Maximum likelihood estimation for linear mixed models

Rasmus Waagepetersen
Department of Mathematics
Aalborg University
Denmark

February 8, 2023

Outline for today

- ▶ linear mixed models
- the likelihood function
- maximum likelihood estimation
- restricted maximum likelihood estimation

Linear mixed models

Consider mixed model:

$$Y_{ij} = \beta_1 + U_i + \beta_2 x_{ij} + \epsilon_{ij}$$

May be written in matrix vector form as

$$Y = X\beta + ZU + \epsilon$$

where
$$\beta = (\beta_1, \beta_2)^T$$
, $U = (U_1, \dots, U_k)^T$ and $\epsilon = (\epsilon_{11}, \epsilon_{12}, \dots, \epsilon_{km})^T$, X is $n \times 2$ and Z is $n \times k$.

Linear mixed model: general form

Consider model

$$Y = X\beta + ZU + \epsilon$$

where $U \sim N(0, \Psi)$ and $\epsilon \sim N(0, \Sigma)$ are independent.

All previous models special cases of this.

Then Y has multivariate normal distribution

$$Y \sim N(X\beta, Z\Psi Z^{\mathsf{T}} + \Sigma)$$

Hierarchical version

- 1. $U \sim N(0, \Psi)$
- 2. $Y|U = u \sim N(X\beta + Zu, \Sigma)$

Useful for generalization to generalized linear mixed models.

Ex: Poisson log-normal:

Given U = u, Y_i independent with $Y_i \sim Poisson(\lambda_i)$ where $\lambda_i = \exp(\eta_i)$ and $\eta = X\beta + Zu$.

Note likelihood (marginal density of Y) typically not of simple form in case of generalized linear mixed models.

Some useful matrix identities

Woodbury identity:

$$(A + BCD)^{-1} = A^{-1} - A^{-1}B(C^{-1} + DA^{-1}B)^{-1}DA^{-1}$$
$$(C^{-1} + DA^{-1}B)^{-1}DA^{-1} = CD(BCD + A)^{-1}$$
$$(C^{-1} + B^{t}A^{-1}B)^{-1}B^{t}A^{-1} = CB^{t}(BCB^{t} + A)^{-1}$$

Inverse of covariance matrix

Assume Σ positive definite (e.g. scaled identity matrix).

Then $Z\Psi Z^T + \Sigma$ guaranteed to be positive definite and

$$(Z\Psi Z^{\mathsf{T}} + \Sigma)^{-1} = \Sigma^{-1} - \Sigma^{-1} Z (\Psi^{-1} + Z^{\mathsf{T}} \Sigma^{-1} Z)^{-1} Z^{\mathsf{T}} \Sigma^{-1}$$

Right hand side may be easier to evaluate if Ψ^{-1} and $Z^T\Sigma^{-1}Z$ sparse (e.g. AR(1) random effects - next slide)

Example AR(1) - covariance and inverse covariance

Consider $U_1 = \nu_1$ and

$$U_i = aU_{i-1} + \nu_i, \quad i = 2, \ldots, m$$

where ν_i independent zero-mean normal with variances $\mathbb{V}\mathrm{ar}\nu_1=\tau_1^2$ and $\mathbb{V}\mathrm{ar}\nu_i=\tau^2$, i>1.

Then $U = B\nu$ for some B so $U \sim N_n(0, BCB^T)$ where $C = \text{diag}(\tau_1^2, \tau^2, \dots, \tau^2)$. Hence $\Psi = BCB^T$ and $\Psi^{-1} = (B^{-1})^T C^{-1} B^{-1}$.

NB: B^{-1} and C^{-1} are sparse (many zeros) and hence allows fast computations. So is Ψ^{-1} !

Expressions for covariances simplify in the stationary case |a| < 1 and $\tau_1^2 = \tau^2/(1-a^2)$.

Limiting case $a \to 1$ is improper pairwise difference density (Lec 1, Excs 9).

