XN (AU B) Poisson process. Hence

P(XﬂAEF XNBeG) (x={x1,...,%n})

e~ H(AUB) n
—Z / 1[xﬂAEF,xﬂB€G]Hp(x,-)dxl...dx,,

(AUB)" paiey
e~HAUB) [ n!
_nz:% py mz::om!(n—m)! /Aml[{xl,XQ,...,Xm}EF]

n
/ {Xm+41,-- - xn} € G]HP(Xi)dxl - dxp
n i=1
= (interchange order of summation and sum over m and k = n — m)
P(XNAe€ F)P(XNB € G)
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Superpositioning and thinning
If X1,X2,... are independent Poisson processes (p;), then

superposition X = U2, X; is a Poisson process with intensity
function p = 372, pi(u) (provided p integrable on bounded sets).
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Superpositioning and thinning

If X1,X2,... are independent Poisson processes (p;), then
superposition X = U2, X; is a Poisson process with intensity
function p = 372, pi(u) (provided p integrable on bounded sets).

Conversely: Independent m-thinning of Poisson process X:
independent retain each point u in X with probability 7(u).
Thinned process Xihin and X \ Xihin are independent Poisson
processes with intensity functions m(u)p(u) and (1 — 7(v))p(u).

(Superpositioning and thinning results most easily verified using
void probability characterization of Poisson process, see M & W,
2003)
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Superpositioning and thinning

If X1,X2,... are independent Poisson processes (p;), then
superposition X = U2, X; is a Poisson process with intensity
function p = 372, pi(u) (provided p integrable on bounded sets).

Conversely: Independent m-thinning of Poisson process X:
independent retain each point u in X with probability 7(u).
Thinned process Xihin and X \ Xihin are independent Poisson
processes with intensity functions m(u)p(u) and (1 — 7(v))p(u).

(Superpositioning and thinning results most easily verified using
void probability characterization of Poisson process, see M & W,
2003)

For general point process X: thinned process Xinin has product
density 7(u)m(v)p® (u, v) - hence g and K invariant under

independent thinning.
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Density (likelihood) of a finite Poisson process

X1 and X3 Poisson processes on S with intensity functions p; and
p2 where [ po(u)du < co and pa(u) = 0= p1(u) = 0. Define
0/0:=0.
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Density (likelihood) of a finite Poisson process

X1 and X3 Poisson processes on S with intensity functions p; and
p2 where [ po(u)du < co and pa(u) = 0= p1(u) = 0. Define
0/0:=0. Then

P(X1 € F)

—Ze —p(S)
—Z

:E(I[X2 € F]f(X2))

/l[xeF]le xj)dxy...dx, (x={x1,...,xp})

i=1

/ 1[x € F]e“Q(S —m(9) H pl(X') sz xi)dxy ... dx,
i1 P2 X/ i1

e—H2(S)

where

f(x) = eH2(8)—1 () H P1 x,)
P2 Xi

Hence f is a density of X1 with respect to distribution of Xo.
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In particular (if S bounded): X; has density

f(x) = eJsUPrNW T py ()

i=1

with respect to unit rate Poisson process (p = 1).
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Data example: tropical rain forest trees
Observation window W = [0,1000] x [0, 500]

Beilschmiedia
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Sources of variation: elevation and gradient covariates and possible
clustering/aggregation due to unobserved covariates and/or seed
dispersal.



Inhomogeneous Poisson process

Log linear intensity function

p(U;ﬂ) = exp(z(u)BT), z(u) = (1vze|ev(u)7zgrad(u))
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Inhomogeneous Poisson process

Log linear intensity function

p(u; B) = exp(z(u)BT),  2(u) = (1, zeteu (1), Zgraa(u))

Estimate 3 from Poisson log likelihood (spatstat)

Z z(u)ﬁT—/W exp(z(u)8T)du (W = observation window)

ueXNW
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Inhomogeneous Poisson process

Log linear intensity function

p(u; B) = exp(z(u)BT),  2(u) = (1, zeteu (1), Zgraa(u))

Estimate 3 from Poisson log likelihood (spatstat)

Z z(u)ﬁT—/W exp(z(u)8T)du (W = observation window)

ueXNW

Model check using edge-corrected estimate of K-function

Q Ullu —v] < t]
K(t) = _ ~
© ezx:mvv p(u; B)p(v; B)IW N W,y

W,_, translated version of W. |A|: area of A C R
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Implementation in spatstat

> bei=ppp(beilpe$X,beilpeY,xrange=c(0,1000),yrange=c(0,500))
> beifit=ppm(bei, “elev+grad,covariates=list(elev=elevim,
grad=gradim))

> coef(beifit) #parameter estimates

(Intercept) elev grad

-4.98958664 0.02139856 5.84202684

> asympcov=vcov(beifit) #asymp. covariance matrix

> sqrt(diag(asympcov)) #standard errors

(Intercept) elev grad

0.017500262 0.002287773 0.255860860

> rho=predict.ppm(beifit)

> Kbei=Kinhom(bei,rho) #warning: problem with large data sets.

