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Outline for today

I Fitting linear mixed models using R

I One-way ANOVA using orthogonal projections
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Rep: specification of linear models in R

y = α + βx + ε y~x

yij = µ+ αi + βj + εij y~A+B

yij = µ+ αi + βj + γij + εijk y~A+B+A:B

y~A*B

yij = µ+ αi + βixij + εij y~A+A*x

etc. ...

NB: A is a factor/categorical variable identifying groups of
observations. The ith group of observations is assigned the
parameter value αi .

NB: replace A with factor(A) if A not already declared a factor.
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Hierarchical principle

For model specified by factors A,B, y~A+B+A:B y~A+A:B y~B+A:B

and y~A:B all fit the same model for the mean vector.

I.e. in presence of interaction A:B it does not make sense to
attempt to omit main effects A or B.

If you really want to ‘remove’ main effects then you need to mess
with design matrix - and results depend crucially on choice of
parametrization constraints.

Situation a bit different when fitting model with a blend of factor
A and covariate x . Here

I A*x=A+x+A:x=A+A:x: different intercepts, different slopes

I A+x: different intercepts, same slope

I x+A:x=A:x same intercepts, different slopes
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Rep: Multiple linear regression in R I

#fit model with sex specific intercepts and slopes

> ort1=lm(distance~age+age:factor(Sex)+factor(Sex))

> summary(ort1)

...

Estimate Std. Error t value Pr(>|t|)

(Intercept) 16.3406 1.4162 11.538 < 2e-16 ***

age 0.7844 0.1262 6.217 1.07e-08 ***

factor(Sex)Female 1.0321 2.2188 0.465 0.643

age:factor(Sex)Female -0.3048 0.1977 -1.542 0.126

...

Residual standard error: 2.257 on 104 degrees of freedom

> drop1(ort1,test="F")

Single term deletions

Df Sum of Sq RSS AIC F value Pr(F)

<none> 529.76 179.75

age:factor(Sex) 1 12.11 541.87 180.19 2.3782 0.1261

Note drop1 respects hierarchical principle also in this ‘blended’
case. Different slopes age:Sex not significant !
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Multiple linear regression in R II

> ort2=lm(distance~age+factor(Sex))

> drop1(ort2,test="F")

Single term deletions

Model:

distance ~ age + factor(Sex)

Df Sum of Sq RSS AIC F value Pr(F)

<none> 541.87 180.19

age 1 235.36 777.23 217.15 45.606 8.253e-10 ***

factor(Sex) 1 140.46 682.34 203.09 27.218 9.198e-07 ***

both age and sex significant
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Multiple linear regression in R III

#plot data and two regression lines

col=rep("blue",length(Sex))

col[Sex=="Female"]="red"

plot(distance~age,col=col)

abline(parm[1:2],col="blue")

abline(c(parm[1]+parm[3],parm[2]),col="red")
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Multiple linear regression in R IV

res=residuals(ort2)

hist(res)

Histogram of res
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fittedval=fitted(ort2)

plot(res~fittedval)
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Multiple linear regression in R V

> library(lattice)

> xyplot(res~Subject,groups=Subject)
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Oups - residuals not independent
and identically distributed !
Hence computed F -tests not
valid.

Problem: subject specific
intercepts (and possibly subject
specific slopes too)
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Fitting linear mixed models in R
General procedures for linear mixed models: lme() from the nlme

package and lmer() from the lme4 package.

Quote from internet (Ben Bolker):

“lmer is newer, much faster, handles crossed random effects well
(and generalized linear mixed models), has some support for
producing likelihood profiles (in the development version), and is
under rapid development. It does not attempt to estimate residual
degrees of freedom and hence does not give p-values for
significance of effects. lme is older, better documented (Pinheiro
and Bates 2000), more stable, and handles ’R-side’ structures
(heteroscedasticity, within-group correlations)”

I will mainly use lmer() in this course: specification of model for
random effects fairly straightforward. lme() is covered in M&T
Chapter 5.11. Package lmerTest adds p-values to output of
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Linear mixed models using lmer
General lmer model formulation

y~‘fixed formula’+(‘rand formula_1’|Group_1)+ ...

+(‘rand. formula_n’|Group_K)

translates into linear mixed model with independent sets of random
effects for each grouping variable and e.g.

(z|Group_l)

corresponds to
Ui + Viz

i.e. model with random intercept and random slope for covariate z
within each level i of grouping factor Group_l.

NB independence between levels of Group_l but intercept and
slope dependent within level.