ANOVA models

ANOVA models arise when model specified using cross-combinations of factors/grouping variables or nested factors.

Example: one- and two-way analysis of variance.

Example: nested model for reflectance measurements.

E.g. one-way ANOVA: Z has entries $Z_{(ij),q}=1$ i=q and 0 otherwise, $i,q=1,\ldots,k$ $j=1,\ldots,m$.

Likelihood for linear mixed model

log likelihood for linear mixed model with covariance matrix $V(\psi) = Z\Psi Z^{\mathsf{T}} + \Sigma$:

$$-\frac{1}{2}\log(|V(\psi)|) - \frac{1}{2}(y - X\beta)^{\mathsf{T}}V(\psi)^{-1}(y - X\beta)$$

 ψ : parameters for covariance matrix (e.g. variance components)

MLE and weighted least squares

Assume ψ known. MLE for β is weighted least squares estimate

$$\hat{\beta}(\psi) = \arg\min_{\beta} (y - X\beta)^{\mathsf{T}} V(\psi)^{-1} (y - X\beta)$$

Differentiate and equate to zero:

$$X^{\mathsf{T}}V(\psi)^{-1}(y-X\beta)=0 \Leftrightarrow \hat{\beta}(\psi)=(X^{\mathsf{T}}V(\psi)^{-1}X)^{-1}X^{\mathsf{T}}V(\psi)^{-1}y$$

(provided relevant inverses exist)

Covariance parameters ψ : often numerical optimization is needed to maximize profile likelihood

$$-\frac{1}{2}\log(|V(\psi)|) - \frac{1}{2}(y - X\hat{\beta}(\psi))^{\mathsf{T}}V(\psi)^{-1}(y - X\hat{\beta}(\psi))$$

Estimation using orthogonal projections

Suppose $Y \sim N_n(\mu, \sigma^2 I)$, $\mu = X\beta$. Let P be orthogonal projection on M = span(X) (assuming X full rank, $P = X(X^TX)^{-1}X^T$).

Then by Pythagoras, $\|Y - X\beta\|^2 = \|Y - PY\|^2 + \|PY - X\beta\|^2$. Hence $\hat{\mu} = Py$ and $\hat{\beta} = (X^TX)^{-1}X^Ty$.

Moreover
$$\hat{\sigma}^2 = \|Y - PY\|^2 / n = \|Y - X\hat{\beta}\|^2 / n$$
.

Suppose now $Y \sim N_n(\mu, \sigma^2 W)$ where $W = LL^T$ fixed. Then MLE based on Y and $\tilde{Y} = L^{-1}Y$ equivalent. Note $\mathbb{C}\mathrm{ov}(\tilde{Y}) = \sigma^2 I$ and $\mathbb{E}\tilde{Y} = L^{-1}X\beta = \tilde{X}\beta$. Hence by the above,

$$\hat{\beta} = (\tilde{X}^{\mathsf{T}}\tilde{X})^{-1}\tilde{X}^{\mathsf{T}}\tilde{y} = (X^{\mathsf{T}}W^{-1}X)^{-1}X^{\mathsf{T}}W^{-1}y$$

and

$$\hat{\sigma}^2 = (y - X\hat{\beta})^{\mathsf{T}} W^{-1} (y - X\hat{\beta}) / n$$

Profile likelihood - uncorrelated noise

Suppose
$$\mathbb{C}\text{ov}\epsilon = \sigma^2 I$$
 $(n \times n)$ and $\mathbb{C}\text{ov}U = \Psi = \tau^2 L(\theta) L(\theta)^T$ $(k \times k)$

Then $(\psi = (\sigma^2, \theta, \phi))$

$$V(\psi) = \sigma^{2}(I + \phi Z L(\theta) L(\theta)^{\mathsf{T}} Z^{\mathsf{T}}) = \sigma^{2} W(\phi, \theta)$$

where $\phi = \tau^2/\sigma^2$ (signal to noise ratio).

