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Outline for today

▶ Two-way ANOVA using orthogonal projections
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Two-way ANOVA
Consider two factors: T (treatment) and P (plot) with number of
levels dT and dP . Moreover let P × T be the cross-factor (has
dPdT levels - one for each combination of levels of P and T ).

Assume P × T is balanced with nP×T = m observations for each
level. Then P and T balanced too with numbers of observations
nP = mdT and nT = mdP for each level.

Model with random P and P × T effects (e.g. to account for soil
variation)

yptr = ξ + βt + Up + Upt + ϵptr

p = 1, . . . , dP , t = 1, . . . , dT , r = 1, . . . ,m

In vector form:

y = µ+ ZPUP + ZP×TUP×T + ϵ

where µ ∈ LT = spanXT .
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Similar to one-way anova define:

V0 = L0 VT = LT ⊖ V0 VP = LP ⊖ V0

Since P × T balanced it follows that PTPP = PPPT = P0 which
implies QTQp = 0 where QT = PT − P0 and QP = PP − P0.
Hence VT and VP are orthogonal and LP + LT = V0 ⊕ VP ⊕ VT .

Define further

VP×T = LP×T ⊖ (LP + LT ) VI = Rn ⊖ LP×T

Orthogonal decomposition:

Rn = V0 ⊕ VP ⊕ VT ⊕ VP×T ⊕ VI

Dimensions of ‘V ’ spaces: f0 = 1, fP = dP − 1, fT = dT − 1,
fP×T = dPdT − dP − dT + 1 = (dP − 1)(dT − 1), fI = n − dPdT .
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Orthogonal projections on ‘V ’ spaces: Q0 = P0, QP = PP − Q0,
QT = PT − Q0, QP×T = PP×T − QP − QT − Q0 and
QI = I − PP×T .

Covariance structure:

CovY = σ2
PnPPP + σ2

P×TnP×TPP×T + σ2I

= λPQ̃P + λP×T Q̃P×T + λI Q̃I

where

λI = σ2

λP×T = σ2 + nP×Tσ
2
P×T

λP = σ2 + nP×Tσ
2
P×T + nPσ

2
P

and

Q̃P = Q0 + QP = PP Q̃P×T = QP×T + QT Q̃I = QI
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Interpretation of VP×T for a fixed effects two-way ANOVA

Suppose that P and T are both systematic factors. Then the
ordinary two-way ANOVA is

yptr = ξ + αp + βt + γpt + ϵptr .

Then LP×T is the space for the mean vector
µ = (ξ + αp + βt + γpt)ptr .

Similarly, LP + LT is the space for the mean vector
µ = (ξ + αp + βt)ptr in case of the additive model where the
γpt = 0 (no interaction).

Hence VP×T = LP×T ⊖ (LP + LT ) is the ‘interaction space’.
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‘Q̃’s are orthogonal projections on

ṼP = V0 + VP ṼP×T = VP×T + VT ṼI = VI

This corresponds to orthogonal decomposition

Rn = ṼP ⊕ ṼP×T ⊕ ṼI

based on model without systematic effects (‘V ’-spaces aggregated
into Ṽ -spaces).
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Orthogonal decomposition of data vector:

Y = Q0Y + QPY + QTY + QP×TY + QIY

= Q̃PY + Q̃P×TY + Q̃IY

Decomposition of mean vector µ ∈ LT = V0 ⊕ VT :

µ = Q̃Pµ+ Q̃P×Tµ+ Q̃Iµ = Q0µ+ QTµ+ 0 = µ0 + µT

where µ0 ∈ L0 and µT ∈ VT .

Note: one-to-one correspondence between µ and (µ0,µT )
(reparametrization)
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As for one-way anova Y is decomposed into independent normal
vectors

Q̃PY ∼ N(µ0, λPQ̃P) Q̃P×TY ∼ N(µT , λP×T Q̃P×T )

Q̃IY ∼ N(0, λI Q̃I )

Density for Y factorizes into product of ‘densities’ for Q̃PY ,
Q̃P×TY and Q̃IY .

Hence

µ̂0 = P0Q̃PY = P0Y = Ȳ··1n µ̂T = QT Q̃P×TY = QTY

µ̂ = µ̂0 + µ̂T = PTY λ̂P = ∥Q̃PY − P0Y ∥2/dP = ∥QPY ∥2/dP
λ̂P×T = ∥Q̃P×TY−QTY ∥2/(dPdT−dP) = ∥QP×TY ∥2/(dPdT−dP)

λ̂I = σ̂2 = ∥QIY ∥2/(n − dPdT )

NB: since VP and VP×T have dimensions fP = dP − 1 and
fP×T = (dP − 1)(dT − 1) we often use these denominators instead
of dP and dPdT − dP for λP and λP×T (REML).
Note: MLE for µ is identical to MLE in the linear model with
µ ∈ LT and no random effects.
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Strata
Crucial common point for one- and two-way anova models
considered: we are able to decompose covariance matrix as linear
combination of scaled projections on orthogonal ‘Ṽ ’-subspaces
where coefficients are in one-to-one correspondence with the
variance components (the variances of random effects). This
enables factorization of likelihood !

