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Outline for today

» linear mixed models
» the likelihood function
» maximum likelihood estimation

» restricted maximum likelihood estimation
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Linear mixed models

Consider mixed model:
Yij = P14+ Ui + Paxij + €
May be written in matrix vector form as
Y=XB+2ZU+¢

where 3 = (B1,82)7, U = (Uy,...,Ux)" and
€= (611,612,...,6km)T, Xisnx2and Zis n x k.
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Linear mixed model: general form

Consider model
Y=X8+2ZU+¢€

where U ~ N(0, V) and € ~ N(0,X) are independent.
All previous models special cases of this.

Then Y has multivariate normal distribution

Y ~ N(XB,ZUZ" + %)
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Hierarchical version

1. U~ N(O,W)
2. Y|U=u~ NXB+ Zu,X)

Useful for generalization to generalized linear mixed models.
Ex: Poisson log-normal:

Given U = u, Y; independent with Y; ~ Poisson(\;) where
Ai = exp(n;) and n = XS + Zu.

Note likelihood (marginal density of Y) typically not of simple
form in case of generalized linear mixed models.
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Some useful matrix identities

Woodbury identity:
(A+BCD) ' =A1 - AB(C '+ DAIB) IDAT!

(C™1+ DA'B)"'DA = CD(BCD + A)~?
(C'+BtA1B) 1B'A™! = CBY(BCB! + A) !
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Inverse of covariance matrix

Assume ¥ positive definite (e.g. scaled identity matrix).
Then ZWZT + ¥ guaranteed to be positive definite and
(ZVZT+ )y t=x szt 4 2Ty 7)1 7Ty !

Right hand side may be easier to evaluate if U=1 and ZTY 17
sparse (e.g. AR(1) random effects - next slide)
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Example AR(1) - covariance and inverse covariance
Consider U; = v7 and

U=aU_14+v,, i=2,....,m

where v; independent zero-mean normal with variances Vary, = 7'12

and Vary; = 72, i > 1.

Then U = Bv for some B so U ~ N,(0, BCBT) where
C = diag(7?,72,...,72). Hence ¥V = BCBT and
vl = (B-1)TCc 181,

NB: B! and C~! are sparse (many zeros) and hence allows fast
computations. So is W1 |

Expressions for covariances simplify in the stationary case |a| < 1
and 72 = 72/(1 — a°).

Limiting case a — 1 is improper pairwise difference density (Lec 1,
Excs 9).

8/28



ANOVA models

ANOVA models arise when model specified using
cross-combinations of factors/grouping variables or nested factors.

Example: one- and two-way analysis of variance.
Example: nested model for reflectance measurements.

E.g. one-way ANOVA: Z has entries Z;;) o =17 =q and 0
otherwise, i,g=1,...,kj=1,...,m.
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Likelihood for linear mixed model

log likelihood for linear mixed model with covariance matrix
V() =ZvZT + 1

S log([V())) ~ 5y — XB)T V() My — X5)

1. parameters for covariance matrix (e.g. variance components)
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MLE and weighted least squares

Assume 1 known. MLE for § is weighted least squares estimate
Blw) = argmin(y — X8)TV(¥) (v — X0)

Differentiate and equate to zero:

XTV(@)Hy = XB) =0 Bv) = (XTV(@) X)XV (@)Y

(provided relevant inverses exist)

Covariance parameters 1: often numerical optimization is needed
to maximize profile likelihood

A

—3 108V - 5y = XB@)TV() (v — X))
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Estimation using orthogonal projections

Suppose Y ~ Ny(p,0?1), 1 = XB. Let P be orthogonal projection
on M = span(X) (assuming X full rank, P = X(XTX)71XT).

Then by Pythagoras, ||Y — X8| = ||Y — PY|> + ||PY — XB|2.
Hence /i = Py and 3 = (XTX)"1XTy.