Given ϕ and θ ,

$$\hat{\beta}(\phi,\theta) = (X^{\mathsf{T}}W^{-1}(\phi,\theta)X)^{-1}X^{\mathsf{T}}W(\phi,\theta)^{-1}y$$

and

$$\hat{\sigma}^2(\phi,\theta) = \frac{1}{n} (y - X \hat{\beta}(\phi,\theta))^\mathsf{T} W(\phi,\theta)^{-1} (y - X \hat{\beta}(\phi,\theta))$$

Then use matrix identity and result on next slide to get

$$W(\phi, \theta)^{-1} = (I + \phi Z L(\theta) L(\theta)^{\mathsf{T}} Z^{\mathsf{T}})^{-1} = I - Z(\phi^{-1} (L(\theta)^{\mathsf{T}})^{-1} L(\theta)^{-1} + Z^{\mathsf{T}} Z)^{-1} Z^{\mathsf{T}}$$

and

$$|I_n + \phi Z L(\theta) L(\theta)^{\mathsf{T}} Z^{\mathsf{T}}| = |I_k + \phi L(\theta) L(\theta)^{\mathsf{T}} Z^{\mathsf{T}} Z|$$

Note: now we just need to invert/compute determinant of $k \times k$ and typically k < n.

Profile log likelihood for (ϕ, θ) :

$$I(\phi, \theta) = -\frac{1}{2} \log |\hat{\sigma}^2(\phi, \theta)W(\phi, \theta)| - \frac{n}{2} \equiv -\frac{n}{2} \log \hat{\sigma}^2(\phi, \theta) - \frac{1}{2} \log |I_k + \phi L(\theta)L(\theta)^{\mathsf{T}} Z^{\mathsf{T}} Z|$$

Some further useful matrix results

Consider

$$A = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix}$$

Suppose A_{11} is invertible. Then

$$|A| = |A_{11}||A_{22} - A_{21}A_{11}^{-1}A_{12}|$$

Similarly, if A_{22} is invertible: $|A| = |A_{22}||A_{11} - A_{12}A_{22}^{-1}A_{21}|$

Proof: use that

$$\begin{bmatrix} A_{11} & A_{12} \\ 0 & A_{22} - A_{21}A_{11}^{-1}A_{12} \end{bmatrix} = \begin{bmatrix} I & 0 \\ -A_{21}A_{11}^{-1} & I \end{bmatrix} A$$

Moreover, if $A: n \times k$ and $B: k \times n$ then

$$|I_n + AB| = |I_k + BA|$$

Proof: use above result on

$$\begin{bmatrix} I_n & -A \\ B & I_k \end{bmatrix}$$

MLE's of variances biased or inconsistent

For simple normal sample $Y_i \sim N(\xi, \sigma^2)$, MLE $\hat{\sigma}^2$ is biased:

$$E\hat{\sigma}^2 = \sigma^2(n-1)/n$$

Bias arise from estimation of ξ $(\sum_i (y_i - \xi)^2 \text{ vs } \sum_i (y_i - \bar{y}_i)^2)$.

Neyman-Scott example: $y_{ij} = \xi_i + \epsilon_{ij}$, i = 1, ..., k and j = 1, 2. MLE of σ^2 not even consistent as k tends to infinity (exercise).

REML (restricted/residual maximum likelihood)

Idea: linear transform of data which eliminates mean. Suppose design matrix $X: n \times p$ and let $A: n \times (n-p)$ have columns spanning the orthogonal complement M^{\perp} of $M = \operatorname{span} X$. Then $A^{\mathsf{T}}X = 0$.

Transformed data $((n-p) \times 1)$

$$\tilde{Y} = A^{\mathsf{T}}Y = A^{\mathsf{T}}ZU + A^{\mathsf{T}}\epsilon$$

has mean 0 and covariance matrix $A^{\mathsf{T}}V(\psi)A$. Then proceed as for MLE.