Fixed factors assigned to strata corresponding to ‘Ṽ ’ spaces for the
random factors

Rule: fixed factor F belongs to B strata (B random factor) if B is
the coarsest random factor which is finer than F (assuming that
we work with designs where this rule gives unique allocation of
each fixed factor to one random factor).

NB: F is finer than G (or G coarser than F ) if levels of G can be
obtained by merging levels of F . We then write G ⪯ F .
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Structure diagram

I PxT 

P 

T 

O 

Arrow from F to G if G is coarser than F and there is no
intermediate factor which is coarser than F and finer than G .

Note: three strata (black, green and red) corresponding to
‘random’ factors I , P × T and P.

NB: here we can not have both P and T random unless O random
too (if O systematic no unique allocation to random factor strata).
Also want to respect hierarchical principle so P × T can not be
fixed if P random.
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Relation to ‘old school ANOVA’
By orthogonal decomposition

Y = Q0Y + QPY + QTY + QP×TY + QIY

and Pythagoras,

∥Y − Q0Y ∥2 = ∥QPY ∥2 + ∥QTY ∥2 + ∥QP×TY ∥2 + ∥QIY ∥2

With terminology SSF=∥QFY ∥2 we get∑
ptr

(Yptr − Ȳ···)
2 = SSP + SST + SSPT + SSI

Here, for example, SSP=
∑

ptr (Ȳp·· − Ȳ···)
2 and SSPT=∑

ptr (Ȳpt· − Ȳp·· − Ȳ·t· + Ȳ···)
2.

Sorry: in relation with one-way ANOVA I called left hand side SST
(T for total) and SSI was SSE
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Note also: QTY = (Ȳ·t· − Ȳ···)ptr .

This is the part of the mean vector that corresponds to sum to
zero constraint: with

β̂t = Ȳ·t· − Ȳ···

we have ∑
t

β̂t = 0

In other words: with µT = QTµ ∈ VT we have µT and 1n ∈ Q0

orthogonal so
1TnµT = 0 and 1Tn µ̂T = 0
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Paper pulp example: two-way analysis of variance without
treatment effect

P: card board with dP = 5. T: position within cardboard (not a
treatment) with dT = 4. Number of replications m = 4.

Model:
yptr = ξ + Up + Upt + ϵptr

Variances σ2
P , σ

2
P×T and σ2

We can use exactly the same orthogonal decomposition as before.
Only difference is that QTµ = QT1nξ = 0 which means
Q̃P×TY ∼ N(0, λP×T Q̃P×T ) and REML and ML estimates for
λP×T coincide and are equal to

λ̂P×T = ∥Q̃P×TY ∥2/(dPdT − dP)

NB: in ANOVA table (next slide), SSP=∥QPY ∥2, SST=∥QTY ∥2,
SSPT=∥QP×TY ∥2 and SSE=∥QIY ∥2.
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ANOVA table

Analysis of Variance Table

Response: Reflektans

Df Sum Sq Mean Sq F value Pr(>F)

factor(Sted) 3 0.03600 0.011999 188.981 < 2.2e-16 ***

#SST

factor(Pap.nr.) 4 1.07520 0.268800 4233.472 < 2.2e-16 ***

#SSP

factor(Sted):factor(Pap.nr.)

12 0.02168 0.001807 28.452 < 2.2e-16 ***

#SSPT

Residuals 60 0.00381 0.000063

#SSE

σ̂2 = 0.00006 λ̂P×T = (0.036 + 0.02168)/15 = 0.00385
λ̂P = 1.0752/5 = 0.21504 (or λ̂P = 1.0752/4 = 0.0072 = 0.2688).
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By relations

λP×T = σ2 + nP×Tσ
2
P×T

λP = σ2 + nP×Tσ
2
P×T + nPσ

2
P

we obtain σ̂2
P = (0.21504− 0.00385)/16 = 0.0132

σ̂2
P×T = (0.00385− 0.00006)/4 = 0.0009475 (or

σ̂2
P = (0.2688− 0.00385)/16 = 0.01655937)

Recall: balanced design required - and difficult to remember rules
for calculating variance components.
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Using lmer and ML

> out2=lmer(Reflektans~(1|Sted:Pap.nr.)+(1|Pap.nr.),REML=F)

> summary(out2)

Random effects:

Groups Name Variance Std.Dev.

