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Topics:

I Plots based on estimated cumulative hazards

I Cox-Snell residuals: overall check of fit

I Martingale residuals: assessment of functional form of
covariate

I Deviance residuals: detection of outliers

I Score-process residual: check of proportional hazards for each
covariate

I Detection of influential observations.
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Why not just proceed as for linear normal models ?

Issues:

I censoring.

I for Cox ph model we do not have a fully specified model -
thus we do not know distribution of residuals.

Generally, residual analysis is a bit tricky not only for survival data
but for non-normal data in general - residuals tend to look ‘ugly’
even if the model is correct.
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Model with one factor

Suppose we have observations (tkj , δkj) k = 1, . . . ,K and model
for the kth group

hk(t) = h0(t) exp(βk)

Compute a cumulative hazard estimate Ĥk for each group.

Recall

Hk(t) = H0(t) exp(βk)⇔ logHk(t) = logH0(t) + βk

Various types of plots can be considered

1. log Ĥk(t)’s against t

2. log Ĥk vs log Ĥj

3. Ĥk vs Ĥj (Andersen plot)

4. log Ĥk(t)− log Ĥ1(t)’s vs t.

Alternatives 2.-4. require a bit of programming since the estimates
are not obtained for the same ts.
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Stratified Cox process
Suppose we have several covariates and the first is a factor dividing
subjects into K groups. Then a stratified Cox model is specified by

hk(t|z−1) = h0k(t) exp(z−1β−1)

where hk(·|z−1) is the hazard for a subject in the kth group with
remaining covariate vector z−1 = (z2, . . . , zp). That is, a separate
baseline hazard h0k for each group/strata.

If proportional hazards holds for the factor used for stratification
then

H0k(t) = H0(t) exp(βk).

So we can make plots similar to those on the previous slide to
assess proportional hazards for the factor considered.

If we want to assess PH for a quantitative covariate then we can
initially discretize it into a factor variable.
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Martingale residuals

Notation alert: regarding residuals, covariate vector for ith time is
zi = (zi1, . . . , zip).

Martingale residuals:

rMi = δi − Ĥ0(ti ) exp(zi β̂)

Martingale residuals very skewed with values in interval ]−∞, 1].
Not useful for detecting outliers.

Reason for martingale terminology will be more clear when we later
on discuss counting processes and martingales.

May be used for assessing functional form of covariate
z·l = (z1l , . . . , znl)

T by computing rMi for model without covariate
and plotting rMi against the omitted covariate zil , i = 1, . . . , n.
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Assume true model is

h(ti ) = h0(ti ) exp[f (zi1)] exp[zi ,−1β−1]

and we fit Cox PH model without z·1. Then (KM page 362)

rMi ≈ a + bf (zi1)

for coefficients a and b.

Curve fitted to scatter plot may give indication of possible
transformation of covariate.

If points (zi1, r
M
i ) scattered around straight line then no need for

transformation.
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Cox-Snell

Cox-Snell residuals based on results for continuous random variable
X with survivor function S and cumulative hazard and H:

S(X ) ∼ Unif(]0, 1[) H(X ) ∼ Exp(1).

Cox-Snell residual:

rCi = Ĥ0(ti ) exp(zi β̂) = δi − rMi

Cox-Snell residuals should look like censored sample of unit-rate
exponential random variables which have H(t) = t.

This can be checked by considering estimated cumulative hazard
for rCi .

Cox-Snell residuals may be used for checking overall fit of model -
but see reservations in practical notes in KM page 358-359.
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Deviance residuals

Deviance residuals are obtained by applying ‘symmetrizing’
transformation to martingale residuals:

rDi = sign(rMi )[−2(rMi + δi log(δi − rMi ))]1/2.

These residuals should look (approximately) like a sample of iid
normal random variables if model correct.

However, if heavy censoring distribution becomes bimodal.

May be useful for spotting outliers.
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Schoenfeld residuals and score process

For a time t let Rt denote the random index of the person that
dies at t given that persons R(t) are at risk and that a death
occurs at time t.

Recall score function u(β) for Cox’s partial likelihood is a sum of
terms (p-dimensional vectors)

ui (β) = zi − E[zRti
|H(ti )]) = zi − ei i ∈ D

where H(ti ) is history up to time ti (determines R(ti ) and that a
death occurs at time ti ).

The components of these terms are also known as Schoenfeld
residuals (KM page 376).
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Assessment of timevarying effects

Suppose that we do not have proportional hazards for the jth
covariate in the sense that the true effect of zj is timevarying:

βj(t) = βj + γjg(t).

Let rSj ,i be Schoenfeld residual scaled with the covariance matrix of

β̂. Then the expected value of rSj ,i is approximately equal to
γjg(ti ).

Thus a plot of scaled Schoenfeld residuals versus time may reveal
deviations from proportional hazards.

Implemented in the cox.zph procedure.

This is not covered in KM. See e.g. book by Collett.
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We can define the score process (KM page 376) as

u(β, t) =
∑
l∈D:
tl≤t

ul(β)

By definition u(β̂, t) = 0 for t greater than the maximal observed
death time.

KM suggest to plot score process u(β̂, t) against time and compare
with 95% boundaries of Brownian bridge process.

Martinussen and Scheike (2006) Dynamic regression models for
survival data, suggest to compare with simulations of score process
under assumed model.
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The score process can also be expressed as

u(β, t) =
n∑

i=1

δi (zi − ei )− exp(zTi β)
∑
l∈D:
tl≤t

(zl − e(l))∑
k∈R(tl )

exp(zTk β)

(we will see later why, when considering counting processes and
martingales).

The score residuals are given by the components of u(β, ti ),
i = 1, . . . , n (i.e. in total np residuals).

These are also available from the residuals function and can be
cumulated to obtain score process.
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Influential observations

Do some observations have unusually large influence on estimation
of β ?

Let β̂ and β̂−i denote estimates of β based on full data set and
data with ith observation omitted. Want to look for i where
β̂ − β̂−i is an outlier.

Based on score process residuals it is possible to compute
approximation of β̂−i - i.e. we do not need to fit Cox model for all
datasets obtained by omitting one observation.

The resulting estimates of β̂ − β̂−i are called dfbeta in the
residual function for coxph objects.
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Use of formal testing ?

KM note 5 on page 380 advocates use of graphical checks rather
than formal tests. This is because we know that any statistical
model is just an approximation and thus is bound to be rejected if
the sample size is large enough.

Remember the famous quote by Box: ‘all models are wrong but
some are useful’

Graphical checks may reveal if there are any serious deviations
between model and data and possibly also hint to the cause of
such deviations.
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