Only random intercept respectively slope: (1|Group_l) resp.
(-1+z|Group_l)
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Orthodont with random subject intercepts

Formula: distance ~ age * Sex + (1 | Subject)

Random effects:

Groups Name Variance Std.Dev.

Subject (Intercept) 3.299 1.816

Residual 1.922 1.386

Number of obs: 108, groups: Subject, 27

Fixed effects:

Estimate Std. Error df t value Pr(>|t|)

(Intercept) 16.3406 0.9813 103.9864 16.652 < 2e-16 ***

age 0.7844 0.0775 79.0000 10.121 6.44e-16 ***

SexFemale 1.0321 1.5374 103.9864 0.671 0.5035

age:SexFemale -0.3048 0.1214 79.0000 -2.511 0.0141 *

Now interaction significant (p=0.0141) assuming t-value
approximately standard normal.

What is interpretation of interaction ? Does it make sense ?
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Note: corresponding model without random effects has much
inflated residual variance 5.09 = 2.2572 vs. 1.922 for mixed model.

13 / 33



Linear mixed model for orthodont data - independent
random slope and intercept

Formula: distance ~ age * Sex + (1 | Subject) + (-1 + age | Subject)

Random effects:

Groups Name Variance Std.Dev.

Subject (Intercept) 2.416451 1.55449

Subject.1 age 0.007748 0.08802

Residual 1.864634 1.36552

Number of obs: 108, groups: Subject, 27

Fixed effects:

Estimate Std. Error df t value Pr(>|t|)

(Intercept) 16.34062 0.94087 67.09150 17.368 < 2e-16 ***

age 0.78438 0.07944 67.09021 9.873 1.06e-14 ***

SexFemale 1.03210 1.47405 67.09150 0.700 0.4862

age:SexFemale -0.30483 0.12446 67.09021 -2.449 0.0169 *
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Linear mixed model for orthodont data - correlated random
slope and intercept

Formula: distance ~ age * Sex + (age | Subject)

Random effects:

Groups Name Variance Std.Dev. Corr

Subject (Intercept) 5.77441 2.4030

age 0.03245 0.1801 -0.67

Residual 1.71661 1.3102

Number of obs: 108, groups: Subject, 27

Fixed effects:

Estimate Std. Error df t value Pr(>|t|)

(Intercept) 16.34063 1.01824 25.00829 16.048 1.12e-14 ***

age 0.78437 0.08598 25.01351 9.123 1.97e-09 ***

SexFemale 1.03210 1.59528 25.00829 0.647 0.5235

age:SexFemale -0.30483 0.13471 25.01351 -2.263 0.0326 *
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Comparison of models for orthodont data
Fixed part: age+Sex+age:sex

Random part:

Model AIC BIC logLik Number of parameters

U 445.8 461.9 -216.9 4+2
Vx 448.7 464.8 -218.4 4+2
U + Vx , Cov(U,V ) = 0 447.2 465.9 -216.6 4+3
U + Vx 448.6 470 -216.3 4+4

Larger logLik and smaller AIC or BIC means better model.

AIC and BIC takes into account number of parameters - penalizes
complex models

The simplest one (just random intercept) seems better.

When REML is used (is default) for parameter estimation, need
same mean structure in the models compared.
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Random intercepts with MLE

ort35=lmer(distance~age*Sex+(1|Subject),data=Orthodont,REML=F)

Formula: distance ~ age * Sex + (1 | Subject)

Random effects:

Groups Name Variance Std.Dev.

Subject (Intercept) 3.030 1.741

Residual 1.875 1.369

Number of obs: 108, groups: Subject, 27

Fixed effects:

Estimate Std. Error df t value Pr(>|t|)

(Intercept) 16.34062 0.96309 107.88346 16.967 < 2e-16 ***

age 0.78438 0.07654 80.99936 10.248 2.77e-16 ***

SexFemale 1.03210 1.50886 107.88346 0.684 0.4954

age:SexFemale -0.30483 0.11991 80.99936 -2.542 0.0129 *

Slightly different variance estimates. Fixed effects estimates in this
case same as REML (since balanced dataset)

Due to balanced data structure same fixed effects estimates for all
covariance structures !
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Analysis of variance

Analysis of variance (ANOVA) models are specified in terms of
grouping variables or factors.

A factor F is a variable that assigns a grouping label to each
observation.

E.g. Fi = q means that observation yi (or index i) is assigned to
group/level q for the factor F .

Suppose F generates k groups. The design matrix ZF

corresponding to F is n × k and the iqth entry of ZF is 1 if i is
assigned to group q and 0 otherwise.

