
Frailty - mixed models for duration data

Rasmus Waagepetersen

November 9, 2022

1 / 30



Topics:

I Mixed models for survival data: frailty models

I Example with time-dependent covariate and frailty

I Marginal analysis of correlated survival data
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Mixed models for survival data

Suppose we have survival data (T ,∆,Z ) where Z is a covariate
that can be used to model heterogeneity of the population. T is
minimum of X and C .

Thus we use a hazard model h∗(t;Z ) that depends on Z .

However, survival may be influenced by a further unobserved factor
U - e.g. unobserved genetic predisposition for a disease or
genetically influenced ability to recover from disease. This is called
a frailty in survival analysis.

We may then use the following so-called frailty model for the
hazard

h(t;Z ,U) = Uh∗(t;Z )

This is the typical example of a mixed model in survival analysis.
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Marginal survival function and hazard
Since U is unobserved we can not base inference directly on
h(t;Z ,U) - instead we need to find the marginal hazard function
or survival function.

We assume U and Z are independent (note they may be
dependent conditionally on T !)

Conditionally on U = u and Z = z , the survival function is

S(t; z , u) = exp(−uH∗(t; z))

so the marginal survival function is

S(t; z) = ES(t; z ,U) = LU(H∗(t; z)) LU(t) = E exp(−tU)

where LU is the Laplace transform for U (LU(t) = MU(−t) where
MU is the moment generating function of U).
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Marginal hazard function
Hazard function:

h(t; z) = − d

dt
log S(t; z) = h∗(t; z)

E[US(t; z ,U)

S(t; z)]

= h∗(t; z)E[U|X ≥ t,Z = z ]

(note (exercise !) conditional density of U|X ≥ t,Z = z is
f (u|t, z) = S(t; z , u)fU(u)/S(t; z)

Another calculation leading to same result:

h(t; z)dt = P(X ∈ [t, t + dt[|X ≥ t,Z = z)

= E[P(X ∈ [t, t + dt[|X ≥ t,Z = z ,U)|X ≥ t,Z = z ]

= E[h(t; z ,U)dt|X ≥ t,Z = z ] = h∗(t; z)E[U|X ≥ t,Z = z ]dt

In practice we need to assume a distribution (on [0,∞[) for U, e.g.
log-normal, gamma,....
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Example: gamma frailty
A gamma distributed variable U ∼ Γ(α, β) with shape α and scale
β has Laplace transform

LU(t) = (1 + βt)−α

so in that case
S(t; z) = (1 + βH∗(t; z))−α

The hazard function becomes

h(t; z) = − d

dt
log S(t; z) =

αβh∗(t; z)

1 + βH∗(t; z))

A common simplifying choice is to use Γ(1/θ, θ) in which case

h(t; z) =
h∗(t; z)

1 + θH∗(t; z))

(Γ(1/θ, θ) has mean 1 and variance θ)
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Marginal hazard versus conditional hazard
On a previous slide we saw

h(t; z) = E[h(t; z ,U)|X ≥ t,Z = z ] = E[U|X ≥ t,Z = z ]h∗(t; z)

Interesting phenomenon: E[U|X ≥ t,Z = z ] is a decreasing
function of time: weak individuals die first so the remaining
population with T ≥ t becomes stronger as t increases.

We compute (exercise: check this) derivative of conditional
expectation wrt t:

d

dt
E[U|X ≥ t,Z = z ] =

−E[U2h∗(t; z) exp(−UH∗(t; z)]S(t; z) + E[U exp(−UH∗(t; z))]2h∗(t; z)

S(t; z)2

= −h∗(t; z)Var[U|X ≥ t,Z = z ] ≤ 0

Example (Γ(1/θ, θ) distribution): E[U|X ≥ t,Z = z ] = S(t; z)θ
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Interpretations of marginal and conditional hazards

h(t; z , u): hazard specific for an individual with unobserved factor
u.

h(t; z): average hazard for the population remaining (still alive) at
time t (i.e. subpopulation with X ≥ t). This population is stronger
than the original population which reduces hazard.

