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Microbiome

What is the microbiome and why is it important?
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Measuring the microbiome

-

(1) Extract sample and preprocess
(2) Perform sequencing:

e marker gene sequencing (amplify specific DNA target)
e metagenome sequencing (directly sequence DNA
fragments)

(3) Match each DNA read to a specific microbe
(substantially more complex in reality)




Measuring the microbiome

(1) Extract sample and preprocess
(2) Perform sequencing:

e marker gene sequencing (amplify specific DNA target)
e metagenome sequencing (directly sequence DNA
fragments)

(3) Match each DNA read to a specific microbe
(substantially more complex in reality)

Problems:

e compositional (more recently, absolute measures are also possible)
e multiple sources of bias (host DNA, amplification bias, ...)
e zero-inflated and high-dimensional

e varies substantially over time
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What are interesting research questions?

e [Plant] Which microbes in the soil increase the nutrition uptake?

Increase crop yield by modifying soil.

e [Human] How does the gut microbiome interact with a drug?

Avoid side effects and increase efficacy of drugs.

e [Human] How does the diet affect the microbiome and vice versa?

Create personalized diets and help people loose weight.

e [Food] How do microbial communities interact to create taste?

Produce better and more efficient food (e.g., cheese).

Shared goal: Infer underlying causal mechanism!



Causality

What is a causal model and how is it different from an
observational statistical model?
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Causal models describe both:

e the observation distribution
What can we say about new observations from the same system?
e the relevant intervention distributions

What happens if we intervene on (change) the system?

Two main types of models exist:

e Potential outcome models (Imbens and Rubin (2015))
- starts from a set of interventions
e Structural causal models (Pearl (2009))

- starts from the causal mechanism

— Equivalent, but provide different perspective/focus.



Two challenges with microbiome data

Model specification and confounding



Challenge 1: Model specification

Example: Microbiome-mediated effect of drugs. How can we
decompose the causal effects of a drug?

Patient
traits

Heath outcome

—(__Microbiome

10



Challenge 1: Model specification

At what level should we model causal mechanisms?

Micobe level Composition level Proxy level

10



Challenge 1: Model specification

At what level should we model causal mechanisms?

Micobe level Composition level Proxy level

e individual microbes
are modeled
e Problems:
- highly complex
- hard to collect data
e Advantages:
- fully captures the
mechanism

10



Challenge 1: Model specification

At what level should we model causal mechanisms?

Micobe level Composition level Proxy level
e individual microbes e relative abundances of

are modeled microbes are modeled
e Problems: e Problems:

- highly complex - not all effects are

- hard to collect data captured

e Advantages: - tricky to analyze

- fully captures the e Advantages:

mechanism - reduced complexity
- corresponds to
measurements

10



Challenge 1: Model specification

At what level should we model causal mechanisms?

Micobe level

e individual microbes
are modeled

e Problems:
- highly complex
- hard to collect data
e Advantages:
- fully captures the
mechanism

Composition level

Proxy level

e relative abundances of e proxies of microbiome

microbes are modeled are modeled

Problems: e Problems:

- not all effects are - requires meaningful
captured proxies
- tricky to analyze - no interactions

Advantages: between microbes

- reduced complexity e Advantages:
- easy to integrate in

causal analysis

- corresponds to
measurements

10



Challenge 1: Model specification

At what level should we model causal mechanisms?

Micobe level

e individual microbes
are modeled

e Problems:
- highly complex
- hard to collect data
e Advantages:
- fully captures the
mechanism

Composition level

e relative abundances of
microbes are modeled

e Problems:
- not all effects are
captured
- tricky to analyze

e Advantages:
- reduced complexity
- corresponds to
measurements

captured causal relations

Proxy level

proxies of microbiome
are modeled

Problems:

- requires meaningful
proxies

- no interactions
between microbes

Advantages:
- easy to integrate in
causal analysis

complex <
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inference
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Simple mechanistic model

e Y € R response of interest
e X =(X,...,X™) € RY predictor variables
e Structural causal model encodes the relation of X on Y,

Y =1f(X,e) with X 1l e
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Compositional level

Simple mechanistic model

e Y € R response of interest
e X =(X,...,X™) € RY predictor variables
e Structural causal model encodes the relation of X on Y,

Y =1f(X,e) with X L e

Goal: Learn causal effects corresponding to interventions that
modularly increase individual coordinates, i.e.,

Ij(xo) = E[%f(xo, e)]
— Similarly, averaged effect I/ := E[d‘—Lf(Xe)]

Intuition: Captures infinitesimal intervention on variable X/.
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Problem: Individually changing a single coordinate in com-

positional vector is meaningless.




Compositional level

Simple compositional mechanistic model

e Y € R response of interest

o« Z=(2Z%, ..., Z") € A9 predictor variables, where

AY={ze[0,1]7 | Zj-!:l z/ =1} is the simplex.

e Structural causal model encodes the relation of Z on Y,
Y =1(Z,¢) with Z 1l ¢

Goal: Learn causal effects corresponding to interventions that
modularly increase individual coordinates relative to the others, i.e.,

H(z) := E[%f((‘)j(zo, ), e)}czl] (CFI)

with ¢/(z,c) = (scz!,. .., 5271, s 212, ... scz9).
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Further considerations for model specification

e Complex data structure
high-dimensional, sparse (many zeros), compositional
- What types of statistical procedures apply?

e Integration of multiple data types
prior knowledge (e.g., phylogenetic structure), host traits
- How should this be included in causal analysis?

e Volatile over time
microbiome may oscillate over time
- When do we need to account for time and when not?

12



Challenge 2: Confounding

full - Randomized control trial

control of study design

Y
none

Challenges: requires targeted interventions, expensive, difficult
outside of the lab
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Challenge 2: Confounding

full - Randomized control trial
i) - Invariance based methods
(%2}
< (e.g., instrumental variables/Mendelian randomization)
=l
2
L.g - Adjustment/inverse probability weighting
S (e.g., many semiparametric approaches)
g
O
- Procedures with no prior causal knowledge
n(;'ne (e.g., score- or constraint-based)

Challenges: some causal structure is assumed, requires

heterogeneous study design
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Causal inference with observed confounding

e response Y, e.g. health outcome

e treatment variable X, e.g., microbiome

or individual microbe < ) f @

e covariates W, e.g., age, diet
assumed causal structure
Goal: Learn the function f.

e Adjustment: Learn f by regressing Y on X and W jointly and
marginalizing out W (outcome model)
e Inverse probability weighting: Learn X|W and use it to

reweight data so that edge W — X is removed (propensity
model)

Next talk: Combines both to achieve parametric rates!
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Conclusions

e Microbial communities are important parts of biological systems.
e Research questions in microbiome sciences are causal in nature.
e Two challenges when learning causal effects:

(1) Model specification: compositional (+ other structure)

(2) Confounding: Requires causal methods
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Conclusions

e Microbial communities are important parts of biological systems.
e Research questions in microbiome sciences are causal in nature.
e Two challenges when learning causal effects:

(1) Model specification: compositional (+ other structure)

(2) Confounding: Requires causal methods

e Solutions? Coming in next talk...

Thank youl!
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