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Inhomogeneous clustered point patterns



Tropical rain forests trees
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» observation window
= 1000 m x 500 m

» seed dispersal = clustering

» covariates = inhomogeneity
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Whale positions
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Aim: estimate whale intensity A
Observation window W = narrow strips around transect lines
Varying detection probability: inhomogeneity (thinning)

Variation in prey intensity: clustering



Intensity function and product density

Intensity function of point process X on R?:

p(u)dA =~ EN(A) ~ P(X has a point in A)
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Intensity function and product density

Intensity function of point process X on R?:
p(u)dA =~ EN(A) ~ P(X has a point in A)
Second order product density

p®(u, v)dAdB ~ P(X has a point in each of A and B)

Pair correlation and K-function (provided g(u,v) = g(u — v))

P (u,v) N
g(o.v) = L5 and k()= [ 1{jul] < da(u)de

NB: for Poisson process, g(u — v) = 1, clustering: g(u —v) > 1.



K-function for tropical trees (adjusted for inhomogeneity
due to covariates)
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Estimate of K adjusted for inhomogeneous intensity function p(u):
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K-function for whales (adjusted for inhomogeneity due to
thinning)

K@)

Poisson process not appropriate.



Common features

» inference concerning intensity is of main interest

» need to account for clustering when assessing uncertainty of
parameter estimates



Cox processes



Cox processes

X is a Cox process driven by the random intensity function A if:

conditional on A = A, X is a Poisson process with intensity
function .



Log Gaussian Cox process (LGCP)

LGCP:

log A(u) = U(u)

where U = (U(u)),er2> Gaussian
process

E.g. exponential covariance
function:

c(u,v) = Cov[U(u), U(v)]
= o2 exp (—||u — v||/¥)

o< variance and 1 correlation
scale parameter.
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Example: modified Thomas process

L g .
- Mothers (crosses) station-

ary Poisson point process

) Y M with intensity x > 0.
M ' Clusters X,,, m € M Pois-

son processes of offspring

dispersed according to k =

.- 3 q bivariate isotropic Gaussian

density.

w: standard deviation of Gaussian density
«: Expected number of offspring for each mother.

Cox process with random intensity function:

ANu) =« Z k(u—m;w)

meM



Inhomogeneous Cox process

z1.p(t) = (z1(u), ..., zp(u)) vector of p nonconstant covariates.

B1:p = (B1, ... Bp) regression parameter.

Inhomogeneous random intensity function:

Ainhom(u) = exp(z(u)l:pﬁ{:p)/\(u)

Rain forest example:

21:2(U) = (Zelev(u)7 Zgrad(u))

elevation/gradient covariate.



Interpretation in terms of thinning

Survival probabilities

Homogeneous Cox process

p(u) o< exp(z1:2(v)B7.,)
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Intensity function and product density for Cox processes

Intensity and product density for inhomogeneous Cox process
(Ainhom(u) = exp(z(u)l:pﬁIP)A(U)):

p(u) = Il“—-ﬂ/\inhom(u)’ p(2)(u’ V) = IE[/\inhom(u)/\inhom(v)]



Intensity function and product density for Cox processes

Intensity and product density for inhomogeneous Cox process
(Ainhom () = exp(2(u)1:p B ,)A(u)):

p(t) = ENighom (1), p1? (1, v) = E[Ainhom () Ainhom ()]
For LGCP and inhomogeneous Thomas:
p(u) = exp(z(u)87)  z(u) = (L z1(u),- .., 2p(u)) B = (Bo,br,-.,05p)
and Gy = 02/2 (LGCP) or log ko (Thomas).



Intensity function and product density for Cox processes

Intensity and product density for inhomogeneous Cox process

(Ainhom (1) = exp(2(u)1:p51,,)M()):
p(1) = ENinhom (1), 2@ (1, v) = E[Ainhom () Ainhom (V)]
For LGCP and inhomogeneous Thomas:
p(u) = exp(z(u)8")  2(u) = (L, 21(u),- -, 25(v)) B = (Bo:Sr,- -, p)
and By = 02/2 (LGCP) or log ka (Thomas).
Pair correlation functions:

u oy — 3 eele(llu=v)) LGCP
glu.v) = {1+exp(—||u—v|]2/(4w2))/(47rw2/<c) Thomas



Estimating functions for inhomogeneous Cox processes



Composite likelihood for 3 based on intensity function

Consider indicators N; = 1[XN G £ 0] | | A
of occurrence of points in disjoint C; T

