Inferring Causality in Microbial Communities

Goals and Challenges

Niklas Pfister May 9, 2023

Two-day meeting - DSTS

Collaborators

At the University of Copenhagen

Shimeng Huang

At Helmholtz AI in Munich

Elisabeth Ailer

Anton Rask Lundborg

Niki Kilbertus

Microbiome

What is the microbiome and why is it important?

Human

- habitats: gut, skin, oral and nasal cavities
- involved in diet, immune response and diseases

Human

- habitats: gut, skin, oral and nasal cavities
- involved in diet, immune response and diseases

Plant

- habitats: roots, soil, leaf surface, intercellular
- involved in absorption of nutrients, protection against diseases

Human

- habitats: gut, skin, oral and nasal cavities
- involved in diet, immune response and diseases

Plant

- habitats: roots, soil, leaf surface, intercellular
- involved in absorption of nutrients, protection against diseases

Marine

- habitats: animals, algae, corals, sponges
- involved in biodiversity, water quality, diseases in fish

protection

against diseases

response and diseases

3

diseases in fish

Measuring the microbiome

- (1) Extract sample and preprocess
- (2) Perform sequencing:
 - marker gene sequencing (amplify specific DNA target)
 - metagenome sequencing (directly sequence DNA fragments)

(3) Match each DNA read to a specific microbe (substantially more complex in reality)

Measuring the microbiome

- (1) Extract sample and preprocess
- (2) Perform sequencing:
 - marker gene sequencing (amplify specific DNA target)
 - metagenome sequencing (directly sequence DNA fragments)

(3) Match each DNA read to a specific microbe (substantially more complex in reality)

Problems:

- compositional (more recently, absolute measures are also possible)
- multiple sources of bias (host DNA, amplification bias, ...)
- zero-inflated and high-dimensional
- varies substantially over time

• [Plant] Which microbes in the soil increase the nutrition uptake? Increase crop yield by modifying soil.

- [Plant] Which microbes in the soil increase the nutrition uptake? Increase crop yield by modifying soil.
- [Human] How does the gut microbiome interact with a drug?

Avoid side effects and increase efficacy of drugs.

- [Plant] Which microbes in the soil increase the nutrition uptake? Increase crop yield by modifying soil.
- [Human] How does the gut microbiome interact with a drug? Avoid side effects and increase efficacy of drugs.
- [Human] How does the diet affect the microbiome and vice versa? Create personalized diets and help people loose weight.

- [Plant] Which microbes in the soil increase the nutrition uptake? Increase crop yield by modifying soil.
- [Human] How does the gut microbiome interact with a drug? Avoid side effects and increase efficacy of drugs.
- [Human] How does the diet affect the microbiome and vice versa? Create personalized diets and help people loose weight.
- [Food] How do microbial communities interact to create taste? Produce better and more efficient food (e.g., cheese).

- [Plant] Which microbes in the soil increase the nutrition uptake? Increase crop yield by modifying soil.
- [Human] How does the gut microbiome interact with a drug? Avoid side effects and increase efficacy of drugs.
- [Human] How does the diet affect the microbiome and vice versa? Create personalized diets and help people loose weight.
- [Food] How do microbial communities interact to create taste? Produce better and more efficient food (e.g., cheese).

- [Plant] Which microbes in the soil increase the nutrition uptake? Increase crop yield by modifying soil.
- [Human] How does the gut microbiome interact with a drug? Avoid side effects and increase efficacy of drugs.
- [Human] How does the diet affect the microbiome and vice versa? Create personalized diets and help people loose weight.
- [Food] How do microbial communities interact to create taste? Produce better and more efficient food (e.g., cheese).

Shared goal: Infer underlying causal mechanism!

Causality

What is a causal model and how is it different from an observational statistical model?

observations

https://cdn.the-scientist.com

Only causal models can answer these types of questions! correlation \neq causation

Only causal models can answer these types of questions! correlation \neq causation Causal models describe both:

• the observation distribution

What can we say about new observations from the same system?

• the relevant intervention distributions

What happens if we intervene on (change) the system?

Causal models describe both:

• the observation distribution

What can we say about new observations from the same system?

• the relevant intervention distributions

What happens if we intervene on (change) the system?

Two main types of models exist:

- Potential outcome models (Imbens and Rubin (2015))
 - starts from a set of interventions
- Structural causal models (Pearl (2009))
 - starts from the causal mechanism

 \rightarrow Equivalent, but provide different perspective/focus.

