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Background: Tropical rain forest ecology

Fundamental questions: which factors govern the spatial
distribution of rain forest trees and support the high biodiversity of
rain forests ?

I environment: topography, soil composition,...

I seed dispersal: by wind, birds or mammals...

I competition between species

2 / 21



Example: Capparis Frondosa

I observation window

= 1000 m × 500 m

I seed dispersal⇒ clustering

I environment ⇒
inhomogeneity
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Potassium content in soil.

Quantify dependence on environmental variables and seed dispersal
using statistics for spatial point processes.
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Intensity function and product density

Intensity function of point process X on R
2:

ρ(u)dA ≈ P(X has a point in A)
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Intensity function and product density

Intensity function of point process X on R
2:

ρ(u)dA ≈ P(X has a point in A)

Second order product density

ρ(2)(u, v)dAdB ≈ P(X has a point in each of A and B)
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Intensity function and product density

Intensity function of point process X on R
2:

ρ(u)dA ≈ P(X has a point in A)

Second order product density

ρ(2)(u, v)dAdB ≈ P(X has a point in each of A and B)

Pair correlation

g(u, v) =
ρ(2)(u, v)

ρ(u)ρ(v)
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Intensity function and product density

Intensity function of point process X on R
2:

ρ(u)dA ≈ P(X has a point in A)

Second order product density

ρ(2)(u, v)dAdB ≈ P(X has a point in each of A and B)

Pair correlation and K -function (provided g(u, v) = g(u − v) i.e.
X second-order reweighted stationary)

g(u, v) =
ρ(2)(u, v)

ρ(u)ρ(v)
and K (t) =

∫

‖h‖≤t

g(h)dh

NB: for Poisson process, g(u − v) = 1, clustering: g(u − v) > 1.
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Parametric models

Study influence of covariates using log-linear model for intensity
function:

ρ(u;β) = exp(z(u)βT)
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Parametric models

Study influence of covariates using log-linear model for intensity
function:

ρ(u;β) = exp(z(u)βT)

and quantify clustering using parameter ψ in parametric model

K (t;ψ) =

∫

‖h‖≤t

g(h;ψ)dh

for K/g -function.
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Estimating function for β

Maximum likelihood estimation only easy in case of a Poisson
process X in which case log likelihood is

l(β) =
∑

u∈X∩W

z(u)βT −

∫

W

ρ(u;β)du

Poisson score estimating function based on point process X
observed in W :

u1(β) =
∑

u∈X∩W

z(u)−

∫

W

z(u)ρ(u;β)du

also applicable for non-Poisson point processes with intensity
function ρ(·;β) (Schoenberg, 2005, Waagepetersen, 2007)
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Estimating function for ψ

Estimate of K -function:

K̂β(t) =
∑

u,v∈X∩W

1[0 < ‖u − v‖ ≤ t]

ρ(u;β)ρ(v ;β)
eu,v

Unbiased if β = β∗ ‘true’ regression parameter.

Minimum contrast estimation: minimize
∫ r

0

(

K̂β(t)− K (t;ψ)
)2
dt

or solve estimating equation

u2,β(ψ) = |W |

∫ r

0

(

K̂β(t)− K (t;ψ)
)dK (t;ψ)

dψ
dt = 0
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Two-step estimation
Estimate (β̂, ψ̂) by solving

1. u1(β) = 0

2. u2,β̂(ψ) = 0

or, equivalently, solve

u(β, ψ) =
(

u1(β), u2,β(ψ)
)

= 0.

Waagepetersen and Guan (2009): asymptotic normality of (β̂, ψ̂)
for mixing point processes (e.g. Poisson cluster processes).

Essential requirement: u(β∗, ψ∗) asymptotically normal - then
asymptotic normality of (β̂, ψ̂) follows by Taylor expansion

(β̂, ψ̂)− (β∗, ψ∗) ≈ u(β∗, ψ∗)

[

du(β, ψ)

d(βψ)

]−1
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CLT for estimating function

Consider increasing observation windows Wn.