(W = UG;) where

P(N; = ].) ~ pﬁ(u;)dC;, u; € C,'

(quadrat count approach) =




Composite likelihood for 3 based on intensity function

Consider indicators N; = 1[X N C; # 0] soba T
of occurrence of points in disjoint C; S
(W = UG;) where

P(N; = ].) ~ pg(u;)dC;, u; € C,'

(quadrat count approach) =

Limit (dG; — 0) of composite likelihood

n

[T(ps(u)dC)M (1=ps(ui)d Y =M = TT ps(ui) (1—pp(ui)d C) =N

i=1 i=1

= I o= [ pa(w)an)

ueXNW

is



Estimating function

Composite likelihood
= 11 mlwes- [ (o)
uEXNW w

equivalent with Poisson likelihood.

Estimating function given by Poisson score (pg(u) = exp(z(u)BT)):
u(0) = 15108 L(0) = 3 2lw) = [ z(ups(u)du
uEXNW w

Solve
u(B) =0

using R package spatstat (Baddeley and Turner).



Parameter Estimation: clustering parameters
Theoretical expression for K-function (Thomas process):

K(t;k,w) = mt? + (1 — exp(—t?/(2w)?)) /k.



Parameter Estimation: clustering parameters
Theoretical expression for K-function (Thomas process):

K(t;k,w) = mt? + (1 — exp(—t?/(2w)?)) /k.
Semi-parametric estimate

10 < ||lu—v| < t]

K(t) = p3(W)ps(VNIW N W, |

u,veXNw




Parameter Estimation: clustering parameters
Theoretical expression for K-function (Thomas process):

K(t;k,w) = mt? + (1 — exp(—t?/(2w)?)) /k.
Semi-parametric estimate

10 < ||lu—v| < t]
P IW O Wy

K(t) =
u,veXNw
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Asymptotic distribution of parameter estimates

Waagepetersen (2007): asymptotic normality of 3 using infinite
divisibility of inhomogenous cluster process.

Waagepetersen and Guan (2007): asymptotic normality of (B,qﬁ)
(¢ clustering parameter) for mixing Cox processes (including
inhom. LGCP and Thomas).

Asymptotic covariance matrix of 3: 1=1VI=1 where | Fisher
information for Poisson likelihood and V variance of Poisson score.

(NB: V = for Poisson process and V — [ extra variance due to
clustering).



Simulation study

Quantile plots of ﬁAe|eV, R, and @ (expected numbers 50 for mothers
and 800 for offspring)
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Results for Beilschmiedia

Parameter estimates and confidence intervals (Poisson in red).

Elevation Gradient K w
0.02 [-0.02,0.06] 5.84 [0.89,10.80] 8e-5 [4e-5,1.5e-4] 20.0 [15,26]
[0.017,0.026] [5.340,6.342]

Clustering: less information in data and wider confidence intervals
than for Poisson process (independence).

Evidence of positive association between gradient and
Beilschmiedia intensity.

Same results for LGCP since estimating functions only depend on
first and second order properties.



Maximum likelihood inference for thinned Cox processes



Shot-noise Cox process model for whales

Whales: stationary Cox process Y with random intensity function

Nu) = Z vk(u —¢)

(c,y)ed

® homogeneous marked Poisson process of marked cluster centres
(c,7) where v ~ I'(«, 1).



Shot-noise Cox process model for whales

Whales: stationary Cox process Y with random intensity function

Nu) = Z vk(u —¢)

(c,y)ed

® homogeneous marked Poisson process of marked cluster centres
(c,7) where v ~ I'(«, 1).

p(u) detection probability of observing whale at location w.

Observed whales: X thinning of all whales Y i.e. inhomogeneous
Cox process with random intensity function

p(u)A(u)

Note: X_ops = Y \ X and X independent Poisson processes given
d.



Parameters

Assume p(u) known.

Assume k(-) bivariate Gaussian density truncated to have bounded
support.

Parameters:
K intensity of cluster centres ¢
a = Ev (expected cluster size)

w standard deviation of Gaussian density



Likelihood function for one transect
A transect:

W: support of p(-). E: k(u—c)=0ifccR?>\ Eand uec W.



Likelihood function for one transect
A transect:

W ! U

W: support of p(-). E: k(u—c)=0ifccR?>\ Eand uec W.