> myKbei=myKest (cbind(bei$x,bei$y) ,rho,100,3,1000,500,F) #my own
#procedure
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K-functions

Beilschmidia Ocotea
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Poisson process: K(t) = mt? (since g = 1) less than K functions
for data. Hence Poisson process models not appropriate.
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Exercises

1. Check that the Poisson expansion (1) indeed follows from the
definition of a Poisson process.

2. Compute the second order product density for a Poisson
process X.

(Hint: compute second order factorial measure using the
Poisson expansion for X N (AU B) for bounded A, B C R?.)

3. (if time) Assume that X has second order product density @
and show that g (and hence K) is invariant under
independent thinning (note that a heuristic argument follows
easy from the infinitesimal interpretation of p(z)).

(Hint: introduce random field R = {R(u) : u € R?}, of
independent uniform random variables on [0, 1], and
independent of X, and compute second order factorial
measure for thinned process Xhin = {u € X|R(u) < p(u)}.)

48 /130



Solution: second order product density for Poisson

#
E > 1ucAveB]
u,veX
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Solution: second order product density for Poisson

#
E ) 1lueAveB]
u,veX
% o~ H(AUB) 7 n
:ZT/ Z l[ueA,veB]Hp(x,-)dxl...dx,,
n=0 (AuB)" u,veX i=1
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Solution: second order product density for Poisson

#
E ) 1lueAveB]
u,veX

e H(AUB)
_Z / Z 1[u € A, veB]pr,)dX1

(AuB)" u,veX

o0

e—H(AUB)
:Z ()/ / 1[X16AXQEB]HpX, Ydxi ... dx,
(AuB)" J(AUB)n

n=2 i=1
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Solution: second order product density for Poisson

#
E ) 1lueAveB]
u,veX

e H(AUB)
7/ Zl[ueA vEB]pr,)dxl
(AUB)"

u,veX

u(AUB)
()/ / 1[X16AXQEB]HpX, Ydxi ... dx,
; (AuB)" J(AUB)"

i=1

D||1

Il
o

n

b%g

n

e—H(AUB)
(n—2pn "

(A)u(B)u(AU B)"~*

Mg

||
N

n

—u(A)u(B) = /A  ep(vdud
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Solution: invariance of g (and K) under thinning
Since Xihin = {u € X: R(u) < p(u)},

+
E Y 1uecAveB]

u7V€Xthin
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Solution: invariance of g (and K) under thinning
Since Xihin = {u € X: R(u) < p(u)},

#
E Y 1uecAveB]
u,vEX¢hin
#
=E Z 1[R(u) < p(u),R(v) < p(v),u € A,v € B
u,veX
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Solution: invariance of g (and K) under thinning
Since Xihin = {u € X: R(u) < p(u)},

+
E Y 1uecAveB]

u,vEXthin

#
=E Z 1[R(u) < p(u),R(v) < p(v),u € A,v € B
u,veX
#
=EE]| Z 1[R(u) < p(u), R(v) < p(v),u € A,v € B]|X]
u,veX
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Solution: invariance of g (and K) under thinning
Since Xihin = {u € X: R(u) < p(u)},

+
E Y 1uecAveB]

u,vEXthin

=E Z 1[R(u) < p(u),R(v) < p(v),u € A,v € B

u,veX
#
=EE]| Z 1[R(u) < p(u), R(v) < p(v),u € A,v € B]|X]
u,veX
_EZ p(v)l[u e A,v € B]

u,veX
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Solution: invariance of g (and K) under thinning
Since Xihin = {u € X: R(u) < p(u)},

+
E Y 1uecAveB]

u,vEXthin

=E Z 1[R(u) < p(u),R(v) < p(v),u € A,v € B

u,veX
#
=EE]| Z 1[R(u) < p(u), R(v) < p(v),u € A,v € B]|X]
u,veX
—EZ p(v)1[u € A,v € B]
u,veX

// (u)p(v (u,v)dudv
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2. Cox and cluster processes
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Cox processes

X is a Cox process driven by the random intensity function A if,
conditional on A = )\, X is a Poisson process with intensity
function .