(NB: i could be a multi-index i = i1i2 . . . ip)
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One-way anova
Let F be a factor with k levels and consider the model

yij = ξ + Ui + εij , i = 1, . . . , k , j = 1, . . . , ni

or
y = ξ1n + ZFU + ε

where n is total number of observations and ZF is the design
matrix corresponding to F : ij , qth entry of ZF is 1 if yij belongs to
the qth group and zero otherwise.

F is balanced if common number ni = m of observations at each
of the k levels (whereby n = mk).

In this case, PF (orthogonal projection on LF = spanZF ) is

PF =
1

m
ZFZ

T
F

Action of PF : replaces yij by ȳi · (averages within each group).
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A few definitions and useful facts

Suppose L1 and L2 are linear subspaces with orthogonal projections
P1 and P2.

If L1 and L2 are orthogonal then we define

L1⊕L2 = {x+y |x ∈ L1, y ∈ L2} [⇒ dim(L1⊕L2) = dim(L1)+dim(L2)]

Suppose instead L1 ⊂ L2. Then orthogonal complement of L1
within L2 is

L2 	 L1 = {x ∈ L2|xTy = 0∀y ∈ L1}

and it follows

L2 = (L2 	 L1)⊕ L1 dim(L2 	 L1) = dim(L2)− dim(L1)

Finally, the orthogonal projection on L2 	 L1 is P2 − P1
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Two special factors: unit factor I has a unique level for each
observation LI = Rn and PI = I (with an abuse of notation I is
used both for factor and identity matrix). Factor 0 assigns all
observations to the same group and L0 = span(1n), P0 = 1n1Tn /n.

Then L0 ⊂ LF ⊂ LI .

Orthogonal decomposition of Rn:

Rn = V0 ⊕ VF ⊕ VI

where V0 = L0 = span(1n), VF = LF 	 V0 and VI = Rn 	 LF .

Dimensions of V0, VF and VI are 1, k − 1 and n − k.

Orthogonal projections on V0, VF and VI are Q0 = P0,
QF = PF − P0 and QI = I − PF .
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Decomposition of covariance matrix into orthogonal projections:

CovY = mτ2PF + σ2I = λPF + σ2QI

where λ = mτ2 + σ2 (recall I = PF + QI ).

Note: one-to-one correspondence between (λ, σ2) and (τ2, σ2).

Orthogonal decomposition of data vector:

Y = PFY + QIY
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Note PF1n = Q01n = 1n and QI1n = 0. Moreover QIPF = 0.

Hence [
PF

QI

]
Y ∼ N

((
1nξ
0n

)
,

[
λPF 0

0 σ2QI

])
We can thus base maximum likelihood estimation of (ξ, λ) on
PFY and σ2 on QIY .

Note PFY and QIY are both n-dimensional but ‘live’ on k and
n − k dimensional subspaces LF and VI . Hence ‘degenerate’
normal vectors.
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More precisely, (using results from exercises)

|Σ|−1/2 exp(−1

2
(Y − 1nξ)TΣ−1(Y − 1nξ)) =

λ−k/2 exp(− 1

2λ
‖PFY−1nξ‖2)×(σ2)−k(m−1)/2 exp(− 1

2σ2
‖QIY ‖2)

(1)

(Σ−1 = σ−2QI + λ−1PF and |Σ| = λk(σ2)mk−k)

Note: the two factors in the above likelihood are ‘generalized’
densities of the ‘degenerate’ normal vectors PFY and QIY .

Consider e.g. the factor λ−k/2 exp(− 1
2λ‖PFY − 1nξ‖2) involving

the parameters λ and ξ. We can maximize this with respect to λ
and ξ in exactly the same way as when we previously considered
the likelihood of Nn(Xβ, τ2I ) (see slide ‘Estimation using
orthogonal projections’ in second set of handouts). Thus we obtain

1̂nξ = P0PFY = P0Y and λ̂ = ‖PFY − P0Y ‖2/k = SSB/k
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Proceeding in the same way for the second factor (where there is
no mean parameter), we obtain

σ̂2 = ‖QIY ‖2/(k(m − 1)) = SSE/(k(m − 1))

Note QFY ∼ Nn(0, λQF ). By Exercise 8,
‖PFY − P0Y ‖2 = ‖QFY ‖2 ∼ λχ2(k − 1) which has mean
λ(k − 1). Thus λ̂ is biased.

Unbiased estimate: λ̃ = ‖PFY − P0Y ‖2/(k − 1) = SSB/(k − 1)
(REML)

27 / 33



Implementation in R
For cardboard/reflectance data, k = 34 and m = 4. anova()

procedure produces table of sums of squares corresponding to
orthogonal decomposition.