Sted:Pap.nr. (Intercept) 9.454e-04 0.030747

Pap.nr. (Intercept) 1.320e-02 0.114890

Residual 6.349e-05 0.007968

Number of obs: 80, groups: Sted:Pap.nr., 20; Pap.nr., 5
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Using lmer and REML

> out2=lmer(Reflektans~(1|Sted:Pap.nr.)+(1|Pap.nr.))

> summary(out2)

Random effects:

Groups Name Variance Std.Dev.

Sted:Pap.nr. (Intercept) 9.455e-04 0.030749

Pap.nr. (Intercept) 1.657e-02 0.128717

Residual 6.349e-05 0.007968

Number of obs: 80, groups: Sted:Pap.nr., 20; Pap.nr., 5

Note REML and ML estimates for σ2 and σ2
P×T coincide (up to

rounding error)
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Explanation of Reflektans~(1|Sted:Pap.nr.)+(1|Pap.nr.)):

▶ no fixed formula: intercept always included as default

▶ (1|Sted:Pap.nr.) random intercepts for groups identified
by variable StedPap.nr.

▶ (1|Pap.nr.) random intercepts for groups identified by
variable Pap.nr.

▶ random effects specified by different terms independent.
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A more complicated example: gene-expression
Gene (DNA string) composed of substrings (exons) which may be
more or less expressed according to treatment.

Expression measured as intensities on micro-array (chip). One chip
pr. patient-treatment.

Factors: E (exon 8 levels), P (patient, 10 levels), T (treatment, 2
levels)

Y : vector of intensities (how much is exon expressed).

Model:
yept = ξ + αe + βt + γet + Up + Upt + ϵept

Upt and Up random chip and patient effects.

Main question: are exons differentially expressed - i.e. are γet ̸= 0
or not (we will return to this question later)
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Note: P × E × T = I is balanced so every sub-factor (E , E × T
etc.) is balanced. This implies orthogonal decomposition (see a
following slide):

R160 = V0 ⊕ VP ⊕ VE ⊕ VT ⊕ VP×T ⊕ VE×T ⊕ VP×E ⊕ VI

Structure diagram with random factors P,P × T , I :

I

PxT
P

T
O

E
ExT

PxE

Dim L / V spaces above/under
Each factor.

1

1

10

9
2

1

8

7

20

9

16

7

80

63

160

63

Decomposition with respect to random factors:

R160 = ṼP ⊕ ṼP×T ⊕ ṼI

where ṼP = V0 ⊕ VP , ṼP×T = VT ⊕ VP×T and
ṼI = VE ⊕ VE×T ⊕ VP×E ⊕ VI .
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Decomposition of CovY :

CovY = nPσ
2
PPP+nP×Tσ

2
P×TPP×T+σ2I = λPQ̃P+λP×T Q̃P×T+λI Q̃I

Decomposition of µ:

µ = Q̃Pµ+ Q̃P×Tµ+ Q̃Iµ = Q0µ+ QTµ+ QEµ+ QE×Tµ

As before decomposition of Y into independent Gaussian vectors:

Q̃PY ∼ N(Q0µ, λPQ̃P) Q̃P×TY ∼ N(QTµ, λP×T Q̃P×T )

Q̃IY ∼ N
(
(QE + QE×T )µ, λI Q̃I

)
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Orthogonality of ‘V ’-spaces
We use results of exercise 7 to deduce that

PP×EPE×T = PE QPPE×T = PPPE×T −P0PE×T = P0−P0 = 0

The second equality shows that VP and VE×T are orthogonal.

Further:

QP×E = PP×E −QP −QE −Q0 QE×T = PE×T −QE −QT −Q0

Using the result in the upper equation and pairwise orthogonality
of QP ,QE ,QT ,Q0 we get

QP×EQE×T = 0

Thus VP×E and VE×T are orthogonal too.

Orthogonality of VP×T , VP and VT was shown for two-way
ANOVA.

Proceeding this way all ‘V ’ spaces orthogonal.
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Anova table:

> fit1=lm(intensity~treat*factor(exon)+factor(patient)+

factor(patient):treat,data=gene1)

> anova(fit1)

Analysis of Variance Table

Response: intensity

Df Sum Sq Mean Sq F value Pr(>F)

treat 1 3.242 3.242 14.4796 0.0002199 ***

factor(exon) 7 254.343 36.335 162.2852 < 2.2e-16 ***

factor(patient) 9 15.405 1.712 7.6449 6.703e-09 ***

treat:factor(exon) 7 2.238 0.320 1.4278 0.1998234

treat:factor(patient) 9 8.190 0.910 4.0643 0.0001345 ***

Residuals 126 28.211 0.224

σ̂2 = λ̂I = 0.224 λ̃P×T = 8.19/9 = 0.91 λ̃P = 15.405/9 = 1.712.