Calculation of intensity and product density:

p(u) =EA), p(u,v) = E[A(u)A(V)]

Cov(A(u),A(v)) >0 < g(u,v) >1 (clustering)

Overdispersion for counts:

VarN(A) = EVar[N(A) | A|+VarE[N(A) | A] = EN(A)+VarE[N(A) | A]
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Log Gaussian Cox process (LGCP)

» Poisson log linear model: log p(u) = z(u)3"

» LGCP: in analogy with random effect models, take
log A(u) = z(u)B" + W(u)

where W = (W(u)),cg2 is a zero-mean Gaussian process
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Log Gaussian Cox process (LGCP)

» Poisson log linear model: log p(u) = z(u)3"

» LGCP: in analogy with random effect models, take
log A(u) = z(u)B" + W(u)

where W = (W(u)),cg2 is a zero-mean Gaussian process

» Often sufficient to use power exponential covariance functions:

c(u,v) = Cov[¥W(u), W(v)] = o2 exp (—||u - v\|5/a) ,

og,a >0, 0 <6 <2 (or linear combinations)
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Log Gaussian Cox process (LGCP)

» Poisson log linear model: log p(u) = z(u)3"

» LGCP: in analogy with random effect models, take
log A(u) = z(u)B" + W(u)

where W = (W(u)),cg2 is a zero-mean Gaussian process
» Often sufficient to use power exponential covariance functions:

c(u,v) = Cov[¥W(u), W(v)] = o2 exp (—||u — vHé/a) ,

og,a >0, 0 <6 <2 (or linear combinations)
» Tractable product densities

p(u) =EA(u) = FOT V() — exp (z(u)ﬂT + ¢(u, u)/2)

_ENwAW)] _

)P0V ... =exp(c(u,v))

g(u,v)
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Two simulated homogeneous LGCP's

.

7

- loelll - ey

Exponential covariance function

Gaussian covariance function

63 /130



Cluster processes

M ‘mother’ point process of cluster centres. Given M, X,,,, me M
are 'offspring’ point processes (clusters) centered at m.

Intensity function for X,: af(m, u) where f probability density
and « expected size of cluster.

Cluster process:
X = UmGMXm
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Cluster processes

M ‘mother’ point process of cluster centres. Given M, X,,,, me M
are 'offspring’ point processes (clusters) centered at m.

Intensity function for X,: af(m, u) where f probability density

and « expected size of cluster.

Cluster process:
X = UmGMXm

By superpositioning: if cond. on M, the X,,, are independent
Poisson processes, then X Cox process with random intensity

function
ANu) =« Z f(m,u)
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Cluster processes
M ‘mother’ point process of cluster centres. Given M, X,,,, me M
are 'offspring’ point processes (clusters) centered at m.

Intensity function for X,: af(m, u) where f probability density
and « expected size of cluster.

Cluster process:
X = UmGMXm

By superpositioning: if cond. on M, the X,,, are independent
Poisson processes, then X Cox process with random intensity

function
ANu) =« Z f(m,u)

Nice expressions for intensity and product density if M Poisson on
R? with intensity function p(-) (Campbell):

EA(u) =Ea ) f(m,u) = a/f(m, w)p(mydm (= ka if p(-) = &
meM and f(m,u) = f(u= m))

0



Example: modified Thomas process

— _
. Mothers (crosses) station-

ary Poisson point process

. ! M with intensity x > 0.
. _ ' Offspring X = UmnXny

distributed around moth-

ers according to bivariate

' .: X q isotropic Gaussian density
. c f.

w: standard deviation of Gaussian density
«: Expected number of offspring for each mother.

Cox process with random intensity function:

ANu) =« Z flu—mw)

meM
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Inhomogeneous Thomas process

z1.p(t) = (z1(u), ..., zp(u)) vector of p nonconstant covariates.

B1:p = (B1, ... Bp) regression parameter.

Random intensity function:

ANu) = aexp(z(u)l;pﬁir:p) Z flu—mw)

meM
Rain forest example:

21:2(U) = (Zelev(u), Zgrad(u))

elevation/gradient covariate.
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Density of a Cox process

v

Restricted to a bounded region W, the density is

en (w1 [, woe) I

ueX

f(x)=E

Not on closed form

v

v

Fourth lecture: likelihood-based inference (missing data
MCMC approach)

» Now: simulation free estimation
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Parameter Estimation: regression parameters
Intensity function for inhomogeneous Thomas (p(-) = k):

pp(u) = rovexp(z(u)1:pf1.,) = exp(z(u)3")
z(u) = (L, z1:p(v)) B = (log(ra), B1.p)
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Parameter Estimation: regression parameters
Intensity function for inhomogeneous Thomas (p(-) = k):
pp(u) = nacexp(z()1:p01.,) = exp(z(u)BT)
z(u) = (L, z1:p(v)) B = (log(ka), Br.p)

