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Outline:

Background in tropical forest ecology
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Background: Tropical rain forest ecology

Fundamental questions: which factors influence the spatial
distribution of rain forest trees and what is the reason for the high
biodiversity of rain forests ?

Key factors:
> environment: topography, soil composition,...

» seed dispersal limitation: by wind, birds or mammals...
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Data example: Capparis Frondosa

» observation window W
= 1000 m x 500 m

> seed dispersal= clustering

» environment =
inhomogeneity

10

-10 0

-20

Elevation Potassium content in soil.

Quantify dependence on environmental variables taking into
account clustering due to e.g. seed dispersal.



Example: modes of seed dispersal and clustering

Three species with different modes of seed dispersal:

Acalypha Diversifolia explosive Loncocharpus Heptaphyllus wind

ki :

capsules

Quantify how much of the spatial
variation is due to respectively
environment and seed dispersal ?

Differences between species ?

Approach: Cox process model for joint effects of environment and
seed dispersal.
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Outline:

Intensity function and second order summary statistics
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Mean and covariances of counts for spatial point process
Point process X: random point pattern.

For A subset of the plane, count N(A) is number of points in A.

ST ’
EN(A) = / p(u)du . iﬂ A
A bty t:r+ ot 4
p(+): intensity function. @ l 1
E[N(A)N(B)] = / p(u)du + / / dudv
ANB AJB

: second order product density
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Infinitesimal interpretation
Very small A and B = N(A) and N(B) binary:

EN(A) ~ P(X has a point in A) = p(u)|A|, ueA

EN(A)N(B) ~ P(X has a point in each of A and B)
~ p@(u,V)AIB| ueA veB
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Infinitesimal interpretation
Very small A and B = N(A) and N(B) binary:

EN(A) ~ P(X has a point in A) = p(u)|A|, ueA

EN(A)N(B) ~ P(X has a point in each of A and B)
~ p@(u,V)AIB| ueA veB

Pair correlation

P (u,v) B P(X has a point in each of A and B)

glu,v) = p(u)p(v) — P(X has a point in A)P(X has a point in B)
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Infinitesimal interpretation
Very small A and B = N(A) and N(B) binary:

EN(A) ~ P(X has a point in A) = p(u)|A|, ueA

EN(A)N(B) ~ P(X has a point in each of A and B)
~ p@(u,V)AIB| ueA veB

Pair correlation

P (u,v) B P(X has a point in each of A and B)

glu,v) = p(u)p(v) — P(X has a point in A)P(X has a point in B)

= 1 if independence (Poisson process)
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K-function

K(t) = /”h||<tg(h)dh

(provided g(u,v) = g(u — v) i.e. X second-order reweighted
stationary)

11 /64



K-function

K(t) = /”h||<tg(h)dh

(provided g(u,v) = g(u — v) i.e. X second-order reweighted
stationary)

Examples of pair : i

correlation and
K-functions:
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K-function

K(t) = /”h||<tg(h)dh

(provided g(u,v) = g(u — v) i.e. X second-order reweighted

Unbiased estimate of K-function (W observation window):

stationary)

Examples of pair
correlation and
K-functions:

a()

1[0 < |lu —v| < t]

0= T e

u,veXNW

(eu,v edge correction factor)
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Outline:

Poisson and Cox processes
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The Poisson process

X is a Poisson process with intensity function p(-) if for any
bounded region B:

1. N(B) is Poisson distributed with mean u(B) = [z p(u)du
2. Given N(B) = n, the n points are independent and identically

distributed with density proportional to intensity function p(-).

Homogeneous: p = 150/0.7 Inhomogeneous: p(x,y) o< e~10-6¥
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Back to rain forest: parametric models for intensity and
pair correlation

Study influence of covariates

Z(u) = (Z1(u), ..., Zp(u))

using log-linear model for intensity function:

p(u; B) = exp[BZ(u)T]

where

BZ(u)" = p1Z1(u) + BaZo(u) + ... + BpZy(u)
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Capparis Frondosa and Poisson process ?

Fit model with covariates elevation and Potassium.

