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Overview

Motivation:

• Topological Data Analysis (TDA) is a new field at the intersection
of several mathematical fields.

• Various approaches depending on your scientific field.

• Many new concepts: Topology, Homology, Persistence, Quiver,
cycle, Reeb graph, mapper, Morse Theory ...

• Require background in field traditionally unknown by most
statisticians.

Aim of this talk:

• To provide the basic concepts and vocabulary appearing in TDA.

• To provide an introduction to Anne Marie’s talk.
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TDA – History and Showcases
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Where is TDA coming from ?

The theory and main objects can be trace back to the 90s:

• Early concept of persistence, Frosini (1992)

• New descriptor: Persistent Betti numbers, Robins (1999)

• The currently most used object: Persistence Diagram,
Edelsbrunner et al. (2000)

Other approaches have been developed since then

• Mapper: Singh et al. (2007)

• UMAP – Uniform Manifold APproximation: McInnes et al. (2018)

All of them have been used for different applications.
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Applications – Dimension reduction

Encoding of each image:

• a vector of dimension 28x28 ”the number of pixels”.

• The value on each coordinate is the gray level of the pixel.
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Applications – Shape Classification

Motivation: Since topology is invariant by continuous deformation,
then the same shape in different position will be well identified, Singh
et al. (2007).
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Applications – Image Segmentation

Skraba et al. (2010)
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Applications – Shape of Data

Data have shapes and their topology can be used as a descriptor.
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TDA – What is topology?
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Topology

Definition (Topology)
A topological space is a set E equipped with a family of subsets O
such that, and such that

• ∅,E ∈ O,

• O is stable under union,

• O is stable under finite intersection.

Warning: This is the first error actually.

In TDA: we do algebraic topology, not general topology.
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Algebraic Topology

• Roughly, this is the study of invariant quantities via continuous
deformation of a shape, i.e. no tearing.

• Example: from an ”algebraic topologist” point of view, a mug is a
donut.
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What are the topological features? (informally)

Topogical features: Every feature that is invariant under continuous
deformation.

• The (path) connected components – 0-dimensional features

• The loops – 1-dimensional features

• The voids – 2-dimensional features

• In higher dimension, n-dimensional holes.

Example: The torus has

• 1 connected component,

• 1 loop,

• 1 void – the inside of the donut.
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TDA – Persistent Homology – What is it?
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Original motivation

• We observe points sampled on an (unobserved) shape.

• Original motivation: How can we find the original shape only
from the points?

Here comes Topological Data Analysis (TDA).
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Topology of Points?

• We replace each point with a ball of radius r > 0.
• For a r large enough, we find indeed the loop.

How to choose r?
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Here comes Persistence

We let r growing from 0 up to ∞.

Original Idea: Important features will be the ones that ”persist” a long
”time” when r increases.
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How do we record information?

• We record each ”radius/time” where change in the topology of
the union of balls happens.

• Each time two balls connect: one connected component
disappear – it dies.

• When a loop appears for a radius rloop we say it is the birth time
of the loop.

• When the loop is completely covered we say it is its death.

• There is two common ways to display this information.
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The Barcode
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Persistent Diagram
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Remarks

• This is the most standard way in which TDA is performed.

• This is the so-called persistent homology approach

• Although these two representations are equivalents, the
persistence diagrams appears to be the most used for
applications.

From this ”mathematically complicated” object, we define other
statistics.
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Betti Numbers

Definition: Let b, d > 0 with b < d and D be a PD. The persistent Betti
number is

βD
b,d = #{(x, y) ∈ D, x ≤ b, y ≥ d}.

Example: The number of point in red is βD
0.4,0.4.

Important: The knowledge of βD
b,d for all b, d defines completely D.

17/33



Filtrations

But, even within the persistent homology approach, there may be
some variations.

• You do not need the balls.

• Building the union of balls → constructing an increasing
sequence of topological spaces called a filtration.