Consider indicators N; = 1[X N C; # )] of occurrence of points in
disjoint C; (W = UG;) where P(N; = 1) = pg(u;)dC;, ui € G
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Parameter Estimation: regression parameters
Intensity function for inhomogeneous Thomas (p(-) = k):

pp(u) = rovexp(z(u)1:pf1.,) = exp(z(u)3")
z(u) = (L, z1:p(v)) B = (log(ra), B1.p)

Consider indicators N; = 1[X N C; # )] of occurrence of points in
disjoint C; (W = UG;) where P(N; = 1) = pg(u;)dC;, ui € G
Limit (dG; — 0) of composite log likelihood

n

[T(ps(u)dC)M (1=ps(ui)d Y =M =TT ps(u) (1-pp(ui)d C) =N
i=1 i=1

is

6)= Y 1o p(ui )= [ pluif)du

ueXNw

Maximize using spatstat to obtain ﬁA
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Asymptotic distribution of regression parameter estimates
Assume increasing mother intensity: x = k, = nk — oo and
M = U_;M;, M; independent Poisson processes of intensity &.

Score function asymptotically normal:

1 dl(ﬂ) _ 1 -
7 Togedi = 77 <u§2wz(“) - nia [ 200 exp(z(”)“’ﬁl”)d”>

- ; (> X - fa [ ewlanw),)] ~ M. V)

meM; ueXpNW

where V =Var v > ex,.aw Z2(U)  (Xp, offspring for mother
m).
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Asymptotic distribution of regression parameter estimates

Assume increasing mother intensity: x = k, = nk — oo and
M = U_;M;, M; independent Poisson processes of intensity &.

Score function asymptotically normal:

1 dl(ﬂ) _ 1 -
7 Togedi = 77 <u§2wz(“) - nia [ 200 exp(z(”)“’ﬁl”)d”>

- ; (> X - fa [ ewlanw),)] ~ M. V)

meM; ueXpNW
where V =Var v > ex,.aw Z2(U)  (Xp, offspring for mother
m).

By standard results for estimating functions (J observed
information for Poisson likelihood):

Vn[(10g(&), B1p) — (log @, B1p)] =~ N(0,J71VI)
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Parameter Estimation: clustering parameters

Theoretical expression for (inhomogeneous) K-function:

K(t;k,w) = mt? + (1 — exp(—t?/(2w)?)) /k.

Estimate x and w by matching theoretical K with semi-parametric
estimate (minimum contrast)

K 1|Ju —v] < t]
K(t) = _ A
( ) u,szX:OW /\(U,ﬂ))\(v,ﬂ”Wﬂ Wu—v‘
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Results for Beilschmiedia

Parameter estimates and confidence intervals (Poisson in red).

Elevation Gradient K « w
0.02 [-0.02,0.06] 5.84 [0.89,10.80] 8e-05 85.9 20.0
[0.02,0.03] [5.34,6.34]

Clustering: less information in data and wider confidence intervals
than for Poisson process (independence).

Evidence of positive association between gradient and
Beilschmiedia intensity.
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Generalisations

> Shot noise Cox processes driven by A(u) = . ,yee Tk(c, V)
where ¢ € R?, v > 0 (® = marked Poisson process)

¥,

02"
(

s
ow b

. Qhizina
. | Lo

s

» Generalized SNCP's... (Mgller & Torrisi, 2005)
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Exercises

1. For a Cox process with random intensity function A, show that
p(u) = EA(u),  p®(u, v) = E[A(u)A(V)]

2. Show that a cluster process with Poisson number of iid
offspring is a Cox process with random intensity function

ANu) =« Z f(m,u)

meM

(using notation from previous slide on cluster processes. Hint:
use void probability characterisation.

3. Compute the intensity and second-order product density for
an inhomogeneous Thomas process.

(Hint: interpret the Thomas process as a Cox process and use
the Campbell formula)
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3. The conditional intensity and Markov point processes

79 /130



Density with respect to a Poisson process

X on bounded S has density f with respect to unit rate Poisson Y
if

€ F) =E(1[Y € FIF(Y))
18|
nl

P(X
> e
= ;) .

/Sn 1x € FIF(x)dxa . dxn (X = {x1, .., x0})
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Example: Strauss process

For a point configuration x on a bounded region S, let n(x) and
s(x) denote the number of points and number of (unordered) pairs
of R-close points (R > 0).
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Example: Strauss process

For a point configuration x on a bounded region S, let n(x) and
s(x) denote the number of points and number of (unordered) pairs
of R-close points (R > 0).

A Strauss process X on S has density

1
Fx) = — exp(Bn(x) + ¥s(x))
with respect to a unit rate Poisson process Y on S and
c =Eexp(Bn(Y) + vs(Y)) (2)

is the normalizing constant (unknown).