> anova(lm(Reflektans~factor(Pap.nr.)))

Analysis of Variance Table

Response: Reflektans

Df Sum Sq Mean Sq F value

factor(Pap.nr) 33 0.9009 0.0273 470.7 #SSB V_F

Residuals 102 0.0059 0.00006 #SSE V_I

---

Hence σ̂2 = 0.00006, λ̂ = 0.90088/34 (or
λ̃ = 0.90088/33 = 0.0273) and τ̂2 = (λ̂− 0.00006)/4 = 0.00661
(or τ̃2 = (λ̃− 0.00006)/4 = 0.00681).

Biggest part of variation is between cardboard.
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Implementation using lmer()

One-way anova is special case of linear mixed model so we can use
lmer():

> out1=lmer(Reflektans~(1|Pap.nr.),REML=F)

> summary(out1)

Linear mixed model fit by maximum likelihood

Formula: Reflektans ~ (1 | Pap.nr.)

AIC BIC logLik deviance REMLdev

-726.5 -717.8 366.3 -732.5 -725.8

Random effects:

Groups Name Variance Std.Dev.

Pap.nr. (Intercept) 6.6096e-03 0.0812994

Residual 5.7997e-05 0.0076156

Number of obs: 136, groups: Pap.nr., 34
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REML results with lmer()

> out1=lmer(Reflektans~(1|Pap.nr.))#default is REML

> summary(out1)

...

Random effects:

Groups Name Variance Std.Dev.

Pap.nr. (Intercept) 6.8103e-03 0.0825247

Residual 5.7997e-05 0.0076156

number of obs: 136, groups: Pap.nr., 34

Fixed effects:

Estimate Std. Error t value

(Intercept) 0.61690 0.01417 43.54
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anova(lm()) vs lmer()

lmer(): easy model specification in accordance with specification
as general linear mixed model. Directly provides estimates of
original variance parameters. Balanced factor not required.

anova(lm()): classical method. Computationally very efficient
(no need for numerical optimization). Requires some skill/care to
obtain original variance estimates. Balanced factor required.

31 / 33



Exercises

1. fit a linear model to the orthodontic data with covariates age,
sex and Subject. What happens regarding the estimates for
sex and Subject ?

2. Consider the mixed model for the orthodontic data with
uncorrelated random intercept and random slope for each
child. What are the proportions of variances due to
respectively noise, random intercepts, and random slopes ?
How do the results depend on age ?

3. Let L1 ⊂ L2 with orthogonal projections P1 and P2. Show
that P2 − P1 is the orthogonal projection on L2 	 L1.

4. Show that an orthogonal projection only has eigen values 1 or
0.

5. For a square matrix A show that |A| is the product of eigen
values of A.

6. Show QIPF = 0
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7. Let S = aP + bQ where P and Q are orthogonal projections
with P + Q = I and a, b 6= 0. Show that the eigen values of S
are the non-zero eigen values a and b of aP and bQ. Show
that S−1 = a−1P + b−1Q. Finally verify the factorization (1).

8. Show that ‖Y ‖2 ∼ σ2χ2(d) if Y ∼ N(0, σ2P) and P is an
orthogonal projection on a subspace of dimension d (hint: use
spectral decomposition and the result above regarding the
eigen values of P).

9. Install the R-package faraway which contains the data set
pulp (brightness of paper pulp in groups given by different
operators). Analyze the data using a one-way anova with
random operator effects. Estimate variance components and
the intra-class correlation. Try both lmer and anova.
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10. Consider the following examples. Is there scope for using
random effects - and if so, how ?
10.1 In an agricultural experiment 2 different varieties of barley and

two types A and B of fertilizer are tried out on 10 fields. Each
variety is applied to 5 fields where the allocation of varieties to
fields is random. Each field is further split into two plots where
one part receives fertilizer A and the other fertilizer B. The
dependent variable is barley yield within plots.

10.2 10 nurses treat 40 patients where 20 patients receive
treatment A and 20 receive treatment B (both against high
blood pressure). Each nurse takes care of four patients where
two gets treatment A and two gets treatment B. Dependent
variable is blood pressure measured once a week over 5 weeks.

10.3 The experiment in previous question is changed so that only 2
nurses are involved. One nurse treats 20 patients with A and
one nurse treats 20 patients with B. Again blood pressure is
measured 5 times for each patient (extra question: is this a
good design ?)

10.4 What is the implication for estimation of variances if there is
just one blood pressure measurement for each patient ? Do
you prefer to include 10 or 2 nurses ?
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