σ̂2
P×T = (0.91− 0.224)/8 = 0.08575

σ̂2
P = (1.712− 0.91)/16 = 0.050125
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With aov()

> fit1=aov(intensity~treatment*factor(exon)+

Error(factor(patient)+factor(patient):treatment),data=gene1)

> summary(fit1)

Error: factor(patient)

Df Sum Sq Mean Sq F value Pr(>F)

Residuals 9 15.4 1.712

Error: factor(patient):treatment

Df Sum Sq Mean Sq F value Pr(>F)

treatment 1 3.242 3.242 3.563 0.0917 .

Residuals 9 8.190 0.910

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Error: Within

Df Sum Sq Mean Sq F value Pr(>F)

factor(exon) 7 254.34 36.33 162.285 <2e-16 ***

treatment:factor(exon) 7 2.24 0.32 1.428 0.2

Residuals 126 28.21 0.22

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Conveniently organizes factors into strata !
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Using lmer:

> fit1=lmer(intensity~treat*factor(exon)+

(1|patient)+(1|patient:treatment),data=gene1)

> summary(fit1)

Random effects:

Groups Name Variance Std.Dev.

patient:treatment (Intercept) 0.08577 0.2929

patient (Intercept) 0.05011 0.2239

Residual 0.22389 0.4732

Number of obs: 160, groups: patient:treatment, 20; patient, 10
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K -way ANOVA
Assume K factors F1, . . . ,FK so that F1 × . . .× FK balanced.

Let D be the set of 0, I ,F1, . . . ,FK and all cross-combinations of
F1, . . . ,FK .

Then, in analogy with three-way (excs 7), all ’V’ spaces orthogonal.

Let B ⊆ D be the set of factors with random effects.

We then have

Σ =
∑
B∈B

σ2
BnBPB and PB =

∑
F∈D:F⪯B

QF

and we want
PB =

∑
B′∈B:B′⪯B

Q̃B′ (1)

where Q̃B orthogonal projections on some spaces ṼB where
Rn = ⊗B∈BṼB .
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K -way ANOVA continued

Given (1) we have required decomposition of Σ into sum of scaled
orthogonal projections:

Σ =
∑
B∈B

σ2
BnBPB =

∑
B′∈B

λB′Q̃B′ where λB′ =
∑

B∈B:B′⪯B

nBσ
2
B .

Thus we can again obtain decomposition Y of into independent
ỸB = Q̃BY , B ∈ B.

Hence parameter estimates can easily be derived by analogy with
results for linear normal model.
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K -way ANOVA continued
A sufficient (and necessary) condition for (1) is that: for all F ∈ D
there exists a B ∈ B such that F ⪯ B and B ⪯ B ′ for all other B ′

with F ⪯ B ′.

(this must be checked for a given model. Note this implies I ∈ B
and that B = B(F ) is unique).

Then we define

ṼB =
∑

F∈D:B(F )=B

VF and Q̃B =
∑

F∈D:B(F )=B

QF

Each F ∈ D belongs to precisely one ṼB so Rn = ⊗B∈BṼB .

See also more details in note “Analysis of variance using
orthogonal projections”.

Even more general set-up can be found in Jesper Møller: Centrale
statistiske modeller og likelihood baserede metoder.
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Exercises

1. Check that PTPP = P0.

2. Check that LT + LP = V0 ⊕ VP ⊕ VT .

3. For a two-way balanced ANOVA, derive the decomposition of
the covariance matrix of Y in terms of ‘λ‘s and ‘Q̃’s.

4. Derive factorization of likelihood for balanced two-way.

5. Derive estimates of mean and variance parameters for
balanced two-way.

6. Install the R-package faraway which contains the data set
penicillin. The response variable is yield of penicillin for
four different production processes (the ‘treatment’). The raw
material for the production comes in batches (‘blends’). The
four production processes were applied to each of the 5
blends. Fit anova models with production process as a fixed
factor and blend as random factor. Try to use both the anova
table and lmer.
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7. In a balanced three-way design with factors F1,F2, and F3
show that

PF1×F2PF2×F3 = PF2 PF1×F2PF3 = P0

Explain how this can be generalized to the following result:

P∏
i∈A Fi

P∏
i∈B Fi

= P∏
i∈A∩B Fi

for a K -way balanced design with factors Fi , i = 1, . . . ,K and
A,B ⊆ {1, . . . ,K} (taking P∏

i∈∅Fi
= P0).
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