Two challenges with microbiome data

Model specification and confounding

Example: Microbiome-mediated effect of drugs. How can we decompose the causal effects of a drug?

At what level should we model causal mechanisms?

Micobe level

Composition level

At what level should we model causal mechanisms?

Micobe level

Composition level

- individual microbes are modeled
- Problems:
 - highly complex
 - hard to collect data
- Advantages:
 - fully captures the mechanism

At what level should we model causal mechanisms?

Micobe level

- individual microbes are modeled
- Problems:
 - highly complex
 - hard to collect data
- Advantages:
 - fully captures the mechanism

Composition level

- relative abundances of microbes are modeled
- Problems:
 - not all effects are captured
 - tricky to analyze
- Advantages:
 - reduced complexity
 - corresponds to
 - measurements

At what level should we model causal mechanisms?

Micobe level

- individual microbes are modeled
- Problems:
 - highly complex
 - hard to collect data
- Advantages:
 - fully captures the mechanism

Composition level

- relative abundances of microbes are modeled
- Problems:
 - not all effects are captured
 - tricky to analyze
- Advantages:
 - reduced complexity
 - corresponds to measurements

- proxies of microbiome are modeled
- Problems:
 - requires meaningful proxies
 - no interactions between microbes
- Advantages:
 - easy to integrate in causal analysis

At what level should we model causal mechanisms?

Micobe level

- individual microbes are modeled
- Problems:
 - highly complex
 - hard to collect data
- Advantages:
 - fully captures the mechanism

Composition level

- relative abundances of microbes are modeled
- Problems:
 - not all effects are captured
 - tricky to analyze
- Advantages:
 - reduced complexity
 - corresponds to measurements

- proxies of microbiome are modeled
- Problems:
 - requires meaningful proxies
 - no interactions between microbes
- Advantages:
 - easy to integrate in causal analysis

Simple mechanistic model

- $Y \in \mathbb{R}$ response of interest
- $X = (X^1, \dots, X^n) \in \mathbb{R}^d$ predictor variables
- Structural causal model encodes the relation of X on Y,

 $Y = f(X, \epsilon)$ with $X \perp \epsilon$

Simple mechanistic model

- $Y \in \mathbb{R}$ response of interest
- $X = (X^1, \dots, X^n) \in \mathbb{R}^d$ predictor variables
- Structural causal model encodes the relation of X on Y,

$$Y = f(X, \epsilon)$$
 with $X \perp \epsilon$

Goal: Learn causal effects corresponding to interventions that modularly increase individual coordinates, i.e.,

$$I^{j}(x_{0}) := \mathbb{E}[\frac{\partial}{\partial x^{j}}f(x_{0},\epsilon)]$$

 \rightarrow Similarly, averaged effect $I^{j} := \mathbb{E}[\frac{\partial}{\partial x^{j}}f(X,\epsilon)].$

Simple mechanistic model

- $Y \in \mathbb{R}$ response of interest
- $X = (X^1, \dots, X^n) \in \mathbb{R}^d$ predictor variables
- Structural causal model encodes the relation of X on Y,

$$Y = f(X, \epsilon)$$
 with $X \perp \epsilon$

Goal: Learn causal effects corresponding to interventions that modularly increase individual coordinates, i.e.,

$$I^{j}(x_{0}) := \mathbb{E}[\frac{\partial}{\partial x^{j}}f(x_{0},\epsilon)]$$

 \rightarrow Similarly, averaged effect $I^j := \mathbb{E}[\frac{\partial}{\partial x^j} f(X, \epsilon)].$

Intuition: Captures infinitesimal intervention on variable X^{j} .

Simple mechanistic model

- $Y \in \mathbb{R}$ response of interest
- $X = (X^1, \dots, X^n) \in \mathbb{R}^d$ predictor variables

Structural causal model encodes the relation of X on Y

Problem: Individually changing a single coordinate in compositional vector is meaningless.

Goal: Learn causal effects corresponding to interventions that modularly increase individual coordinates, i.e.,

$$l^{j}(x_{0}) := \mathbb{E}[\frac{\partial}{\partial x^{j}}f(x_{0},\epsilon)]$$

 \rightarrow Similarly, averaged effect $I^{j} := \mathbb{E}[\frac{\partial}{\partial x^{j}}f(X,\epsilon)].$

Intuition: Captures infinitesimal intervention on variable X^{j} .