In particular, ratio between marginal hazard and conditional hazard
is decreasing:

h(t; z)

h(t; z , u)
=

E[U|X ≥ t,Z = z ]h∗(t; z)

uh∗(t; z)
=

E[U|X ≥ t,Z = z ]

u

It is less than one for an average individual with
u = E[U] = E[U|X ≥ 0,Z = z ] !
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Example

Simple example: U either 1 or 2 each with probability 1/2.
h∗(t; z) = 1.

Then (exercise !)

h(t; z) = 1E[U|X ≥ t,Z = z ] = 1 +
1

1 + et

Thus h(t; z) is 1.5 = E[U] for t = 0 and decreasing afterwards !
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From marginal to conditional: example with time-varying
effect (Torben Martinussen)

Specify
h(t; z) = exp(β1z1[t ≤ v ])

I.e. timevarying effect of z . No effect for t > v .

Assume U ∼ Γ(1, 1) = Exp(1). By results for Gamma distribution
we can reverse engineer to find h∗(t; z):

S(t; z) = (1+H∗(t; z))−1 ⇔ H∗(t; z) = S(t; z)−1−1 = exp(H(t; z))−1

Thus

h∗(t; z) = h(t; z) exp(H(t; z)) =

{
exp(β1z) exp[exp(β1z)t] t ≤ v

exp[exp(β1z)v + t − v ] t > v
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Population versus individual

Suppose e.g. β1 < 0. Then conditional (individual specific hazard
ratio)

h(t; 1, u)

h(t; 0, u)
=

h∗(t; 1)

h∗(t; 0)
< 1

for all t and u!

However hazard ratio at the population level

h(t; 1)

h(t; 0)
= exp(β11[t ≤ v ]) is

{
< 1 t ≤ v

1 t > v

Thus conclusions holding at the population level (e.g. treatment
not reducing hazard for t > v) may not be valid at the individual
level.
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This does not mean that population level hazard h(t; z) is ‘wrong’.

It means that conclusions based on marginal distributions and
conditional distributions may differ.

It is similar in spirit to what is referred to as Simpson’s paradox
(try to look it up at Wikipedia).

We know human populations are heterogeneous so we need to be
careful when interpreting population level hazard (or equivalently
population level survival function).
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‘Paradox’
Note

h(t; 1)

h(t; 0)
=

h∗(t; 1)

h∗(t; 0)

E[U|X ≥ 1,Z = 1]

E[U|X ≥ t,Z = 0]

LHS is equal to one for t > v . First factor on RHS is < 1. So last
factor must be > 1.

This means U is on average bigger when Z = 1 than when Z = 0
and X ≥ t. I.e. population with Z = 1 more frail (bigger U on
average) than Z = 0 - weaker individuals saved by treatment.

From an individual point of view treatment would always be
beneficial.

However, a policy maker might notice that treatment effect
vanishes at the population level when t > v .

Nevertheless better survival when z = 1: S(t; 1) ≥ S(t; 0) due to
beneficial effect for 0 ≤ t ≤ v .
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Correlated data - shared frailty model
Suppose U represents genetic effect or effect of environment. Then
group of closely related individuals may share the same U.

Suppose we have G groups each with ni individuals sharing a
frailty Ui . We assume Ui ∼ Γ(1/θ, θ) are independent and that all
death times Xij are independent given U1, . . . ,UG with hazard
function for jth individual in ith group given by

Uih0(t) exp(βTzij)

Joint survival function for ith group:

Si (ti1, . . . , tini ) = (1 + θ

ni∑
j=1

H0(tij) exp(βTzij))−1/θ

This does not factorize - hence individuals in ith group are not
independent ! (marginally) due to dependence on shared frailty.
However, groups are independent.
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Likelihood

Conditional likelihood assuming ui known:

L(β, θ|u1, . . . , uG ) =
G∏
i=1

Li (β, θ, ui )

where Li (β, θ, ui ) is conditional likelihood for ith group:

Li (β, θ, ui ) =

ni∏
j=1

(uih0(tij) exp(βTzij))δij exp(−uiH0(tij) exp(βTzij))

