Calculations with infinitesimal duration times

Rasmus Waagepetersen Department of Mathematics Aalborg University Denmark

September 12, 2024

イロン 不得 とうほう イロン 二日

1/4

Suppose X is a continuous random variable.

When we say that likelihood $f(x; \theta)$ is probability of observing x this does not really make sense since P(X = x) is zero.

However, we can interpret 'observing x' as the event that X belongs to an infinitesimal interval [x, x + dx] in which case

$$P(X \in [x, x + dx]) \approx f(x; \theta) dx.$$

Ignoring the constant dx, $f(x; \theta)$ becomes the likelihood.

Calculations involving infinitesimal increments can provide short cuts to many results in survival analysis.

Hazard function

The hazard function can be defined as the limit

$$\lambda(x) = \lim_{\Delta \to 0} \frac{1}{\Delta} P(X \in [x, x + \Delta[|X \ge x]))$$

Using differential calculus this becomes f(x)/S(x).

A quick heuristic derivation is

$$\lambda(x)\mathrm{d}x = P(X \in [x, x + \mathrm{d}x[|X \ge x]) = \frac{P(X \in [x, x + \mathrm{d}x[)]}{S(x)} = \frac{f(x)\mathrm{d}x}{S(x)}$$

Likelihood for type II censoring

Suppose we observe (T_i, Δ_i) , i = 1, ..., n in case of type II censoring. Let A denote the set of the r indices with $\Delta_i = 1$. That is for $i \in A$ we observe $X_i = T_i$ and for the remaining indices $l \in A^c$ we know $T_l \ge \max_{i \in A} T_i$.

Suppose wlog we observe $A = a = \{1, ..., r\}$, $T_i = t_i$, $i \in a$ and that t_r is the maximal observed time. Then the likelihood is

$$P(A = a, T_i \in [t_i, t_i + dt[, i \in a)]$$

= $P(X_1 \in [t_1, t_1 + dt[, ..., X_r \in [t_r, t_r + dt[, X_l > \max_{i=1,...,r} X_i, l > r)]$
= $P(X_1 \in [t_1, t_1 + dt[, ..., X_r \in [t_r, t_r + dt[, X_l > t_r, l = r + 1, ..., n)]$
= $\prod_{i=1}^r f_i(t_i) dt \prod_{l=r+1}^n S_l(t_r)$

This can be written in the general form $\prod_{i=1}^{n} (\lambda_i(t_i) dt)^{\delta_i} S_i(t_i)$