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Bayes theorem

Bayes theorem for events A,B:

P(A|B) =
P(B|A)P(A)

P(B)

Combines marginal probability for A with conditional probability
for B given A to obtain conditional probability of A|B.

Bayes theorem for random variables X and Y :

f (x |y) =
f (y |x)f (x)

f (y)
∝ f (y |x)f (x)

NB: c = f (y) normalizing constant for unnormalized density

h(x) = f (y |x)f (x)
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Example: forensic statistics

Population of n individuals each with bloodtype a or ¬a.

Population: {x1, x2, . . . , xn} where xi = (i , ti ) and ti is either a or
¬a.

Stochastic variables G and B. G = i means ith person guilty. B is
bloodtype of guilty person (G = i ⇒ B = ti ).

Prior distribution for G : P(G = i) = pi . Suppose we know B = a.
Then

P(G = i |B = a) =
P(B = a|G = i)P(G = i)

P(B = a)

Note P(B = a|G = l) = 1 if tl = a and zero otherwise. Hence if
ti = a,

P(G = i |B = a) =
pi∑

l :tl=a pl

Note P(B = a) =
∑

l :tl=a pl in general differs from proportion of
population with bloodtype a !
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The idea of Bayesian inference

Idea: in order to infer an unknown quantity θ we should combine
information in the data with prior information (e.g. past
experience).

Formal approach: unknown parameter θ is regarded as a random
variable. Prior information expressed using probability density p(θ)
and information in data quantified using likelihood function.

Inference given data obtained via posterior distribution (Bayes
theorem)

p(θ|y) =
f (y |θ)p(θ)

f (y)
∝ f (y |θ)p(θ) ∝ L(θ)p(θ)

(as usual factors not depending on θ do not matter)
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NB: Bayesian inference mimics our daily approaches to handling
uncertainty where we implicitly combine sources of
data/likelihoods with prior knowledge.

Example: data: child late for dinner. Probability of interest
P( accident on the way home | child late). Here we use prior
probability P( accident) as well as “likelihoods” P(late|accident),
P(late|not accident) = q. If q big we worry less.

Advantage: enables the use of prior information when this is
available.

Disadvantage: requires the use of prior information. This may be
hard to obtain or different persons may have different prior
opinions.
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Example: beta-binomial

Suppose we observe X ∼ b(n, θ). Use beta prior

p(θ) =
Γ(α + β)

Γ(α)Γ(β)
θα−1(1− θ)β−1

Posterior

p(θ|x) ∝ θx(1− θ)n−xθα−1(1− θ)β−1 = θx+α−1(1− θ)n−x+β−1

Hence posterior p(θ|x) is beta-distributed (Beta(x + α, n− x + β))
too !
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Plots of prior, likelihood and posterior when X = 3 and n = 10
with different choices of (α, β):

(1,1) (uniform/flat)
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(0.5,0.5) (symmetric)
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(8,2)
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Conjugate prior distributions

Beta distribution is an example of a prior which is conjugate for
the binomial likelihood: posterior distribution is beta too !

Other examples:

I Gamma is conjugate for Poisson

I normal/scaled inverse χ2 conjugate for linear normal model

Conjugate priors only available in simple situations.
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Poisson-Gamma

Suppose Y1, . . . ,Yn|λ independent Poisson with mean λ and we
choose Γ(α, β) prior for λ.

Posterior:

p(λ|y) ∝ λy· exp(−nλ)λα−1 exp(−λ/β) = λy·+α−1 exp(−λ/[β/(1+nβ)])

Hence posterior for λ is Γ(y· + α, β/(1 + nβ)).

Expressions for posterior means and variances for binomial-beta
and Poisson-gamma can be found in Chapter 6 in M & T.
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Linear normal model

Y |β, σ2 ∼ N(Xβ, σ2I ).

Priors: β|σ2 ∼ N(0, φI ) and σ2 ∼ Sχ−2(f ).

We already know from our treatment of linear mixed models that

β|σ2, y ∼ N

(
(
σ2

φ
I + XTX )−1XTY , σ2(

σ2

φ
I + XTX )−1

)
(1)

Note this converges to proper limit N(β̂, σ2(XTX )−1) when
φ→∞. Note formal similarity with frequentist result for MLE β̂.

We can also show that σ2|y is scaled χ−2, see next slides.
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With
p(β, σ2) ∝ (σ2)−

f
2
−1 exp(−S/(2σ2))

and using Pythagoras

‖y − Xβ‖2 = ‖y − X β̂‖2 + ‖X β̂ − Xβ‖2

we obtain

p(β, σ2|y) ∝(σ2)−n/2e−
1

2σ2 ‖y−Xβ‖2(σ2)−
f
2
−1e−

S
2σ2

=e−
1

2σ2 (β−β̂)TXTX (β−β̂)(σ2)−
f+n
2
−1e−

S+RSS
2σ2

where RSS = ‖y − X β̂‖2 is the sum of squared residuals.

From this we (again) obtain β|σ2, y ∼ N(β̂, σ2(XTX )−1)
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Further,

p(σ2|y) ∝
∫

e−
1

2σ2 (β−β̂)TXTX (β−β̂)(σ2)−
f+n
2
−1e−

S+RSS
2σ2 dβ

=(2π)p/2(σ2)p/2|XTX |−1/2(σ2)−
f+n
2
−1e−

S+RSS
2σ2

∝(σ2)−
f+n−p

2
−1e−

S+RSS
2σ2

Hence, σ2|y ∼ (RSS + S)χ−2(f + n − p).