Moreover 62 = |Y — PY|[2/n=||Y — X}|]2/n.
Suppose now Y ~ Np(t, 0> W) where W = LLT fixed. Then MLE
based on Y and Y = L=1Y equivalent. Note Cov(Y) = o2/ and
EY = L71XB = X3. Hence by the above,

B — ()?T)N()fl)?Ty’ — (XT W71X)71XT W*ly

and A A
6% =(y = XB)"WHy — XB3)/n
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Profile likelihood - uncorrelated noise

Suppose Cove = a2/ (n x n) and CovU = W = 72L(0)L(0)T
(k x k)

Then (¢ = (02, 0, 9))

V() = oI + ¢ZL(O)L(0) T ZT) = 0® W (9, 0)
where ¢ = 72 /02 (signal to noise ratio).
Given ¢ and 6,

B(,0) = (XTWH(¢,0)X) I XTW(g,0) 1y
and

Ly — XB(6,0)TW(6,0) My — XB(6.6))

n

5%(¢,0)
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Then use matrix identity and result on next slide to get
W(,0)"t = (1 +0ZL(O)LEO) ZT) T =
I —Z(¢o (L@ tLo)yt+272)tZ7

and
I+ ¢ZL(O)L(O) " ZT| = |l + SL(O)L(0) " Z7 Z|

Note: now we just need to invert/compute determinant of k x k
and typically k < n.

Profile log likelihood for (¢, 0):

n

1(6.6) =~ log |5%(6, )W (.0)| ~ 3

1
— 3 log6%(6,6) — > log |l + 6L(9)L(9) 2" Z|
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Some further useful matrix results

Consider
A Ar
A=
[AZI Ao
Suppose Aj; is invertible. Then
Al = |A11][ A2z — Az A Arol
Similarly, if Ay is invertible:|A| = |Az||A11 — A12A2_21A21|

Proof: use that

A1l A1 ] . |: / 0:| A
0 Axn—AnAltAn —AnAl |

Moreover, if A: nx k and B : k X n then
|, + AB| = |Ix + BA|
Proof: use above result on
l, —A
B I
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MLE's of variances biased or inconsistent

For simple normal sample Y; ~ N(&,0?), MLE 62 is biased:

E6% =0o2(n—1)/n
Bias arise from estimation of & (3_;(yi — €)% vs >_.(vi — ¥.)?).

Neyman-Scott example: y; =& +¢€j, i=1,...,kand j =1,2.
MLE of o2 not even consistent as k tends to infinity (exercise).
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REML (restricted/residual maximum likelihood)

Idea: linear transform of data which eliminates mean. Suppose
design matrix X : n x p and let A: n x (n— p) have columns
spanning the orthogonal complement M+ of M = spanX. Then
ATX =0.

Transformed data ((n— p) x 1)
Y=ATY =ATZU + ATe

has mean 0 and covariance matrix AT V/(¢))A. Then proceed as for
MLE.

NB: suppose A and B both span M. Then the same REML
estimate of 1 is obtained (proof: B = AC for an invertible matrix
C, write out likelihoods for Y using A and AC).

NB: ML is the null-space of XT.
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REML continued

Given REML estimate 1& we use weighted least squares estimate of
B:
B=XTV@) X)XV )y
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REML examples

Simple normal sample: A has columns ¢, —1,/n,i=1,...,n—1
where 1, is the n-vector of 1's and ¢; is the ith standard basis
vector.

Alternative: use columns ¢ —e,, i=1,...,n—1.

Neyman-Scott problem: AT has rows of the form (1,-1,0,...,0),
(0,0,1,-1,0,...,0) etc.
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Implementation of REML - uncorrelated noise
Suppose Cove = o2/ and CovU = ¥ = 72L(A)L(6)"

Then
V() = oI + ¢ZL(O)L(0) T ZT) = 0® W (9, 0)
where ¢ = 72 /02,

Choose A so that columns form an orthogonal basis for M+ where
M = spanX. Then ATA= 1 and AAT = — X(XTX)71XT (since
AAT is a projection matrix).

