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What is compositional data?
Aitchison [1982] defines compositional data as proportions of some whole, that is, a
random variable is compositional if it takes values in the unit simplex

∆d−1 := {x ∈ Rd : xj ≥ 0,
d∑

j=1
xj = 1}.

Compositional data occurs in countless applications:
• geochemistry (e.g., mineral compositions)
• ecology (e.g., relative abundances of species)
• biochemistry (e.g., fatty acid proportions)
• sociology (e.g., time budgets)
• geography (e.g., proportions of land use)
• political science (e.g., voting proportions)
• marketing (e.g., brand shares)
• genomics and microbiome research (e.g., proportions of taxonomic units)
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2022 Danish election data

Consider election counts from the 2022 Danish election for each municipality:

municipality A B . . . Å w/o party not voted
Aabenraa 9695 661 . . . 359 36 7979
Aalborg 46098 5621 . . . 3803 155 29843
...

...
... . . .

...
...

...
Vordingborg 9608 566 . . . 872 84 6476

To determine voting patterns, we would like inquire about the relationships between
votes for different parties.

Our data analysis might start by looking at the correlation between votes for different
parties.
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2022 Danish election data – count correlations
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All vote counts are highly correlated
with the population of the
municipality!

We ignored that the real question is
about the proportion of votes for each
party.
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2022 Danish election data – propotion correlations
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This looks better but is it?
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Compositional data and spurious correlations
As early as Pearson [1897], it has been noted that correlations are not meaningful for
proportional data. Pearson argued that even if X , Y and Z are uncorrelated, then
X/Z and Y /Z will always be correlated.

Let Z ∈ ∆d−1. Then, since
∑d

j=1 Zj = 1,

−Var(Z1) =
d∑

j=2
Cov(Z1,Zj).

Similarly, if Y is a real-valued response,

d∑
j=1

Cov(Y ,Zj) = 0.

The correlations between components are not meaningful for compositional data!
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Log-ratios

Aitchison [1982] proposes a vector space structure on the open simplex by mapping
∆d−1 to Rd−1 by the additive log-ratio transform

alr(z)j 7→ log(zj/zd ) ∀j ∈ {1, . . . , d − 1}.

Aitchison expanded on this idea to propose the log-contrast regression model

Y =
d∑

j=1
βj log(Zj) + ε,

d∑
j=1

βj = 0.

The techniques proposed by Aitchison are applied extensively in geology and others
fields under the CoDA-brand.
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2022 Danish election data – log-ratio correlations
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We see that there are many fewer
negative correlations between the
log-ratios than the raw proportions.

We were forced to add 1 to all counts
to ensure each row was in the open
simplex.
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Problems with log-ratios – zeros
Log-ratio transforms require all data to be strictly positive. It is sometimes argued that
adding a small constant is harmless. Is it?

Consider pn = (23 −
1
n ,

2
n ,

1
3 −

1
n ) and qn = (23 −

6
n1.1 ,

7
n1.1 ,

1
3 −

1
n1.1 ) in ∆2 [Park et al., 2022].
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Problems with log-ratios – high-dimensional data and nonparametrics

Many modern datasets are high-dimensional, e.g., microbiome or genomics data, and
thus require more sophisticated modelling. In particular there is an abundance of zeros.

Black box methods (random forests, boosted trees, neural networks) display superior
predictive performance on such datasets.

Black boxInput Predictions

Can we take a nonparametric perspective in the context of compositional data?
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Intermezzo: causal estimation and testing

To provide a causally interpretable analysis, we usually:
1 Define a causal estimand of interest ψ∗ : P∗ → R defined on P∗, the space of

(hypothetical) interventional distributions.
2 Define an observational estimand ψ : P → R defined on P, the space of

observational distributions.
3 Provide assumptions under which ψ∗(P∗) = ψ(P).

The goal of statistics is to provide efficient estimators of ψ(P). In particular,
estimators where √

n(ψ̂ − ψ) d→ N (0, σ2)

are desirable to be able to test hypotheses.
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Subcompositional irrelevance

For a real-valued response Y and predictors X ∈ Rd , we are used to testing
Y ⊥⊥ Xj |X−j when determining the relevance of certain features.

If Z ∈ ∆d−1, it will always be true that Y ⊥⊥ Zj |Z−j ; Z−j completely determines Zj .

We propose making Zj variation independent from Z−j by projecting into a smaller
simplex:

C(Z−j) := 1
1− Zj

Z−j .

We say that Zj is subcompositionally irrelevant for predicting Y (or just
subcompositionally irrelevant) if Y ⊥⊥ Zj |C(Z−j).