Estimated K-function and
Fitted intensity function K(t) = mt2-function for

" A oA N Poisson process:
p(u; B) = exp(Bo+P1Elev(u)+B2K(u)) :

0.012

0.008

0.004

Not Poisson process - aggregation due to unobserved factors (e.g.
seed dispersal)
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Cluster process: Inhomogeneous Thomas process (W,

2007)

= & % . . .

. %ﬁg % Parents stationary Poisson point process
fgwf@g ’ intensity
"% o o

7 o.a Offspring distributed around mothers
v e s according to Gaussian density with
x ) standard deviation w
° s

Inhomogeneity: offspring survive
according to probability

p(u) oc exp(Z(u)BT)

depending on covariates (independent
thinning).
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Cox processes

function \.

X is a Cox process driven by the random intensity function A if,
conditional on A = A, X is a Poisson process with intensity

Example: log Gaussian Cox process (Mgller, Syversveen, W, 1998)

log A(u) = BZ(u)T + Y (u)
where {Y'(u)} Gaussian random field.

Da e
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Shot-noise Cox process

Nu) = Z'yvk(u —v)

veC
where
» C homogeneous Poisson with intensity x
» k() probability density.
> -y, iid positive random variables independent of C
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Shot-noise Cox process

Nu) = Z'yvk(u —v)

veC
where
» C homogeneous Poisson with intensity x
» k() probability density.
> -y, iid positive random variables independent of C

NB: equivalent to cluster process with parents C, random cluster
size 7, and dispersal density f.
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Shot-noise Cox process

Nu) = Z'yvk(u —v)

veC
where
» C homogeneous Poisson with intensity x
» k() probability density.
> -y, iid positive random variables independent of C

NB: equivalent to cluster process with parents C, random cluster
size 7, and dispersal density f.

Inhomogeneous shot-noise:
Nu) = exp(BZ(1)") Y wk(u—v)
veC

Inhomogeneous Thomas: inhomogeneous shot-noise with Gaussian

k().
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Moments for Cox processes

Intensity function
p(u) = EA(u)

Second-order product density

PP (u,v) = EN)A(v) = Cov[A(u), A(v)] + p(u)p(v)

Cov[N(A), N(B)] = /A EA(u)du+ /A /B Cov[A(u), A(v)]dudv
— /A e+ /A /B p(0)p(V)[e(u, v) — 1]dudv

— Poisson variance + extra variance due to A
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Log-linear model

A(u) = No(u) exp[BZ(u)]

where Ay stationary non-negative reference process (both log
Gaussian Cox process and inhom. shot-noise of this form).

Log-linear intensity (assume EAg(u) = 1)

p(u) = EA(u) = exp[8Z(u)"]

Pair correlation function (EAg(u) = 1):

g(h) =1+ co(h) co(h) = Cov[o(u), Ao(u + h)]
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Specific models for cy(u — v) = Cov[Ag(u), Ao(V)]

Log-Gaussian:
No(u) = exp[Y (u)]

where Y Gaussian field.

Covariance (Laplace transform):

co(h) = exp[Cov(Y(u), Y(u+ h))] -1
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Specific models for cy(u — v) = Cov[Ag(u), Ao(V)]
Log-Gaussian:
No(u) = exp[ Y (u)]

where Y Gaussian field.
Covariance (Laplace transform):

co(h) = exp[Cov(Y(u), Y(u+ h))] -1
Shot-noise:

No(u) = Z’yvk(u —v)

veC
Covariance (convolution):

co(u —v) = ka? /11@2 k(u)k(u + h)du

(a =E~v,)
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Bessel shot-noise/Matérn covariance

Suppose kernel k(-) given by variance-gamma density (Bessel
density).

Y variance-gamma if Y =V WZ where W ~ T and Z ~ N,(0,/)
= closed under convolution.