CovATY = ATV()A = o?(14+pAT ZL(O)L(O)TZTA)  (n—p)x(n—p)
Hence given (¢, #) estimate of o2 is (using Woodbury)

5%(0.0) =
[YTY - YTATZ[p 1 (L(O)L(O)") * + ZTAATZ] 1 ZT AY]

n—p
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Profile REML log likelihood for (¢, 0):

i(¢,0) = " > P log52(¢,0) — % log |/ + ¢ZT AATZL(0)L(6)T]

Note: depends only on A through AAT = | — X(XTX)~1XT. This
again shows that specific choice of basis for M+ does not matter.

(if columns in A not orthogonal, we would have
AATA)TIAT = | — X(XTX)71XT and reach the same conclusion)
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MLE for balanced one-way ANOVA

Maximizing likelihood for balanced one-way (M&T Thm 5.4 and
remarks 5.13-5.16)

A SSE SSB/k — &
o A2 A2 _
f—)/-,O' _k(m_l)’T m
k—1 k—1
E4? = 0> ESSB/k = o+ m——- p 72
Hence 72 biased. It is asymptotically unbiased as k tends to

infinity.

In lecture 3 we derive the MLEs using orthogonal projections.
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REML for balanced one-way ANOVA

E.g. A as for simple normal sample, i.e. y;; = y; — ¥.

Then REML equations for estimating 72 and o2 coincide with the
moment equations from lecture 1.
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Maximization

NB: In general profile likelihoods (MLE or REML) must be
maximized numerically (e.g. Newton-Raphson).

For one-way ANOVA we can do it by hand in closed form but
tedious.

In special case of balanced ANOVA models orthogonal
decomposition makes MLE very easy (later)
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Computational details

For the general linear mixed model computational complexity arises
from the need to invert and compute determinant of V/(¢).

Strategies covered here include using possible sparsity of W or
possible low dimension k << n of W

Usually we just need to specify X and Z and then general software
(R or SAS) takes care of numerical details and maximization.
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Exercises

1. Slides 4-5 contain 3 specifications of the distribution of Y.
Show that these are equivalent (hint: calculate characteristic
function (lecture 1) in case of the hierarchical specification)

2. formulate random intercept and slope model

Yij = Bo + Bixij + Ui + Vixjj + €

as general linear mixed model. What are the design matrices
Xand Z7

3. (AR(1)-model) Consider the ‘stationary’ case |a] < 1 and
7 =72/(1-2%.

3.1 Show U; ~ N(0,72/(1 — a%)) = Uiy1 ~ N(0,7%/(1 — a°)).

3.2 Identify B~! and B and compute W and W1,

3.3 Formulate V! = (W + ¢2/)~! in terms of sparse matrices
where V is covariance matrix for the model Y; =&+ U; + ¢;
(AR(1)+noise).

3.4 Consider the limit as a — 1 of the density of an AR(1) with
72 = 72/(1 — a°). How is this related to the smoothing prior in

Exercise 9 from lecture 1 ?
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. Show that the REML variance estimate for a simple normal

sample coincides with s = Y7 (y; — 7.)?/(n — 1).

. Compute MLE and REML estimates for the Neyman-Scott
example. Compute mean and variance for the estimates of o?.

. Show that if A and B both span the orthogonal complement
of spanX then the same REML estimates are obtained from
ATY and BTY.

. Go carefully through the derivations leading to REML profile
log likelihood (slide 20-21).

. Suppose Y has a parametric density fy(-;0) and Y = T(Y)
for a differentiable and invertible transformation T that does
not depend on #. Show that the MLE for 6 based on Y
coincides with the MLE of 6 based on Y.

Further, assume 1 = g() for some invertible transformation
g. Show that the MLE of 6 coincides with g~1(1)) where %) is

the MLE of ¢ (¢) = argmax,, fly; g (w))).
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9. In case of simple normal sample compute variance of MLE &2

and REML estimate s? given that >.7_ (Y; — Y)? is
a2x?(n — 1) (hint: Vary?(f) = 2f).

Which estimator has smallest mean square error ? (recall
mean square error is sum of variance and squared bias)
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