= udii exp(−ui
ni∑
j=1

H0(tij) exp(βTzij))

ni∏
j=1

(h0(tij) exp(βTzij))δij

where di =
∑ni

j=1 δij (assuming right censored sample).
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Marginal (observable) likelihood for ith group:

Li (β, θ) = E[Li (β, θ|Ui )] =

ni∏
j=1

(h0(tij) exp(βTzij))δij ·

∫ ∞
0

u
1/θ−1+di
i exp(−ui (θ−1 +

∑ni
j=1H0(tij) exp(βTzij)))

Γ(1/θ)θ1/θ
dui =

ni∏
j=1

(h0(tij) exp(βTzij))δij
Γ(1/θ + di )(1/θ+

∑ni
j=1H0(tij) exp(βTzij))−1/θ−di

Γ(1/θ)θ1/θ
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Case ni = 1 (di = δi Γ(α + 1) = αΓ(α)):

Li (β, θ) =

(h0(ti ) exp(βTzi ))δi
(1/θ)δi (1/θ)−1/θ−δi

θ1/θ
(1 + θH0(ti ) exp(βTzi ))−1/θ−δi

=

(
h0(ti ) exp(βTzi )

1 + θH0(ti ) exp(βTzi )

)δi
(1 + θH0(ti ) exp(βTzi ))−1/θ

Consistent with previous results for population hazard and survival
function for gamma frailty model !

Log likelihood (order as in KM 13.3.2):

di log θ − log Γ(1/θ) + log Γ(1/θ + di )

− (1/θ + di ) log(1 + θ

ni∑
j=1

H0(tij) exp(βTzij))

ni∑
j=1

δij [β
Tzij + log h0(tij)]
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If we assume a known form of H0 - e.g. Weibull(α, λ) then we can
maximize likelihood wrt. to all unknown parameters β, θ, λ, α and
proceed as usual for likelihood based inference.

If we want to use semi-parametric model where H0 is unspecified
we may proceed using EM algorithm as detailed in KM.

Frailty models can be fitted using survreg or coxph by adding
frailty statement in model formula.

18 / 30



Correlated data - marginal approach
Suppose as before that Xi1, . . . ,Xini are correlated observations,
i = 1, . . . ,G but observations from different groups are
independent.

Suppose we are just interested in estimating the marginal hazard
function of the Xij and we assume the marginal hazard model

h0(t) exp(βTzij)

(note we could reverse engineer to identify a corresponding frailty
model)

The key point is that if we pretend the observations are
independent and just apply the usual Cox partial likelihood then
the resulting estimate of β is still consistent !

However, the covariance matrix of β̂ is no longer the inverse Fisher
information due to correlation within groups. In general inverse
Fisher information underestimates variance !

19 / 30



A general perspective

Recall that if we obtain β from solving an estimating equation

u(β) = 0

then the approximate covariance matrix of β is

Varβ̂ ≈ S−1CS−T

where S = −E[ d

dβT
u(β)] is the sensitivity and C = Varu(β).
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Suppose now that

u(β) =
G∑
i=1

ui (β)

where the ui (β) are independent and identically distributed
unbiased estimating functions.

Then
C = Varu(β) = GVaru1(β)

where we can estimate

Varu1(β) ≈ 1

G

G∑
i=1

ui (β̂)ui (β̂)T = Ĉ/G

Thus we can approximate

Varβ̂ ≈ S−1ĈS−T

(known as the ‘sandwich estimator’)
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A simple example: linear regression with correlated errors
Suppose

Y i = Xβ + εi

are iid m × 1 vectors each with covariance matrix Σ, i = 1, . . . ,G .

Least squares estimation: minimize

‖Y − X̃β‖2 =
G∑
i=1

‖Y i − Xβ‖2

with respect to β. Here X̃ consists of m times X stacked on top of
each other.

Corresponding estimating function

u(β) = X̃T(Y − X̃β) =
G∑
i=1

XT(Y i − Xβ) =
G∑
i=1

ui (β)
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Least squares estimate is

β̂ = (X̃TX̃ )−1X̃TY = (
G∑
i=1

XTX )−1
G∑
i=1

XTYi

Estimate is not optimal since it ignores correlation within groups.

However, easy to see that estimate is unbiased E[β̂] = β.