• Analytically the union of balls corresponds to the sublevel sets of
the distance function to the data points.

• Any sublevel sets of a function (smooth enough) actually works
and may be used for analysis.
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Example
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Back to the balls

• The union of balls is just the interpretation

• The true mathematical objects are the distance function to the
set of data points X :

dX(u) := d(u,X) = min{|u − x|, x ∈ X}

• and its level sets at level r > 0:

{u ∈ Rd, dX(u) ≤ r} =
⋃

x∈X
B(x, r).
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Stability with respect to perturbation

The space of persistence diagram is a metric space: the Bottleneck
distance on persistence diagram dB.

Theorem (Stability, Cohen-Steiner et al. (2005))
Let X and Y be two sets of points in Rd with dX and dY being the
distance function to X and Y , respectively. Let further
PD(X),PD(Y ) be the persistence diagrams obtained from the
points X and Y , respectively. Then

dB(PD(X),PD(Y )) ≤ |dX − dY |∞.

Main idea: If I perturb my data X by ε to get Y , |dX − dY |∞ is small
and the persistence diagrams are similar.
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Remark on Stability Theorem

• There exists others stability theorems

• For example, assume the points X to be sampled on a manifold
M .

• There is stability theorem to bound the Bottleneck distance
dB(PD(X),PD(M )) in function of the number of points.

• This is useful for shape analysis, to prove that you can recover
the topology of the shape from points sampled on it.
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What about PD computations? – Simplices
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Simplicial Complexes

On the union of balls:

• We do not know how to define and compute easily the connected
components, loops and other topological features of higher
dimensions.

• Solution – Using another mathematical objects easier to work
with:

Simplicial Complexes
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Simplex

Definition (k-simplex)
Given a set of k + 1 points {x0, . . . , xk} ⊂ Rd , the k-dimensional
simplex [x0, . . . , xk] is the convex hull of the k + 1 points.

Remark: the dimension depends on the number of points, not the
dimension of the space.
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Simplicial Complexes

A simplicial complex is a (valid) union of simplices.

They can be build from the data in many ways:

• Vietoris-Rips complexes

• Cech complexes

• α-complexes.

• Cubical complexes (suitable for images)
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Cech complex – Definition

• Let’s us consider the point pattern: x = {x1, . . . , xn}.

• The Cech complex at radius r > 0 of x is an union of simplices
noted Cr(x).

• For k ∈ N, a k-simplex [y0, . . . , yk] belongs to Cr(x) if and only if
{y0, . . . , yk} ⊂ x and

∩k
j=0B(yj, r) 6= ∅.
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Cech complex – Toy example
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Cech complex – Poisson
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Cech complexes – Advantages, Inconvenients

Pros:

• From a theoretical point of view: easy to study

• It verifies a Nerve Lemma: at each radius r , Cr(x) is homotopic
to the union of balls of radius r .

• Main message: Nerve Lemma ⇒ Studying the union of balls or
simplicial complexes is the same

Cons:

• Contains simplices of very high dimensions.

• Computationally hard to handle when lot of points.

• Slow to compute.
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Rips complexes – Definition

• Let’s us consider the point pattern: x = {x1, . . . , xn}.

• The (Vietoris-)Rips complex at radius r > 0 of x is an union of
simplices noted Rr(x).

• For k ∈ N, a k-dimensional simplex [y0, . . . , yk] belongs to Rr(x) if
and only if {y0, . . . , yk} ⊂ x and for all i, j ∈ {0, . . . , k}:

B(yi, r) ∩ B(yj, r) 6= ∅.

To compare with the Cech complex: ∩k
j=0B(yj, r) 6= ∅.
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Rips complex – Toy example
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Rips complexes

• Cech complex: good but slow and hard to compute.

• Vietoris-Rips complex: the quickest to compute but no Nerve
Lemma.

• However, it the persistence diagram is still a good approximation
in some sense.

In conclusion: For applications, no major differences.
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The End – Thank you
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