Divide R
2 into quadratic cells

Aij = [i , i + 1[×[j , j + 1[

Wn

Aij

b
b

b

b
b

b

Express Poisson score in terms of lattice process Xij , i , j ∈ Z:

un1 (β) =
∑

u∈X∩Wn

z(u)−

∫

Wn

z(u)ρ(u;β)du =

∑

i ,j





∑

u∈X∩Wn∩Aij

z(u)−

∫

Wn∩Aij

z(u)ρ(u;β)du



 =
∑

ij :Aij⊆Wn

Xij+oP(1)
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Similarly:

un2,β(ψ) = |Wn|

∫ r

0

(

K̂β(t)−K (t;ψ)
)dK (t;ψ)

dψ
dt =

∑

ij :Aij⊆Wn

Yij+oP(1)

since

K̂β(t) =
∑

u∈X∩Wn

∑

v∈X∩Wn

1[0 < ‖u − v‖ ≤ t]

ρ(u;β)ρ(v ;β)
eu,v =

∑

ij :Aij⊆Wn

K̂β,ij(t)+oP(1)

where

K̂β,ij(t) =
∑

u∈X∩Aij

∑

v∈X

1[0 < ‖u − v‖ ≤ t]

ρ(u;β)ρ(v ;β)

estimate of K -function based on X ∩ Aij .

{Xij} and {Yij} multivariate lattice processes.

Apply Bolthausen/Guyoun CLT for mixing lattice processes to
random field {Zij}ij of linear combinations

Zij = Xijx
T + Yijy

T.
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Mixing

Consider E1,E2 ⊆ R
2 and point configurations F1 and F2.

Need polynomial decay of dependence

|P(X ∩ E1 ∈ F1,X ∩ E2 ∈ F2)− P(X ∩ E1 ∈ F1)P(X ∩ E2 ∈ F2)|

as function of distance between E1 and E2.

This can easily be verified for a
Poisson cluster process where
cluster density decays fast
enough.
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X=X1∪X2
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Modified Thomas process

Mothers (triangles) sta-
tionary Poisson point
process intensity κ

Offspring distributed
around mothers according
to Gaussian density with
standard deviation ω

K -function:

K(ω,κ)(t) = πt2 + [1− exp(−t2/(2ω)2)]/κ
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Modified Thomas process

Mothers (triangles) sta-
tionary Poisson point
process intensity κ

Offspring distributed
around mothers according
to Gaussian density with
standard deviation ω

K -function:

K(ω,κ)(t) = πt2 + [1− exp(−t2/(2ω)2)]/κ

Inhomogeneity: offspring survive according to probability

p(u) ∝ exp(z(u)βT)

depending on covariates (independent thinning).

Inhomogenous Thomas process independent thinning of Thomas
⇒ mixing
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Modes of seed dispersal and clustering

Three species with different modes of seed dispersal:

Acalypha Diversifolia explosive
capsules

Capparis Frondosa bird/mammal

Loncocharpus Heptaphyllus wind

Is degree of clustering related to
mode of seed dispersal ?
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Fit Thomas cluster process with log linear model for intensity
function.

Acalypha and Capparis: positive dependence on elevation and
potassium.

Loncocharpus: negative dependence on nitrogen and phosphorous.

Recall ω = ‘width’ of clusters.

Estimates of ω for explosive,
wind and bird/mammal:

5
10

15
20

25
30

Estimates of K -functions for
bird/mammal dispersed species

0 20 40 60 80 100

0
50

00
10

00
0

15
00

0
20

00
0

25
00

0
30

00
0

35
00

0

t

K
(t

)

K inhom.
Thomas
K hom.
K Poisson

19 / 21



Further statistical and biological issues:

I choice of integration limit r for minimum contrast estimation

∫ r

0

(

K̂
β̂
(t)− K (t;ψ)

)2
dt

I variance of K̂
β̂
(t) smaller than variance of K̂β∗(t) hence

better to use β̂ than β∗ when estimating ψ.

I joint modelling of several species (competition)

I how to quantify the relative importance of different sources of
spatial variation ?
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