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Continuous time martingale

Stochastic process {M(t)}+>0 is a martingale with respect to
history F; if

> M, is measurable with respect to F;
» E[M|F,] = M, when u <t

First property holds if E[dM(t)|F:—] = 0.

dM(t) is infinitesimal increment over infinitesimal time interval
[t,t + dt]
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Independent and identically distributed survival times

Given survival data (T;,4;), i =1,..., n define one-step counting
processes

N;(t) = 1[T,' < t, A,’ = 1] = 1[X,' < t,X,' < C,]

and accumulated process

n
N(t) = Ni(t).
i=1
Ft: history up to time t (censoring, deaths, covariate information
up to time t).
Define Y;(t) = 1[T; > t]. l.e. Y; is one if ith individual at risk at

time t and zero otherwise. Y; is left-continuous and hence
predictable.

Y(t) = > Yi(t) is the number at risk at time t.
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Compensator
Define

Ai(E) = /Ot Y(u)hi(u)du

where h is the hazard rate of X;.

Then A;(t) is a continuous and hence predictable stochastic
process.

Compensated counting process M; = N; — A; is a martingale.

Crucial result for martingale M

(t) = /Ot K (u)dM(u)

is a martingale if K is predictable.

Will use the above to show that score process of Cox partial

likelihood is a martingale.
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Nelson-Aalen
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