82 /130



Example: Strauss process

For a point configuration x on a bounded region S, let n(x) and
s(x) denote the number of points and number of (unordered) pairs
of R-close points (R > 0).

A Strauss process X on S has density

1
Fx) = — exp(Bn(x) + ¥s(x))
with respect to a unit rate Poisson process Y on S and

¢ = Eexp(Bn(Y) + vs(Y)) (2)

is the normalizing constant (unknown).

Note: only well-defined (¢ < o0) if ¥» < 0.
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Intensity and conditional intensity

Suppose X has hereditary density f with respect to Y:
f(x) >0=f(y) >0,y Cx.
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Intensity and conditional intensity

Suppose X has hereditary density f with respect to Y:
f(x) >0=f(y) >0,y Cx.

Intensity function p(u) = Ef(Y U{u}) usually unknown (except for
Poisson and Cox/Cluster).
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Intensity and conditional intensity

Suppose X has hereditary density f with respect to Y:
f(x) >0=f(y) >0,y Cx.

Intensity function p(u) = Ef(Y U{u}) usually unknown (except for
Poisson and Cox/Cluster).

Instead consider conditional intensity

Au,x) = 7'(()(;?)({)”})

(does not depend on normalizing constant !)
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Intensity and conditional intensity

Suppose X has hereditary density f with respect to Y:
f(x) >0=f(y) >0,y Cx.

Intensity function p(u) = Ef(Y U{u}) usually unknown (except for
Poisson and Cox/Cluster).

Instead consider conditional intensity
AMu,x) = 7'(()(;?)({)”})
(does not depend on normalizing constant !)
Note
p(u) = Ef(Y U{u}) =E[Xu, Y)F(Y)] = EX(u,X)
and
p(u)dA =~ P(X has a point in A) = EP(X has a point in AX\A),uc A

Hence, A\(u, X)dA probability that X has point in very small region
A given X outside A.
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Markov point processes

Def: suppose that f hereditary and A(u,x) only depends on x
through x N b(u, R) for some R > 0 (local Markov property). Then
f is Markov with respect to the R-close neighbourhood relation.
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Markov point processes

Def: suppose that f hereditary and A(u,x) only depends on x
through x N b(u, R) for some R > 0 (local Markov property). Then
f is Markov with respect to the R-close neighbourhood relation.

Thm (Hammersley-Clifford) The following are equivalent.
1. f is Markov.
2.

f(x) =[] o)

yCx

where ¢(y) = 1 whenever ||u — v|| > R for some u,v € y.
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Markov point processes

Def: suppose that f hereditary and A(u,x) only depends on x
through x N b(u, R) for some R > 0 (local Markov property). Then
f is Markov with respect to the R-close neighbourhood relation.

Thm (Hammersley-Clifford) The following are equivalent.
1. f is Markov.

2
f(x) =[] ¢(y))

yCx

where ¢(y) = 1 whenever ||u — v|| > R for some u,v € y.
Pairwise interaction process. ¢(y) = 1 whenever n(y) > 2.

NB: in H-C, R-close neighbourhood relation can be replaced by an
arbitrary symmetric relation between pairs of points.
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Modelling the conditional intensity function

Suppose we specify a model for the conditional intensity. Two
questions:

1. does there exist a density f with the specified conditional
intensity 7

2. is f well-defined (integrable) ?
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Modelling the conditional intensity function

Suppose we specify a model for the conditional intensity. Two
questions:

1. does there exist a density f with the specified conditional
intensity 7

2. is f well-defined (integrable) ?

Solution:

1. find f by identifying interaction potentials
(Hammersley-Clifford) or guess f.

2. sufficient condition (local stability): A(u,x) < K
NB some Markov point processes have interactions of any order in
which case H-C theorem is less useful (e.g. area-interaction

process).
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Some examples
Strauss (pairwise interaction):

Au, x) = exp (B—Hbz Ju—v| < R]), f(x) = %exp (Bn(x)—Hbs(x))

vEX
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Some examples
Strauss (pairwise interaction):

Au, x) = exp (B—sz |Ju—v| < R]), f(x) = %exp (ﬂn(x)—kzﬁs(x))

vEX

Overlap process (pairwise interaction marked point process):

A(u, m), )=—exp B+ Y [b(um)nb(u’, m)]) (¢ <0)

(u’,m")ex

where x = {(u1, my), ..., (un, my)} and (u;, m;) € R? x [a, b].
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Some examples
Strauss (pairwise interaction):

Au, x) = exp (B—sz |Ju—v| < R]), f(x) = %exp (ﬂn(x)—Hﬁs(x))

vEX

Overlap process (pairwise interaction marked point process):

A(u, m), )=—exp B+ Y [b(um)nb(u’, m)]) (¢ <0)

(u’,m")ex

where x = {(u1, my), ..., (un, my)} and (u;, m;) € R? x [a, b].
Area-interaction process:

f(x) = % exp (Bn(x)+¥V(x)), A(u,x) = exp (B4 (V({utux)—V(x))
V(x) = | Uyex b(u, R/2)| is area of union of balls b(u, R/2), u € x.