The variance of β̂ is (Σ̃ = Cov(Y ) is blockdiagonal)

Var[β̂] =

(X̃TX̃ )−1X̃TΣ̃X̃ (X̃T X̃ )−1 = (
G∑
i=1

XTX )−1[
G∑
i=1

XTΣX ](
G∑
i=1

XTX )−1

=
1

G
(XTX )−1Varu1(β)(XTX )−1
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In practice we do not know Varu1(β) = XTΣX . However, it can
be estimated by

1

G

G∑
i=1

ui (β̂)ui (β̂)T =
1

G

G∑
i=1

XT (Y i − X β̂)(Yi − X β̂)TX = XTΣ̂X

where Σ̂ is the empirical estimate of Σ.

Note: the assumption of identical design matrix X for all groups
can be relaxed by replacing X by X i where the X i are iid design
matrices and εi is independent of X i .
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Back to marginal survival model

In this case S coincides with the Fisher information (called V in
KM) and ui (β) corresponds to the partial log likelihood score for
the ith group.

We thus arrive at the approximate covariance matrix Ṽ on page
437 in KM.

Can be implemented using cluster() in connection with coxph.
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Caution - marginal vs conditional

Consider a gamma Γ(1/θ, θ) frailty model with

h(t|U, z) = Uh0(t) exp(βTz)

Then the marginal hazard is

h(t|z) = h0(t) exp(βTz)
1

1 + θ exp(βTz)H0(t)
6= h0(t) exp(βTz)

So it does not really make sense to compare results obtained with
coxph+frailty with results obtained with coxph+cluster !
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Exercises

1. Show that the conditional density of U|X ≥ t,Z = z is
f (u|t, z) = S(t; z , u)fU(u)/S(t; z).

Hint: show that

P(U ∈ A,Z ∈ B,X ≥ t) =

∫
A

∫
B
f (u|t, z)P(X ≥ t|Z = z)f (z)dzdu

See also last two slides on conditional distributions.

2. Check expression for derivative d
dtE[U|X ≥ t,Z = z ].

3. Show that E[U|X ≥ t,Z = z ] = S(t; z)θ when U ∼ Γ(1/θ, θ).
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4. Assume U is either 1 or 2 each with probability 1/2 and
h∗(t; z) = 1. Show that

h(t; z) = 1 +
1

1 + et

5. Go through derivations leading from conditional likelihood
Li (β, θ, ui ) to marginal likelihood Li (β, θ) in case ni > 1.
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Conditional distributions
Given two random quantities X and Y taking values in sets M and
N, P(·|·) is said to be a conditional distribution of X given Y if for
A ⊆ M and B ⊆ N,

P(X ∈ A,Y ∈ B) =

∫
B
P(A|y)f (y)dy .

Likewise, f (·|·) on M × N is said to be a conditional density of X
given Y if

P(X ∈ A,Y ∈ B) =

∫
B

∫
A
f (x |y)dxf (y)dy .

Note that the laws of total probability are just consequences of
these definitions.

E.g. if X and Y are continuous random variables with joint density
f (x , y) and marginal density f (y) for Y , one can check that
f (x , y)/f (y) fulfills the requirement for being a conditional density
of X given Y .
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To handle exercise 1 note that X ≥ t is equivalent to Y = 1 where
Y = 1[X ≥ t]. To show that

f (u|y , z) =
P(Y = y |U = u,Z = z)f (u)

P(Y = y |Z = z)

is a conditional density of U given Y and Z we need to verify for
all appropriate A, B and C ,

P(U ∈ A,Z ∈ B,Y ∈ C ) =

∫
B

∑
y∈C

∫
A
f (u|y , z)dup(y , z)dz

This is equivalent to∑
y∈C

P(U ∈ A,Z ∈ B,Y = y) =
∑
y∈C

∫
B

∫
A
f (u|y , z)dup(y , z)dz

Thus we need to show for each y ∈ {0, 1} that

P(U ∈ A,Z ∈ B,Y = y) =

∫
B

∫
A
f (u|y , z)dup(y , z)dz

For y = 1, this is the equality in the hint of exercise 1.
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