
Low-resource Data Modelling for Speech and Audio: Perspectives from
Statistics and Machine Learning

Sneha Das (sned@dtu.dk), Section for Statistics and Data Analysis

DSTS two-day meeting, May 2023



Speech-technology is all around us!

Automatic 
speech 

recognition

Voice 
biometrics

Voice 
activity 

detection

Smart 
speakers

Speech 
synthesis 

Voice 
conversion

Speech 
emotion 

recognition

C
ita

tio
ns

 (S
pe

ec
h)

Source: speech and audio Free text in full data from app.dimensions.ai (07.05.2023)
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WristAngel: Intervention and Research for OCD Treatment in Child and Adolescent Psychiatry

PIs of project WristAngel
• Line H. Clemmensen DTU Compute
• Nicole Nadine Lønfeldt Child and Adolescent Mental Health Center, Copenhagen
• Anne Katrine Pagsberg Faculty of Health, Department of Clinical Medicine, KU

Audio Motion-dataVideo Bio-signals

Intervention and management for OCD

● Emotion detection
● Entrainment

● Gestures
● parent-child interaction

● Family accommodation
● Parent-child synchrony

● Emotion detection
● Severity and disorder 

progression
● Treatment effectiveness
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Speech processing
Examples
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Speech processing
Speech processing: preliminaries

Glottal 
excitation 

model

Noise-like 
excitation 

model

Vocal tract 
response

Lip radiation 
model Speech produced

• Speech: looks like a time series data. Spectrogram, Quasi-stationary
• Speech generation: Glottal excitation shaped by vocal tract
• Multiple sources together → Speech signal1

[1] S. Das, Robust and Efficient Methods for Distributed Speech Processing - Perspectives on Coding,
Enhancement and Privacy, PhD Dissertation (2021)
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Source: https://www.csail.mit.edu/research/automatic-speech-recognition

8 DTU Compute 11.5.2023



Existing challenges
Table of Contents

• Speech processing
• Examples
• Speech generation
• Speech processing

• Existing challenges

• Low-resource methods
• Resource constraints
• Ex1: Modelling emotions from speech
• Ex2: Automatic speech recognition

• Conclusions

9 DTU Compute 11.5.2023



Existing challenges
Large (language) models → ChatGPT
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Existing challenges
Issues

11 DTU Compute 11.5.2023



Existing challenges
Biases

[Chen, et.al, 2020] [Das, et.al, 2021]
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Low-resource methods
Low-resource machine learning

• Transfer-learning, Few-shot and N-shot learning, Zero-shot ...

• What do these words mean?
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Low-resource methods
In this talk...
[Clemmensen, L, et al. JMIR Research Protocols 2022]
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Low-resource methods
Audio-features → (Simple!) Emotion-recognition

• Input-features: descriptive features of speech features (f0, tonality, intonation, etc)

• Input-features R88×1 → Support vector machine (SVM) [Das, S, et al. 2021]

Source Target
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Low-resource methods
Audio-features → Feature-embedding → Emotion-recognition

• Learning emotion-relevant representations of speech!

• (Denoising) Autoencoder, DAE [Lu, Xugang, et al. 2013]
• Learns the subspace where the noise free input exists (Type of regularization)
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Low-resource methods
Denoising autoencoder

x ∈ R88×1

xn = x +N (0, σn) arg min
fθ,gφ
Lrec = E‖x−gφ(fθ(xn))‖22,

[Das, S, et al. NLDL 2022.]
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Low-resource methods
Latent representation of the model

[Das, S, et al. ICASSP 2022.]
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Low-resource methods
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Low-resource methods
Discrete point-estimates → Continuous densities
• DAE: Generated latent space is discontinuous → no meaning in the gaps of the space.

• Emotions are not discrete!
Activation

Valence

Sad

Happy

Angry

NeutralNegative Positive

Low

High

Distressed
Anxious
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Low-resource methods
Variational autoencoder (VAE)

The loss function:
argmin

θ,φ
Lrec + LKL = −Ez∼qθ(z|x) log pφ(x|z)

+DKL(qθ(z|x)||p(z)),
(1)
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Low-resource methods
Posterior collapse (VAE) and KL-annealing

argmin
θ,φ

Lrec + βLKL = −Ez∼qθ(z|x) log pφ(x|z)

+βeDKL(qθ(z|x)||p(z)),
(2)

where the standard formulation of βe:

βe =

f(τ) = 0.25
R τ, τ ≤ R

0.25, τ > R where τ = mod(e−1, T
M

)
T
M

,

(3)

[Das, S, et al. ICASSP 2022.]
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Low-resource methods
Transferability: What variable to condition on?
Emotion class (discrete) or dimensional model (continuous)?
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Low-resource methods
Emotion-class constrained VAE

Centre Loss [Das, S, et al. ICASSP 2022.]:

argmin
θ,φ

Lrec + βeLKL + γLclus,

Lclus = Dintra
Dinter

=

K∑
k=1

∑
∀i∈k

D(zi, zk)

K−1∑
k=1

K∑
j=k+1

D(zk, zj)
,

(4)

z¹

z²

24 DTU Compute 11.5.2023



Low-resource methods
Dimensional-model constrained VAE

• Metric learning: models learning based on similarity and dissimilarity.