Then Matérn covariance function:

ao(h) = o UL

v = 1/2: exponential model ‘v = co':'Gaussian’ (mod. Thomas)

0
0

06 08 1L

06 08 1

00 02 04
00 02 04

00 02 04 06 08 10 00 02 04 06 08 10 27 /64



Outline:

Estimation
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Maximum likelihood estimation for Cox processes

Suppose x observed point pattern (realization of X inside
observation window W). Likelihood (probability density) given A
(Poisson process):

TT Awyexo [ / A(u)du]

uex

Likelihood for Cox process (integrate out unobserved A):

=Ey [ H A(u)exp | /W /\(u)du]]

uex

Problem for Monte Carlo approximation: A = {A(u)},ew infinitely
dimensional quantity.
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Estimation of regression parameters

For log-linear model,

Nu) = exp(BZ(u)")Ao(u)

intensity function is known:

pa(u) = exp(BZ(u)")

Poisson “likelihood"

[ T ps(w)]exp ( /WPB(U)dU)

ueXNw

may be viewed as a composite likelihood for estimating 3.
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Composite likelihood obtained from binary random field
Disjoint subdivision W = U™, C; in —

‘cells’ C;.

Random count variables: T :

N; = N(G;) = #X N C; number of

points in C;.

X; = 1[N; > 0] binary random variable. - 2
Ps(Xi = 1) = pp(ui)| Gil- LAl
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Composite likelihood obtained from binary random field
Disjoint subdivision W = U™, C; in —

‘cells’ C;.

Random count variables: T :

N; = N(G;) = #X N C; number of

points in C;.

X; = 1[N; > 0] binary random variable. - 2
Ps(Xi = 1) = pp(ui)| Gil- LAl

Bernouilli composite likelihood

HPﬂ (1=Pg(X; = 1)) % = Hpﬁ ur) X (1= p(u7) | G %
has limit (|G;| — 0)

[ T ps(w)]exp( /Wpﬁ(U)dU)

ueXNw
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Estimation of pair correlation function

Suppose parametric model g(+; ) for pair correlation.

Some options:

1. minimum contrast estimation based on so-called K-function.

2. second-order composite likelihood: composite likelihood based
on indicators for joint occurrence of points in pairs of cells:

X,-J-:1[N,->Oand N_,'>0]

Ps(Xij = 1) = ps(ui)ps(vj)g(ui — uji 1))
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Minimum contrast estimation for 1)

Computationally easy alternative if X second-order reweighted
stationary so that K-function well-defined.

Estimate of K-function:

: 10 < u—v] <4
K - u,v
= 2 R

Unbiased if 8 ‘true’ regression parameter.

Minimum contrast estimation: minimize
squared distance between theoretical K
and K: ¢ ¥

P

@zargmin/or(AB(t)—K(t;w))2dt :
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Second-order composite likelihood

Second-order composite likelihood (given /):

#
Cly(g|B) = Y logp(u,v;B,¢)

u,veXNW
lu—vl<R

— // P (u, v; B,¢)dudv
lu—v]<R

NB: translation invariance for pair correlation not required.

35
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Two-step estimation

Obtain estimates (ﬁ,?ﬁ) in two steps

1. obtain A using composite likelihood

2. obtain 1/3 using minimum contrast/second order composite
likelihood
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Outline:

Optimal first-order estimating equations - quasi-likelihood
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First-order estimating equations

Score of first order composite likelihood is

d 1
dp o8 L) = ue;w pa(u) /W palu)ds

Special case of unbiased first-order estimating function

@)= 3 o)~ [ Hlaps()ds

ueEXNW w
with ' ()
Pglu
fa(u)
7 ps(u)

This is optimal choice for Poisson process (MLE) but what is
optimal in the clustered case ?
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Asymptotic results - first order estimating function

W
Divide R? into quadratic cells iR
Aj =i, i+ 1[x[j,j+1] *1 %,
Then
ur(B)= Y Uj
AT W
where

U= 30 )= [ fupste)ds

Assuming X is mixing, {U;j}; mixing random field and
|W|™2ue(8) = N(0,%¢)

(CLT for mixing random field {U;;}).
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Mixing

Consider E;, E, C R? and point configurations F; and F».

Need polynomial decay of
IP(XNE1 € A,XNE € FR)—P(XNE € R)PXNE, € FR)|
as function of distance between E; and E;.