Simple compositional mechanistic model

- $Y \in \mathbb{R}$ response of interest
- $Z = (Z^1, ..., Z^n) \in \Delta^d$ predictor variables, where $\Delta^d = \{z \in [0, 1]^d \mid \sum_{j=1}^d z^j = 1\}$ is the simplex.
- Structural causal model encodes the relation of Z on Y,

$$Y = f(Z, \epsilon)$$
 with $Z \perp \epsilon$

Goal: Learn causal effects corresponding to interventions that modularly increase individual coordinates relative to the others, i.e.,

$$I^{j}(z_{0}) := \mathbb{E}\left[\frac{\partial}{\partial c}f(\phi^{j}(z_{0}, c), \epsilon)\Big|_{c=1}\right] \quad (\mathsf{CFI})$$

with $\phi^{j}(z,c) = (s_{c}z^{1}, \dots, s_{c}z^{j-1}, c^{j}, s_{c}z^{j+1}, \dots, s_{c}z^{d}).$

Further considerations for model specification

• Complex data structure

high-dimensional, sparse (many zeros), compositional

- What types of statistical procedures apply?
- Integration of multiple data types prior knowledge (e.g., phylogenetic structure), host traits
 How should this be included in causal analysis?
- Volatile over time

microbiome may oscillate over time

- When do we need to account for time and when not?

Challenges: requires targeted interventions, expensive, difficult outside of the lab

Challenges: model entire system, often under-identified, difficult to achieve uncertainty quantification

Challenges: lots of prior knowledge about causal structure, no unobserved confounding (ignorability)

Challenges: some causal structure is assumed, requires heterogeneous study design

Causal inference with observed confounding

- response Y, e.g. health outcome
- treatment variable *X*, e.g., microbiome or individual microbe
- covariates W, e.g., age, diet

assumed causal structure

Causal inference with observed confounding

- response Y, e.g. health outcome
- treatment variable *X*, e.g., microbiome or individual microbe
- covariates W, e.g., age, diet

assumed causal structure

- **Goal:** Learn the function *f*.
 - Adjustment: Learn f by regressing Y on X and W jointly and marginalizing out W (outcome model)
 - Inverse probability weighting: Learn X|W and use it to reweight data so that edge W → X is removed (propensity model)

Causal inference with observed confounding

- response Y, e.g. health outcome
- treatment variable *X*, e.g., microbiome or individual microbe
- covariates W, e.g., age, diet

assumed causal structure

Goal: Learn the function *f*.

- Adjustment: Learn f by regressing Y on X and W jointly and marginalizing out W (outcome model)
- Inverse probability weighting: Learn X|W and use it to reweight data so that edge W → X is removed (propensity model)

Next talk: Combines both to achieve parametric rates!

Conclusions

- Microbial communities are important parts of biological systems.
- Research questions in microbiome sciences are causal in nature.
- Two challenges when learning causal effects:
 - (1) Model specification: compositional (+ other structure)
 - (2) Confounding: Requires causal methods

Conclusions

- Microbial communities are important parts of biological systems.
- Research questions in microbiome sciences are causal in nature.
- Two challenges when learning causal effects:
 - (1) Model specification: compositional (+ other structure)
 - (2) Confounding: Requires causal methods
- Solutions? Coming in next talk...

Conclusions

- Microbial communities are important parts of biological systems.
- Research questions in microbiome sciences are causal in nature.
- Two challenges when learning causal effects:
 - (1) Model specification: compositional (+ other structure)
 - (2) Confounding: Requires causal methods
- Solutions? Coming in next talk...

Thank you!

- Pearl, J. (2009). Causality. Cambridge university press.
- Imbens, G. W. and Rubin, D. B. (2015). Causal inference in statistics, social, and biomedical sciences. Cambridge University Press.
- Turnbaugh, P. J., Bäckhed, F., Fulton, L. and Gordon, J. I. (2008). Diet-induced obesity is linked to marked but reversible alterations in the mouse distal gut microbiome. Cell host and microbe, 3(4), 213-223.
- Huang, S., Ailer, E., Kilbertus, N and Pfister, N. (2022). Supervised Learning and Model Analysis with Compositional Data. Preprint: https://arxiv.org/abs/2205.07271.