NB: ¢(-) complicated for area-interaction process.
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The Georgii-Nguyen-Zessin formula (‘Law of total
probability’)

B k(o X\{u}) = /SIE[)\(U,X)k(u,X)]du: /SIE![k(u,X)\u]p(u)du

ueX

E'[ | u]: expectation with respect to the conditional distribution of
X\ {u} given u € X (reduced Palm distribution)
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The Georgii-Nguyen-Zessin formula (‘Law of total
probability’)

B k(o X\{u}) = /SIE[)\(U,X)k(u,X)]du: /SIE![k(u,X)\u]p(u)du

ueX

E'[ | u]: expectation with respect to the conditional distribution of
X\ {u} given u € X (reduced Palm distribution)

Density of reduced Palm distribution:

f(x|u) = f(xU{u})/p(u)
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The Georgii-Nguyen-Zessin formula (‘Law of total
probability’)

B k(o X\{u}) = /SIE[)\(U,X)k(u,X)]du: /SIE![k(u,X)\u]p(u)du

ueX

E'[ | u]: expectation with respect to the conditional distribution of
X\ {u} given u € X (reduced Palm distribution)

Density of reduced Palm distribution:

f(x|u) = f(xU{u})/p(u)

NB: GNZ formula holds in general setting for point process on R¢.

Useful e.g. for residual analysis.
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Statistical inference based on pseudo-likelihood

x observed within bounded S. Parametric model A\g(u, x).
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Statistical inference based on pseudo-likelihood

x observed within bounded S. Parametric model A\g(u, x).

Let N; = 1[x N G; # (] where C; disjoint partitioning of S = U;C;.
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Statistical inference based on pseudo-likelihood

x observed within bounded S. Parametric model A\g(u, x).
Let N; = 1[x N G; # (] where C; disjoint partitioning of S = U;C;.

P(N; =1|XNS\ G) =~ N(uj, X)dC; where u; € C.
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Statistical inference based on pseudo-likelihood
x observed within bounded S. Parametric model A\g(u, x).
Let N; = 1[x N G; # (] where C; disjoint partitioning of S = U;C;.

P(N; =1|XNS\ G) =~ Ng(ui, X)dC; where uj € C;. Hence
composite likelihood based on the N;:

n

TT6(ui, x)dC)N (1=Ag(ui, x)dC) " —HA(, ui, X)Vi (1= Mg (uj, x)AC;

i=1 i=1
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Statistical inference based on pseudo-likelihood

x observed within bounded S. Parametric model A\g(u, x).
Let N; = 1[x N G; # (] where C; disjoint partitioning of S = U;C;.

P(N; =1|XNS\ G) =~ Ng(ui, X)dC; where uj € C;. Hence
composite likelihood based on the N;:

n

TT6(ui, x)dC)N (1=Ag(ui, x)dC) " —HA(, ui, X)Vi (1= Mg (uj, x)AC;

i=1 i=1

which tends to pseudo likelihood function

H)\g u,x) exp ( /Ag(u,x)du)

uex
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Statistical inference based on pseudo-likelihood

x observed within bounded S. Parametric model A\g(u, x).
Let N; = 1[x N G; # (] where C; disjoint partitioning of S = U;C;.

P(N; =1|XNS\ G) =~ Ng(ui, X)dC; where uj € C;. Hence
composite likelihood based on the N;:

n

TT6(ui, x)dC)N (1=Ag(ui, x)dC) " —HA(, ui, X)Vi (1= Mg (uj, x)AC;
i=1 i=1

which tends to pseudo likelihood function

H)\g u,x) exp ( /Ag(u,x)du)

uex

Score of pseudo-likelihood: unbiased estimating function by GNZ.
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Pseudo-likelihood estimates asymptotically normal but asymptotic
variance must be found by parametric bootstrap.
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Pseudo-likelihood estimates asymptotically normal but asymptotic
variance must be found by parametric bootstrap.

Flexible implementation for log linear conditional intensity (fixed
R) in spatstat
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Pseudo-likelihood estimates asymptotically normal but asymptotic
variance must be found by parametric bootstrap.