This can easily be verified for a shot-noise process where the kernel
density decays fast enough.
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Asymptotic results cntd.

Estimate B solves
ur(8) =0

And (Taylor) A

ur(B) = |WI(5 — B)S¢
where d

S = —Ed’ﬁw(ﬂ)/lWl
It follows that

B N(B, Ve/|WI)

where
Ve =S15,51
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Optimal first-order estimating equation

Optimal choice of f3: smallest asymptotic variance

Ve =S 15¢St

Optimal choice of f3 is solution of Fredholm equation

fa(u) + /W t(u, v)fg(v)du = 22—8, ue W,

where integral equation kernel is

t(u,v) = p(v)lg(u —v) = 1]
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Numerical solution of Fredholm equation

Divide W into cells C; of area w; = |C;| and with representative
points u; € B;.

Matrix-vector approximation of Fredholm equation

Folu) + /W t(u, v)fy(v)du = ZZEZ;
becomes
f+TfF=R'Def=(1+T)'R'D
where
F=Ifs()li T =[wps(u)lg(ui,u;) -1}
and

R = diag[wips(u;)] D = [widp(u;)/dBi],
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Let N; count of points in C;

and

where

Then

where

pi = EN; = wip(u;),

V=R(I+T) =Vl

Vi = VarN; = p; + p2lg(ur, uj) — 1]
V= Cov|[N;, NJ] = ,Ui,uj[g(uiv uj) —1]

f=(+T)'RD=Vv"'D

D= [Widpﬂ(u,‘)/dﬂ/] il [dru‘(ul)/dﬂ/] il
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Inserting stepfunction approximation f into

Z fa(u) — /W fa(u)ps(u)du

ueX
yields
SN A Y Fwia() = (W )
i ueXNB; i i
=(N = w)f
=(N—-p)V~7iD
where

N =[Ni,..., N

(N — p)V~ID is the quasi-likelihood (generalized estimating
equation) based on count data vector N.
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Practical implementation: IGLS

In practice: numerically approximated Fredholm equation =
quasi-likelihood for N.

Pair correlation function inside V' estimated by e.g. minimum
contrast.

Solve for 3 using iterative generalized least squares:

(,B(’H) _/6(/))D(ﬂ(/))T V(,B(’))_ID(,B(’)) — (N—u(,B(’))) V(ﬁ(’))—lD(ﬁ(’))

One issue: use fine discretization (large m) = V highdimensional
matrix - e.g. V 10000 x 10000.

Use tapering and sparse matrix Cholesky from Matrix library in R.
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Simulation study

Consider variance of /3 obtained from either composite likelihood or
GEE.

Reduction in variance for GEE relative to composite likelihood: 6%
to 65%.

Large reductions when strong clustering and strong inhomogeneity.
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Outline:

Decomposition of variance
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Decomposition of variance for a count

Prediction of count N(B) given A :

W(B) = EIVB)IN = [ A(u)du el
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Decomposition of variance for a count

Prediction of count N(B) given A :

N(B):E[N(B)\/\]://\(u)du SRCSICI IR
B LT e
VarN(B) = : + o

variation =
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Decomposition of variance for a count

Prediction of count N(B) given A :

N(B):E[N(B)\/\]://\(u)du SRCSICI IR
B . C e
VarN(B) = Varfl(B) . o

variation = variation A
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Decomposition of variance for a count

Prediction of count N(B) given A :

RI(B) = E[N(B)IA] :/B/\(u)du

VarN(B) = VarN(B) 4 Var[N(B) — N(B)]

variation = variation A + ‘Poisson noise’

Further, A(v) = E[A(u)|Z]
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Decomposition of variance for a count

Prediction of count N(B) given A :

RI(B) = E[N(B)IA] :/B/\(u)du

VarN(B) = VarN(B) + Var[N(B) — N(B)]
variation = variation A + ‘Poisson noise’
Further, A(v) = E[A(u)|Z]

VarA(u) =
structured variation =

SST =
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Decomposition of variance for a count

Prediction of count N(B) given A :

N(B):E[N(B)\/\]:/B/\(u)du Ceeld e

VarN(B) = VarN(B) + Var[N(B) — N(B)] . + +

variation = variation A + ‘Poisson noise’