NB: suppose A and B both span M^{\perp} . Then the same REML estimate of ψ is obtained (proof: B = AC for an invertible matrix C, write out likelihoods for \tilde{Y} using A and AC).

NB: M^{\perp} is the null-space of X^{T} .

REML continued

Given REML estimate $\hat{\psi}$ we use weighted least squares estimate of β :

$$\hat{\beta} = (X^{\mathsf{T}} V(\hat{\psi})^{-1} X)^{-1} X^{\mathsf{T}} V^{-1} (\hat{\psi}) y$$

REML examples

Simple normal sample: A has columns $e_i - 1_n/n$, i = 1, ..., n-1 where 1_n is the *n*-vector of 1's and e_i is the *i*th standard basis vector.

Alternative: use columns $e_i - e_n$, i = 1, ..., n - 1.

Neyman-Scott problem: A^T has rows of the form $(1,-1,0,\ldots,0)$, $(0,0,1,-1,0,\ldots,0)$ etc.

Implementation of REML - uncorrelated noise

Suppose
$$\mathbb{C}\text{ov}\epsilon = \sigma^2 I$$
 and $\mathbb{C}\text{ov}U = \Psi = \tau^2 L(\theta) L(\theta)^\mathsf{T}$

Then

 $\hat{\sigma}^2(\phi,\theta) =$

$$V(\psi) = \sigma^2 (I + \phi Z L(\theta) L(\theta)^{\mathsf{T}} Z^{\mathsf{T}}) = \sigma^2 W(\phi, \theta)$$
 where $\phi = \tau^2 / \sigma^2$.

Choose A so that columns form an orthogonal basis for M^{\perp} where $M = \operatorname{span} X$. Then $A^{\mathsf{T}} A = I$ and $AA^{\mathsf{T}} = I - X(X^{\mathsf{T}} X)^{-1} X^{\mathsf{T}}$ (since AA^{T} is a projection matrix).

$$\mathbb{C}\mathrm{ov}A^\mathsf{T}Y = A^\mathsf{T}V(\psi)A = \sigma^2(I + \phi A^\mathsf{T}ZL(\theta)L(\theta)^\mathsf{T}Z^\mathsf{T}A) \quad (n-p)\times (n-p)$$
 Hence given (ϕ,θ) estimate of σ^2 is (using Woodbury)

$$\frac{1}{n-p} \left[\tilde{Y}^{\mathsf{T}} \tilde{Y} - \tilde{Y}^{\mathsf{T}} A^{\mathsf{T}} Z [\phi^{-1} (L(\theta) L(\theta)^{\mathsf{T}})^{-1} + Z^{\mathsf{T}} A A^{\mathsf{T}} Z]^{-1} Z^{\mathsf{T}} A \tilde{Y} \right]$$

Profile REML log likelihood for (ϕ, θ) :

$$I(\phi, \theta) = -\frac{n-p}{2} \log \hat{\sigma}^2(\phi, \theta) - \frac{1}{2} \log |I + \phi Z^{\mathsf{T}} A A^{\mathsf{T}} Z L(\theta) L(\theta)^{\mathsf{T}}|$$

Note: depends only on A through $AA^{\mathsf{T}} = I - X(X^{\mathsf{T}}X)^{-1}X^{\mathsf{T}}$. This again shows that specific choice of basis for M^{\perp} does not matter.

(if columns in A not orthogonal, we would have $A(A^TA)^{-1}A^T = I - X(X^TX)^{-1}X^T$ and reach the same conclusion)

MLE for balanced one-way ANOVA

Maximizing likelihood for balanced one-way (M&T Thm 5.4 and remarks 5.13-5.16)

$$\hat{\xi} = \bar{y}_{\cdot\cdot\cdot}, \hat{\sigma}^2 = \frac{SSE}{k(m-1)}, \hat{\tau}^2 = \frac{SSB/k - \hat{\sigma}^2}{m}$$

$$\mathbb{E}\hat{\sigma}^2 = \sigma^2 \quad \mathbb{E}SSB/k = \frac{k-1}{k}\sigma^2 + m\frac{k-1}{k}\tau^2$$

Hence $\hat{\tau}^2$ biased. It is asymptotically unbiased as k tends to infinity.