Hence provided RSS > 0 and n − p > 0, posterior also proper with
the improper prior p(β, σ2) ∝ 1/σ2 (i.e. S = f = 0).
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Results with improper prior for β and σ2

With R = (β − β̂)/σ we obtain R|σ2, y ∼ N(0, (XTX )−1). Thus
R and σ2 are conditionally independent given y .

With s2 = RSS/(n − p) and p(β, σ2) ∝ 1/σ2:

β − β̂√
s2

= R
σ

s
and R

σ

s
|y ∼ N(0, (XTX )−1)

√
(n − p)χ−2(n − p)

The product of independent N(0, (XTX )−1) and√
(n − p)χ−2(n − p) gives a p-dimensional t distribution with

n − p degrees of freedom. Thus

β − β̂√
s2
|y ∼ t(p, (XTX )−1, n − p)
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With vi the ith diagonal element of (XTX )−1 we obtain

βi − β̂i√
vi s2
|y ∼ t(n − p)

Note again formal similarity with frequentist t-statistic !
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Improper priors

Priors
p(β) ∝ 1, β ∈ Rp

and
p(σ2) ∝ 1/σ2, σ2 > 0

are improper (do not integrate to one).

In case of normal likelihood posterior is nevertheless proper
(limiting cases of normal and χ−2 priors).

Reason for using improper prior: a) may seem more objective (but
this is not really true, see next slide for a cautionary example) b)
avoids choosing parameters like φ,S , f in the normal example.

Danger: in complex models it may be hard to check that a
posterior is proper when improper priors are used.
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‘Non-informative’ and priors

Consider flat prior for θ ∈ [0, 1]. Priors for odds and log odds not
flat !:

odds log odds
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Hence whether a prior is non-informative depends on scale.

Rule of thumb: use non-informative priors on the scale that we
wish to draw inference for.
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Priors for odds and log odds obtained using transformation
theorem:

Suppose X ∼ fX and Y = h(X ) for differentiable and injective
function h. Then density of Y is

fY (y) =
1

|dy/dx |
fX (x) where x = h−1(y)

Also valid in the multivariate case. Then | · | is determinant and

dy

dx
= [

dyi
dxj

]ij

is Jacobian matrix of partial derivatives.
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Large data sets
With large datasets, posterior results less sensitive to choice of
prior (likelihood dominates).

Example beta-binomial with x = 5, n = 10 and x = 50, n = 100
(in both cases MLE is 0.5):

L(0.5)/L(0.1) = 165.4
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L(0.5)/L(0.1) = 1.53e22 !!
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Note: likelihoods look small compared to prior and posterior
because not normalized to integrate to one !
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Summarizing the posterior
For a vector (θ1, . . . , θn) posterior summaries are often computed
for the components separately.

Hence for θi we may compute posterior mean or median and
express posterior uncertainty in terms of posterior variance (not so
useful if posterior far from normal).

Posterior 95 % credibility interval: interval [l , u] (depending on
data) such that P(θi ∈ [l , u]|y) = 95%. Often a central interval is
used: P(θi < u|y) = P(θi > l |y) = 0.025.

95% Highest posterior density (HPD) region : H chosen so that
P(θ ∈ H|y) = 0.95 and p(θ|y) > p(θ̃|y) whenever θ inside H and
θ̃ outside.

More sophisticated possibilities: e.g. posterior probability that
θ1 > θ2 or look at ranks for components of θ (e.g. which treatment
is best ?). 22 / 26



Confidence intervals versus posterior intervals

95% confidence interval: random interval which in 95% of future
hypothetical repetitions of the experiment would contain the
(fixed) unknown parameter θ (frequentist interpretation).

95% posterior interval: Given the data y the posterior interval is
fixed while θ is random. The 95% probability associated with the
posterior interval is the probability that θ is in the interval given
the data. No reference to hypothetical repetitions of experiment.
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Exercises

1. Consider m iid binomial observations Xi ∼ b(ni , θ) where θ is
the common probability parameter. Compute the posterior
distribution of θ when a beta prior is used for θ.

2. Suppose y |λ is Poisson(λ) and λ is Γ(α, β). Show that y
marginally has a negative binomial distribution.

3. Compute the prior for p when logit(p) = log(p/(1− p)) = β
and the prior for β is N(0, τ2). What happens if τ2 →∞ (try
to plot the prior for large τ2) ?

4. Consider the linear normal model Yi ∼ N(β, σ2) (i.e. the
design matrix X is a column of 1’s) and use the prior
p(β, σ2) ∝ 1/σ2.

4.1 Compute a 95% posterior credibility interval for β.
4.2 Compare with the frequentist 95% confidence interval. What

are the interpretations of the two intervals and how do the
interpretations differ ?

24 / 26



5. Suppose observations 4, 6, 6, 7, 3, 5, 3, 11, 10, 5 are
observations of iid Poisson random variables with mean λ.
Use a Gamma prior with mean 6 and variance 10. Compute
the posterior mean, variance, and 95% central posterior
interval for λ.

6. Verify (1) using results from prediction lecture (slide
Prediction in linear mixed model).
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A few results needed for the exercises

The density of Γ(α, β) with shape α and scale β is

f (x ;α, β) =
β−α

Γ(α)
xα−1 exp(−x/β), x > 0

where Γ(·) is the gamma function. Mean and variance are αβ and
αβ2. If β is interpreted as the rate (inverse scale) then

f (x ;α, β) =
βα

Γ(α)
xα−1 exp(−βx), x > 0

The density of a negative binomial distribution with parameters α
and β is

f (y) =
Γ(y + α)

y !Γ(α)

( 1

1 + β

)α( β

1 + β

)y
y = 0, 1, 2, . . .
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