Further, A(v) = E[A(u)|Z]

VarA(u) = VarA(u)
structured variation = variation due to environment

SST =SSR
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Decomposition of variance for a count

Prediction of count N(B) given A :

W(B) = EIVB)IN = [ A(u)du ETINI

VarN(B) = VarN(B) + Var[N(B) — N(B)] . + +

variation = variation A + ‘Poisson noise’

Further, A(v) = E[A(u)|Z]

VarA(u) = VarA(u) + Var[A(u) — A(u)]
structured variation = variation due to environment + other sources
SST =SSR + SSE
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Measure of influence of environmental covariates Z:

R2 _ SSR  VarE[A(u)|Z]
~ SST  VarA(u)

(right hand side does not depend on u in case of stationary
environment)
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Additive and log-linear models

Model influence of environment using linear model:

Z(u) = BZ(u)"

Additive model:
Au) = BZ(u)T + Ao = Z(u) + No(u)

(superposition of point processes with intensity functions Z and Mg
- convenient for variance decomposition)
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Additive and log-linear models

Model influence of environment using linear model:

Z(u) = BZ(u)"

Additive model:
Au) = BZ(u)T + Ao = Z(u) + No(u)

(superposition of point processes with intensity functions Z and Mg
- convenient for variance decomposition)

Log-linear model
A(u) = exp[BZ(u) "JNo(u) = exp[Z(u)]Ao(u)

(independent thinning of point process Xg with intensity function
No)
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R? for additive and log-linear models
Additive A(u) = Z(u) + Ao(u):

2
R2 — 02

2 2
05+ 0y

022 =VarZ(u) and 02 = VarAo(u)
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R? for additive and log-linear models

Additive A(u) = Z(u) + No(u):

2
R2 — 02

O'% + Jg
022 =VarZ(u) and 02 = VarAo(u)

Log-linear A(u) = exp[Z(u)]Ao(u):

2
o =~
R2 o exp Z
2 21 .2 2
g = g6 |O ~ ~
exp”Z 0[ epo+uepo]

szpé = Varexp[Z(u)] and flop 3 = E exp[Z(u)]
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Estimation: environmental variances

Z observed on grid G = {uj}i=1,. M

Simple empirical estimates, e.g.
JZ M Z
ueG

where

iz = 25 O 2(0)

ueG

and E(u) = BZ(u)T.

61 /64



Three species with different modes of seed dispersal:

Acalypha Diversifolia explosive Loncocharpus Heptaphyllus wind
capsules : .

o SN

F

Estimation using first and
second-order composite
likelihood.

(additive model not second-order
reweighted stationary so
minimum contrast estimation
does not work)
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Results for rain forest data

Species model for A o ACLy(|B) | R?
log-linear | ‘Gaussian’ 27438 0.01

Acalypha Matérn 28507 0.01
additive ‘Gaussian’ 0 0.01

Matérn 1129 0.02

log-linear | ‘Gaussian’ 82007 0.11

Loncocharpus Matérn 82327 0.06
additive ‘Gaussian’ 0 0.17

Matérn 702 0.09

log-linear | ‘Gaussian’ 5013 0.28

Capparis Matérn 5343 0.11
additive ‘Gaussian’ 0 0.29

Matérn 466 0.12

63
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Some conclusions

Covariance functions

for loncocharpus o _
Best fit with Matérn (heavy tails

for covariance/cluster density).

o |» — Matern
N \ --- LG-Matern
\ _- Gasesen Best fit with log-linear model
<7 (interpretation in terms of
- survival).

(
1.0

Largest R? for Capparis
(bird/mammal seed dispersal),
- smallest for Acalypha (explosive
‘ ‘ ‘ — : capsules).

0.0
L
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Thanks to co-authors Yongtao Guan and Abdollah Jalilian
(optimal first-order estimating equations and decomposition of
variance)
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Thanks to co-authors Yongtao Guan and Abdollah Jalilian
(optimal first-order estimating equations and decomposition of
variance)

and

Thanks for your attention !
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