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1Topological data analysis
In 2D

I q = 0 corresponds to connected components in the union of
balls.
I Interpretation: clusters.
I A component dies when two components merge.

I q = 1 corresponds to connected components in the complement
of the balls.
I Interpretation: voids.
I When a new component appears, we say that it is born.
I When it gets covered again, we say it dies.



2The persistence diagram

The information is summarized in the persistence diagram (q=1):

birth

death



3Persistent Betti numbers

I The persistent Betti numbers are given by the number of pairs
born before b and dead after d .

birth

(b, d)

death



4Topological data analysis for point pat-
terns

I TDA was invented for deterministic point patterns.

I Possibly measured with small amount of noise.

I In practice, many point patterns are realizations from a
probability distribution.



5Point processes

A point process P is a random set of points in Rd which is a.s. locally
finite:

I For any bounded B ⊆ Rd , P ∩ B is finite.

Examples:

Independence Clustering Repulsion



6The persistence diagram

It seems that the persistence diagram can distinguish between
different types of point patterns (q=1):



7The Poisson process
Complete spatial randomness

The (homogeneous) Poisson point process P is a point process on
Rd given by:

1. For any bounded set B ⊆ Rd :

#(P ∩ B) ∼ po(ρ|B|).
2. Given #(P ∩ B) = n, the points in P ∩ B are independent and

uniformly distributed in B.

Property:

I If B1 and B2 are disjoint, then
P ∩ B1 and P ∩ B2 are
independent.



8Poisson cluster process
A clustered process

A Poisson cluster process is defined as follows:
I Start from a Poisson process P.
I Replace each point in P by a random cluster (finite point set).

Matérn cluster process:

I Each cluster is Poisson
distributed in Br (x).



9Gibbs point process
Often repulsive

For a finite point configuration η ⊆ Rd , associate the energy E(η).
I E is positive, increasing, translation + rotation invariant.
I Finite interaction range r0 ("sufficiently small").

r0

The finite volume Gibbs process on a bounded set B ⊆ Rd is
absolutely continuous wrt. the Poisson process on B with intensity τ .

The density is
η 7→ exp(−βE(η))/Z (B).

Does not extend to all of Rd !
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10Gibbs processes
Examples

Hardcore process:
I If there exist x , y ∈ η such that |x − y | ≤ r0 then E(η) =∞.
I Otherwise E(η) = 1.

Strauss process:

E(η) = c1nr0 (η),

where
I nr0 (η) is the number of pairs

x , y ∈ η with 0 < |x − y | ≤ r0,
I c1 > 0.



11Statistics based on tda

Suppose we observe a point pattern P.

H0 : P ∼ P0.

Possible summary statistics:
1. Compare βb,d

q (P) to Eβb,d
q (P0) for fixed b,d .

2. Consider whole function (b,d) 7→ βb,d
q (P) on [0,T ]× [0,T ].

3. Consider a derived functional, e.g.

I
∑

(b,d) f (b, d), for f "nice".
I APFq(r) =

∑
(b,d)(d − b)1{b ≤ r}, (Biscio/Møller, 2019).
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12Some limit theorems

I Suppose we observe Pn = P ∩Wn in the window

Wn =
[
− n1/d

2
,

n1/d

2

]d
.

I Only one realization available.
I Consider the limit when n→∞.

Theorem (Hiraoka, Shirai, Trinh (2018))
For all point processes in this talk, there exists a constant βb,d

q such
that
I limn→∞

1
nEβ

b,d
q (Pn)→ βb,d

q

I limn→∞
1
nβ

b,d
q (Pn)→ βb,d

q a.s.



12Some limit theorems

I Suppose we observe Pn = P ∩Wn in the window

Wn =
[
− n1/d

2
,

n1/d

2

]d
.

I Only one realization available.
I Consider the limit when n→∞.

Theorem (Hiraoka, Shirai, Trinh (2018))
For all point processes in this talk, there exists a constant βb,d

q such
that
I limn→∞

1
nEβ

b,d
q (Pn)→ βb,d

q

I limn→∞
1
nβ

b,d
q (Pn)→ βb,d

q a.s.



13Central limit theorems for persistent Betti
numbers

Poisson case:
Yogeshwaran, Subag, Adler (2017), Hiraoka, Shirai, Trinh (2018):

βb,d
q (Pn)− E[βb,d

q (Pn)]
√

n
=⇒ N(0, σ2).

Gibbs case:
Hirsch, Otto, S. (in progress):

βb,d
q (Pn)− E[βb,d

q (Pn)]
√

n
=⇒ N(0, σ2).

Note: σ2 > 0 whenever the energy E is finite.



14Central limit theorems for persistence di-
agrams

M-bounded persistence pairs: only allow components with spatial
diameter less than M.

Let f : [0,T ]2 → R be bounded and define

ξf (P) =
∑
(b,d)

f (b,d).

Theorem (Biscio, Chenavier, Hirsch, S. (2020))
Let P be a Poisson, Matérn cluster, or log-Gaussian point process in
R2. Fix M,T > 0. Then,

ξf (Pn)− E[ξf (Pn)]

Var(ξf (Pn))
→ N(0,1).



15Functional CLTs

M-bounded persistent Betti-numbers: βb,d
1,M(Pn) only counts

components with spatial diameter less than M.

Theorem (Biscio, Chenavier, Hirsch, S. (2020), Biscio, S.
(2022))
Let P be a Poisson, Matérn cluster, log-Gaussian or Gibbs point
process in R2. Fix M,T > 0. Then,{

βb,d
1,M(Pn)− E[βb,d

1,M(Pn)]
√

n

}
b,d∈[0,T ]2

converges in Skorokhod topology to a centered Gaussian process on
[0,T ]2.

Botnan, Hirsch (2023): Generalizations in the Poisson case.



16Derived results

New CLTs can be derived from the functional CLT via the continuous
mapping theorem.

Example: The accumulated persistence function

APFq(r) =
∑
(b,d)

(d − b)1{b ≤ r}.

Corollary
The process {

√
n(APFq(r)− EAPFq(r))}r∈[0,R] converges to a

centered Gaussian process.
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17The minicolumn dataset (Nyengaard et
al.)

I 634 brain neurons from human cerebral cortex
I Neurons tend to arrange in vertical columns
I 3D image projected to 2D
I Minicolumns would correspond to clusters in 2D



18Persistence diagram for minicolumn data

Dataset Poisson



19Accumulated persistence function

H0 H1

p = 0.0018 p = 0.00031



20About the proof

Rely on general CLTs for geometric functionals of the form:
I Hn(Pn) =

∑
x∈Pn

g(x ,Pn).

Gibbs processes:
I CLT by Xia, Yukich (2015).

Other processes:

I CLT by Błaszczyszyn, Yogeshwaran, Yukich (2019)
I Requires variance is Ω(n)



21Variance lower bound

Idea of Xia and Yukich (2015), Biscio, Chenavier, Hirsch, S. (2020):

I Conditioned on the blue set
and Λ, the red squares are
independent.

I Lower bound on variance by
sum of conditional variances
of red squares.

I Each has conditional
variance bounded from
below.

I Number of red squares is
Ω(n).



22Summary

I TDA can be used to capture fine structure of a point pattern.

I CLTs are available, but still somewhat incomplete.

I Attempts to generalize to other random structures, e.g.
I Random networks (Hirsch, Krebs 2022)
I Random tesselations (Hirsch, Krebs, Redenbach 2023+)

I Disadvantages of TDA: results may be hard to interpret
geometrically.
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