Flexible implementation for log linear conditional intensity (fixed
R) in spatstat

Estimation of interaction range R: profile likelihood (?)
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The spatial Markov property and edge correction

Let B C S and assume X Markov
with interaction radius R.
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The spatial Markov property and edge correction

Let B C S and assume X Markov
with interaction radius R.

Define: 0B points in S\ B of
distance less than R
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The spatial Markov property and edge correction

Let B C S and assume X Markov
with interaction radius R.

Define: 0B points in S\ B of
distance less than R

Factorization (Hammersley-Clifford):

f)=JI o» [ o

yCxN(BUOB) yCx\B:
yNS\(BUOB)#D
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The spatial Markov property and edge correction

Let B C S and assume X Markov
with interaction radius R.

Define: 0B points in S\ B of
distance less than R

Factorization (Hammersley-Clifford):

f)=JI o» [ o

yCxN(BUOB) yCx\B:
yNS\(BUOB)#D

Hence, conditional density of X N B given X\ B
fa(zly) o f(zUy)

depends on y only through 0B Ny.
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Edge correction using the border method
Suppose we observe x realization of X N W where W C S.
Problem: density (likelihood) f(x) = Ef(x U Ys\w) unknown.

Border method: base inference on
e (X N Weprlx N (W \ Weg))
i.e. conditional density of X N Wr given X outside Wik.

+ S
+ +
" 1
D+ ‘
+ + +
+ i
o YoR,
3 R + W
+
+
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Example: spruces
Check fit of a homogeneous Poisson process using K-function and

simulations:

> library(spatstat)

> data(spruces)

> plot(Kest(spruces)) #estimate K function

> Kenve=envelope (spruces,nrank=2)# envelopes "alpha"=4 9,

Generating 99 simulations of CSR ...
1, 2, 3, 4,5, 6,7, 8,9, 10,
11, 12, 13, 14, 15, 16, 17, 18, 19, 20,

Ko
150 200 250 300

100
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Strauss model for spruces

> fit=ppm(unmark(spruces),”1,Strauss(r=2),rbord=2)
> coef (fit)
(Intercept) Interaction
-1.987940 -1.625994
> summary(fit)#details of model fitting
> simpoints=rmh(fit)#simulate point pattern from fitted model
> Kenvestrauss=envelope(fit,nrank=2)

k0
s w0 20
|

100
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Exercises

1. Suppose that S contains a disc of radius € < R/2. Show that
(2) is not finite, and hence the Strauss process not
well-defined, when 1) is positive.

(Hint: 302, (ij)n exp(nB + ¢n(n—1)/2) = o if b > 0.)
2. Show that local stability for a spatial point process density
ensures integrability. Verify that the area-interaction process
is locally stable.
3. (spatstat) The multiscale process is an extension of the
Strauss process where the density is given by

k
f(x) oc exp(Bn(x) + D YmsSm(x))
m=1
where sp,(x) is the number of pairs of points wj, u; with
|lui — uj|| €]rm—1,rm] where0=rg<n <r <---<rg. Fita
multiscale process with k = 4 and of interaction range ry, =5
to the spruces data. Check the model using the K-function.
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Exercises

4. (if time) Verify the Georgii-Nguyen-Zessin formula for a finite
point process.

(Hint: consider first the case of a finite Poisson-process Y in
which case the identity is known as the Slivnyak-Mecke
theorem, next apply Eg(X) = E[g(Y)f(Y)].)

5. (if time) Check using the GNZ formula, that the score of the
pseudo-likelihood is an unbiased estimating function.
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4. Likelihood-based inference and MCMC
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Maximum likelihood inference for point processes

Concentrate on point processes specified by unnormalized density

hg (X),

L hy(x)

fg(X):% 0

Problem: ¢(0) in general unknown = unknown log likelihood

1(6) = log hg(x) — log c(0)
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Importance sampling

Importance sampling: 0y fixed reference parameter:

_ c(9)
1(8) = log hy(x) — log (0)
and
o0) 5 hX)
c(00) " hgy(X)
Hence
c(0) 1R~ he(X)
C(Qo) - m /z—; th(X")

where X% X1, ..., sample from f3, (later).
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Exponential family case

ho(x) = exp(t(x)0")

1(8) = t(x)8" — log c(6)

)~ Ba,exple(X)(0 — 00))

Caveat: unless § — 6y ‘small’, exp(t(X)(6 — 6p)T) has very large
variance in many cases (e.g. Strauss).
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Path sampling (exp. family case)

Derivative of cumulant transform:

d c(6)
a6 % (o)

=y t(X)
Hence, by integrating over differentiable path 6(t) (e.g. line)
linking 6y and 6;:

c(6r) 1 df(s)T
o8 543 = | Euae(01

Approximate Eg(s)t(X) by Monte Carlo and fol by numerical
quadrature (e.g. trapezoidal rule).