In lecture 3 we derive the MLEs using orthogonal projections.

REML for balanced one-way ANOVA

E.g. A as for simple normal sample, i.e. $\tilde{y}_{ij} = y_{ij} - \bar{y}_{..}$

Then REML equations for estimating τ^2 and σ^2 coincide with the moment equations from lecture 1.

Maximization

NB: In general profile likelihoods (MLE or REML) must be maximized numerically (e.g. Newton-Raphson).

For one-way ANOVA we can do it by hand in closed form but tedious.

In special case of balanced ANOVA models orthogonal decomposition makes MLE very easy (later)

Computational details

For the general linear mixed model computational complexity arises from the need to invert and compute determinant of $V(\psi)$.

Strategies covered here include using possible sparsity of Ψ or possible low dimension k << n of Ψ

Usually we just need to specify X and Z and then general software (R or SAS) takes care of numerical details and maximization.

Exercises

- Slides 4-5 contain 3 specifications of the distribution of Y.
 Show that these are equivalent (hint: calculate characteristic function (lecture 1) in case of the hierarchical specification)
- 2. formulate random intercept and slope model

$$y_{ij} = \beta_0 + \beta_1 x_{ij} + U_i + V_i x_{ij} + \epsilon_{ij}$$

as general linear mixed model. What are the design matrices \boldsymbol{X} and \boldsymbol{Z} ?

- 3. (AR(1)-model) Consider the 'stationary' case |a| < 1 and $\tau_1^2 = \tau^2/(1-a^2)$.
 - 3.1 Show $U_i \sim N(0, \tau^2/(1-a^2)) \Rightarrow U_{i+1} \sim N(0, \tau^2/(1-a^2))$.
 - 3.2 Identify B^{-1} and B and compute Ψ and Ψ^{-1} .
 - 3.3 Formulate $V^{-1} = (\Psi + \sigma^2 I)^{-1}$ in terms of sparse matrices where V is covariance matrix for the model $Y_i = \xi + U_i + \epsilon_i$ (AR(1)+noise).
 - 3.4 Consider the limit as $a \to 1$ of the density of an AR(1) with $\tau_1^2 = \tau^2/(1-a^2)$. How is this related to the smoothing prior in Exercise 9 from lecture 1?

- 4. Show that the REML variance estimate for a simple normal sample coincides with $s^2 = \sum_{i=1}^n (y_i \bar{y}_i)^2/(n-1)$.
- 5. Compute MLE and REML estimates for the Neyman-Scott example. Compute mean and variance for the estimates of σ^2 .
- Show that if A and B both span the orthogonal complement of spanX then the same REML estimates are obtained from A^TY and B^TY.
- Go carefully through the derivations leading to REML profile log likelihood (slide 20-21).
- 8. Suppose Y has a parametric density $f_Y(\cdot;\theta)$ and $\tilde{Y}=T(Y)$ for a differentiable and invertible transformation T that does not depend on θ . Show that the MLE for θ based on Y coincides with the MLE of θ based on \tilde{Y} .

Further, assume $\psi = g(\theta)$ for some invertible transformation g. Show that the MLE of θ coincides with $g^{-1}(\hat{\psi})$ where $\hat{\psi}$ is the MLE of ψ ($\hat{\psi} = \operatorname{argmax}_{\psi} f(y; g^{-1}(\psi))$).

9. In case of simple normal sample compute variance of MLE $\hat{\sigma}^2$ and REML estimate s^2 given that $\sum_{i=1}^n (Y_i - \bar{Y})^2$ is $\sigma^2 \chi^2 (n-1)$ (hint: $\mathbb{V}ar\chi^2 (f) = 2f$).

Which estimator has smallest mean square error? (recall mean square error is sum of variance and squared bias)