Likelihood: 6 = (k, o, w)
1. x observed whales in W with conditional Poisson density

f(x|®; w) :exp(/W( p(u)A(u))du) Hp

uex

L(H) = E(n,a)fG(x|¢; w) = E(n7a)f(X|¢ nE; w)



Derivatives of likelihood function
& = &N E finite marked Poisson process with density

f(¢; 5, ) = elFI0=) @) TT 42 T exp(—7)/T ()
(e

Joint density of X and ®:

f(x,0; K, a,w) = f(x|¢; w)f(P; K, @)



Derivatives of likelihood function
& = &N E finite marked Poisson process with density

f(¢; 5, ) = elFI0=) @) TT 42 T exp(—7)/T ()
(e

Joint density of X and ®:

f(x, @ik, a,w) = F(x|o; w)f (¢; 5, )
Let
Vo(X, ®g) = dlog (X, ®g; 0)/do
Score function and observed information

u(®) = d'%;(e) = Eg[Vy(X,®g)[X =x] and

i) = —Ee[%m — x| — Varg[Vo(X, ®£)|X = x]



Importance sampling

0 = (k,a,w)

&y, dq, ..., P, sample from f(¢|x;00) = F(x, p;00)/f(x; bp) for
fixed 90 = (/ﬁo,Oéo,Ldo)

f(x;6p) f(x,®;0)
f(x,0) oo [K( )f(x;cb;ao)

Eo[k(®)]X = x] = X =]

f(xi60) 1 i K(@,) (% ®mi0)

- f(x,0) e f(x; ®,;00)
f(xi0) L) 1S f(x,Pmib)
f(X,Ho) 90) Z f X ¢m,90)

Hence Monte Carlo approximations of likelihood ratios, score, and
observed information.



Markov chain Monte Carlo
Conditional density of ®g given X = x:

F(plx) o< F(9)F (x|o) = F(p) e Jw PN TT h)A(ulg)

uex

Computation of [, p(u)A(u|¢)du not straightforward.



Markov chain Monte Carlo
Conditional density of ®g given X = x:

F(plx) o< F(9)F (x|o) = F(p) e Jw PN TT h)A(ulg)

uex

Computation of [, p(u)A(u|¢)du not straightforward.

Demarginalisation impute X_ps = (Y N W) \ X:

Full conditional distributions for (®, X_ops):

X-obs|®£, X Poisson((1 — p(-))A(|#))
O£ [X obs, X 1 F(]x, Xobs) ¢ F(p) e Iw AU TT - A(u]g)

UEXUX s



Markov chain Monte Carlo
Conditional density of ®g given X = x:

F(plx) o< F(9)F (x|o) = F(p) e Jw PN TT h)A(ulg)

uex

Computation of [, p(u)A(u|¢)du not straightforward.

Demarginalisation impute X_ps = (Y N W) \ X:

Full conditional distributions for (®, X_ops):

X obs|PE, X : P0|sson(( p()A(- |gb))
O£ [Xoghs: X 0 F(B]x,Xoobs) o< F(g) e AT A(ulg)
UEXUX s
MCMC (Metropolis-within-Gibbs):
> X_obs|®Eg, X: straightforward.

> ®|X_ops, X: birth/death MCMC updates (Geyer & Mgller
1994).



Maximization of likelihood

Likelihood based on all transects: multiply likelihoods for the
different transects (approximately independent)

Maximize with respect to (k,a) for finite set of w values
(Newton-Raphson)

Profile log likelihood
function

/P(w) = : 40
maxy o log L(k, a, w):

nnnnn

MLE: £ =0.025 & = 2.4 & = 0.6.

95 % Confidence interval for whale intensity A = ka: [0.03;0.08]
(parametric bootstrap)



Model check using K-function

Plot based on L(t) —t = /K(t)/m —t

Lo-t




Bayesian approach

Use MCMC to sample posterior joint posterior of (k, o, w, Pg):
f(k, a,w, ¢|x) o< f(x|p; w)f(¢; k, a)p(k, a,w)

where p(k, a,w) prior distribution.

(algorithm as before but extended with updates of parameters)

Posterior for w:

Bayesian 95% credibility interval
for A: [0.04;0.08]




Summary

Estimating functions:

» computationally fast

> R packages available: spatstat and InhomCluster

Likelihood-based inference:

» statistically more efficient
» long computations for MLE (Bayesian easier)

» no standard software
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