• Contrastive, centre-loss, triplet-loss
• Problem: No loss function to learn continuous contrasts.
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Low-resource methods
VAE with metric-loss

• We came up with one: Continuous metric loss.

• Minimize slope and residual.

arg min
fθ,gφ

Lrec + LKL + Lmet = Lrec + LKL + Lres + Lsl, (5)

Lres = E‖zd − ẑd‖22, ẑd = pld, ld = d(li, li+1) (6)

p = (ldT ld)−1ldT zd (7)

Lsl =
∥∥∥∥ ẑd(a1)− ẑd(a2)

ld(a1)− ld(a2) − 1
∥∥∥∥

2
, (8)
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Low-resource methods
Some results

Evaluation criteria: Rank-order correlation, classification-accuracy [Das, S, et al. ISCA SPSC
symposium 2022.]

Table: Spearman’s rank order correlation for the validation and transfer datasets aggregated over all
model runs with different folds and random initial seeds. Higher correlation implies a larger
correspondence to the ground truth labels (activation).

Method IEMOCAP (µ± σ) EMO-DB (µ± σ) CAFE (µ± σ) URDU (µ± σ) AESD (µ± σ)
Transfer Supervised Transfer Supervised Transfer Supervised Transfer Supervised Transfer Supervised

Unsupervised 0.26± 0.17 0.26± 0.17 0.31± 0.22 0.31± 0.22 0.24± 0.14 0.24± 0.14 0.12± 0.1 0.1± 0.07 0.18± 0.11 0.16± 0.09
Metric-cluster 0.19± 0.14 0.19± 0.14 0.23± 0.16 0.28± 0.19 0.12± 0.08 0.07± 0.04 0.07± 0.06 0.09± 0.07 0.12± 0.06 0.11± 0.05
Metric-act 0.76± 0.05 0.76± 0.05 0.53± 0.08 0.61± 0.04 0.35± 0.04 0.39± 0.03 0.38± 0.05 0.39± 0.05 0.31± 0.01 0.31± 0.01
Metric-val 0.29± 0.11 0.29± 0.11 −0.05± 0.03 0.27± 0.24 0.31± 0.09 0.32± 0.1 0.03± 0.08 0.07± 0.1 0.01± 0.05 0.14± 0.1
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Legend:              Kernel density (IEMOCAP)

• Scatter range and
orientation wrt
KDE: Metric-act
→ Unsupervised.

• Lower correlation
for CAFE, URDU,
AESD →
Different language
family (Needs
dedicated
investigation).
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Automatic Speech Recognition and Transcriptions
• Clinical documentation
• Screening, diagnosis, management.
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Low-resource methods
Automatic Speech Recognition and Transcriptions

1 State-of-the-art Models → English + Adults

2 State-of-the-model for Danish → Alvenir

3 Challenges:
• Transcribe speech from children in Danish
• Clinical conversations between clinician and child.
• Do we have data?
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Low-resource methods
Baseline and Wav2vec Model

Post
projection 

Layer
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Low-resource methods
Fine-tuning model using children’s dataset

• Testing on Alvenir + Plunkett
• Catastrophic forgetting → Not acceptable (!)
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Low-resource methods
How to avoid Catastrophic forgetting?[J. Kirkpatrick, et.al, 2017]
• Elastic weight consolidation: L(θ) = LB(θ) +

∑
i

λ
2Fi(θi − θ

∗
A,i)2
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Low-resource methods
Elastic weight consolidation

source: https://www.deepmind.com/blog/enabling-continual-learning-in-neural-networks
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Low-resource methods
Results
Performance of the best model1

BL on Plunkett

BL on Clinical

BL on Alvenir

[1] Garofalaki. M, Speech and natural language processing for clinical in-the-wild data 2023.
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Conclusions
Summary

• As models getting larger (hungrier for data!), so is the need to devise (smarter!) methods.
• Carefully devise loss-functions.
• Need to re-visit how we evaluate ML/DL models.
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Thankyou!
Email: sned@dtu.dk; @dassneh
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