ds

NB Monte Carlo approximation on log scale more stable.
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Maximisation of likelihood (exp. family case)
Score and observed information:
U(Q) = t(X) - EGt(X)a J(Q) = Val‘gt(X),

Newton-Rahpson iterations:

0m+1 — Hm + u(em)j(em)—l

Monte Carlo approximation of score and observed information: use
importance sampling formula

Bok(X) = Egy |[(X) exp (£X)(0 —00)T )| /(co/cay)

with k(X) given by t(X) or t(X)Tt(X).
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MCMC simulation of spatial point processes

Birth-death Metropolis-Hastings algorithm for generating ergodic
sample X% X1, ... from locally stable density f on S:

Suppose current state is X', i > 0.
1. Either: with probability 1/2
» (birth) generate new point u uniformly on S and accept
XProp = X7 U {u} with probability

(o fXTU{u})S|
”"”{1’ F(X)(n + 1) }
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MCMC simulation of spatial point processes

Birth-death Metropolis-Hastings algorithm for generating ergodic
sample X% X1, ... from locally stable density f on S:

Suppose current state is X', i > 0.
1. Either: with probability 1/2
> (birth) generate new point u uniformly on S and accept
XpProp = X' U {u} with probability
: f(X"U {u})|S|
min {1’ F(XN)(n+ 1) }
or
> (death) select uniformly a point v € X' and accept
XpProp = X'\ {u} with probability
. FOXI\ {u})n
1, — =
min {1, FXN)[S] J
(if X' = 0 do nothing)
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MCMC simulation of spatial point processes

Birth-death Metropolis-Hastings algorithm for generating ergodic
sample X% X1, ... from locally stable density f on S:

Suppose current state is X', i > 0.
1. Either: with probability 1/2
» (birth) generate new point u uniformly on S and accept
XProp = X7 U {u} with probability
: f(X"U {u})|S|
min {1’ F(XN)(n+ 1) }
or

> (death) select uniformly a point v € X' and accept
XpProp = X'\ {u} with probability

o . 18]

(if X' = 0 do nothing)

2. if accept X/t = XPP: otherwise X/t1 = X',
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Initial state Xo: arbitrary (e.g. empty or simulation from Poisson
process).

Note: Metropolis-Hastings ratio does not depend on normalizing
constant:

F(X"U {u})]S] |5
—— = = ANu, X'
f(X)(n+1) ( )(n—l—l)
Generated Markov chain Xgp, X1, ... irreducible and aperiodic and

hence ergodic: = > oL k(XT) — Ek(X))

Moreover, geometrically ergodic and CLT:

(% mzl k(X') — Ek( X)) — N(0,02)
i=0
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Missing data

Suppose we observe x realization of X N W where W C S.
Problem: likelihood (density of X N W)

fW,g(X) = Efg(x N YS\W)

not known - not even up to proportionality ! (Y unit rate Poisson
on S)

Possibilities:
» Monte Carlo methods for missing data.

» Conditional likelihood
fW@Rﬂ(X N Worlx N (W \ Wag)) x exp(t(x)HT)

(note: x N (W \ WgR) fixed in t(x))
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Likelihood-based inference for Cox/Cluster processes

Consider Cox/cluster process X with random intensity function

ANu) =« Z f(m,u)

meM

observed within W (M Poisson with intensity x).

Assume f(m, -) of bounded support and choose bounded W so that

ANu) =« Z f(mu) forue W
meMnNW

(XN W,MnN W) finite point process with density:

f(x,m;0) = f(m;0)f(xjm;0) = el WI(1=r) on(m) ol W=y A(u)du H/\(u)

uex
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Likelihood

f(x, MN W;0)
f(x, M N W, 6)

L(0) = Egf (x|M) = L(60)Eq, ‘ XN W = x}

+ derivatives can be estimated using importance sampling/MCMC
- however more difficult than for Markov point processes.

Bayesian inference: introduce prior p(6) and sample posterior
p(0, m|x) o< f(x,m; 8)p(0)

(data augmentation) using birth-death MCMC.
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Exercises
1. Check the importance sampling formulas

Eok(X) = o, (K070 /)

and
c(9) ho(X)

— K 3
() ~ by (X) ®)
2. Show that the formula

f(x, M N W;0)
f(x, M N W; )

L(&)/L(&o):Ego[ (Xm W:x]

follows from (3) by interpreting L(6) as the normalizing
constant of f(m|x; #) o f(x, m;6).

3. (practical exercise) Compute MLEs for a multiscale process
applied to the spruces data. Use the newtonraphson.mpp ()
procedure in the package MppMLE.
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