Can we quantify subcompositional irrelevance? Can we test for it?
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Compositional feature influence (CFI)
Suppose that we had access to data on the absolute scale X and corresponding
compositional variable Z := C(X ).

A natural perturbation on Xj is multiplication with c ≥ 0. What happens to the
composition formed from X under this perturbation?

φ(Z , c) = 1
1− zj + czj

(Z1, . . . , cZj , . . . ,Zd ) but C(Z−j) = C(φ(Z , c)−j)

Define W := C(Z−j), f (z ,w) := E[Y |Zj = z ,W = w ], then

CFIj := E
[(

∂

∂c f
(

cZj
1− Zj + cZj

,W
)) ∣∣∣

c=1

]
= E

[
Z j(1− Z j) ∂

∂z j f (Zj ,W )
]
.

CFIj = 0 corresponds to subcompositional irrelevance if the distribution of Zj has no
atoms. We allow zeros!
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Compositional knockout effect (CKE)
In many instances it may be of interest to determine the effect of ‘knocking out’ a
particular part of a composition.

We cannot consider a perturbation that modifies Z by setting Zj = 0, since the
resulting vector is no longer in the simplex – we choose to fix W := C(Z−j).

Let B := 1{Zj>0} and f (b,w) := E[Y |B = b,W = w ], then

CKEj := E [f (0,W )− f (1,W )] .

CKEj = 0 corresponds to subcompositional irrelevance if the effect of Zj is only
through B. Naive estimator:

C̃KEj := 1
n

n∑
i=1

f̂ (0,Wi )− f̂ (1,Wi ).
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Cross-fitting and plug-in bias

Problem: The naive estimator uses the same data for the fitting of f̂ and estimating
CKEj . This induces a bias!

Solution: Cross-fit the estimator! Split the data indices into K folds I1, . . . , IK ,
compute f̂k on I−k and compute

ĈKEj := 1
K

K∑
k=1

1
|Ik |

∑
i∈Ik

f̂k(0,Wi )− f̂k(1,Wi ).

We cross-fit all estimators with K = 2. In simulations we compare:
constant_contrast Y = 1{B=0} +N (0, 1)
step_contrast Y = 1{B=0}1{W1>median(W1)} +N (0, 1)

15 / 23



Cross-fitting and plug-in bias

Problem: The naive estimator uses the same data for the fitting of f̂ and estimating
CKEj . This induces a bias!

Solution: Cross-fit the estimator! Split the data indices into K folds I1, . . . , IK ,
compute f̂k on I−k and compute
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CKE plug-in estimator
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Looks good! But what about asymptotic distribution of
√

n
σ̂ (ĈFIj − CFI)?
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CKE plug-in estimator asymptotic distribution
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Looks bad! Bias dominates variance of the plug-in estimator even with cross-fitting.
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Partially linear double machine learning estimator

Suppose we make the assumption that

Y = θ(1− B) + h(W ) + ε E[ε |B,W ] = 0.

Then θ = CKEj and also

θ = E[Cov(Y , 1− B |W )]
E[Var(1− B |W )] .

Chernozhukov et al. [2018] provide an efficient estimator of θ under conditions on
g(w) := E[Y |W = w ] and π(w) := E[1− B |W = w ]:

θ̂ = 1
K

K∑
k=1

∑
i∈Ik{Yi − ĝk(Wi )}{1− Bi − π̂k(Wi )}∑

i∈Ik{1− Bi − π̂k(Wi )}2
.
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CKE DML estimator asymptotic distribution
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Looks good if model assumptions hold! Can we do better?
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One-step theory

Using semiparametric theory [Kennedy, 2023], we can give a general approach to correcting
the bias of a functional ψ.

Using these principles, we get a new estimator:

ĈKEj := 1
K

K∑
k=1
|Ik |−1

∑
i∈Ik

f̂k(0,Wi )− f̂k(1,Wi ) + Yi − f̂k(Bi ,Wi )
π̂k(Bi |Wi )

(1− 2Bi )

Closely related to the augmented inverse propensity weighted (AIPW) estimator.

We prove, under conditions that,
√

n
σ̂

(ĈKEj − CKE) d→ N (0, 1).
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One-step sims
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Looks good!
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Conclusion

• Compositional data are data that lie in a unit simplex.
• The analysis of compositional data using conventional techniques can lead to
misleading results.
• A nonparametric perspective is essential when dealing with complicated,
high-dimensional (compositional) data.
• Semiparametric theory allows us to construct efficient estimators of causally
interpretable quantities.

Thank you for listening.
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