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Outline for today

» asymptotic inference for general linear mixed models

» a few further exact results
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Inference for balanced ANOVA - status

Parameters Estimation Tests/Confidence intervals
/B Closed form estimates exact t- or F-tests for mean
structure,

exact conf. intervals
X - variances  Closed form estimates exact x? distributions,
conf. intervals
0% - variances Closed form estimates F-tests for zero variance
B

For other models with sufficient balancedness/orthogonality, exact
results can be derived too - e.g. orthodont data (see last part of
slides).
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The general linear mixed model

We do not have the nice exact results for linear mixed models in
general.

Then we need to resort to asymptotic results, approximate F-tests
or parametric bootstrap.

Can divide parameter vector into (cf. second lecture)

1. [: regression parameters for mean
2. o2: variance of uncorrelated homoscedastic noise

3. . variance/correlation parameters of random effects

4/38



Confidence intervals for regression parameter (3 in general
linear model with known correlation structure

Suppose Y ~ N(X3, a2 W) ‘where W known. Equivalently,
inference based on Y ~ N(X 3, c?I) obtained by transforming with
1w =LLT.

MLE of = X and (3 are

h=XXT W—1X)—1XT w-ty

B=XTWIX)IXTWly = (XTw=1Xx)" 1 xTw-1z

Since

B~ N, (XTWTIX) ™)
and REML &2 is x?(n — d)/(n — d)-distributed, we can obtain
confidence intervals using t statistic.
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In practice W typically contains unknown parameter ).

Things get more complicated since B and its distribution then may
depend on these unknowns (MLE of 3: W(%) substituted by
W (v)) where ¢) MLE).

If 12 consistent then BA will be asymptotically normal and we may
use 52(XTW~1(2)X)™!) as approximate covariance matrix.

This gives approximate confidence intervals based on quantiles for
normal distribution.
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Wald-test

Wald-test: suppose we wish to test H : K3 = b for some K : f x d
and b € Rf. Under hypothesis H,

T = (K&*(XTWH()X) KT)H2[KB — bl ~ Ne(0,1) (1)

and
ITI? =~ X*(f)

Kenward and Rogers (1997) suggested more accurate F(f, m)
approximate distribution of 2|/ T2 for some scaling factor A > 0
and m > 0 - implemented in package pbkrtest

Their idea: match mean and variance of %H T||? with those of
F(f, m) in order to determine scaling factor A and denominator
degrees of freedom m - for more details see Hgjsgaard and Halekoh
(2014).
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Example: orthodont

(wrong) Model without random effects - test for no interaction

> ortl=1m(distance”age+age:factor(Sex)+factor(Sex))
> ort2=1m(distance”age+factor(Sex))

> anova(ort2,ortl)

Analysis of Variance Table

Model 1: distance ~ age + factor(Sex)

Model 2: distance ~ age + age:factor(Sex) + factor(Sex)
Res.Df RSS Df Sum of Sq F Pr(>F)

1 105 541.87

2 104 529.76 1 12.114 2.3782 0.1261

F-test with F(1,104) distribution. p-value 0.1261.
t-test with 104 degrees of freedom gives same p-value.
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orthodont - continued
More appropriate model with random effects:

> ort4=lmer (distance”age*Sex+(1|Subject))
> ort4.1=lmer(distance”age+Sex+(1|Subject))#remove interac
> KRmodcomp (ort4,ort4.1)
F-test with Kenward-Roger approximation; computing time: O
large : distance ~ age * Sex + (1 | Subject)
small : distance ~ age + Sex + (1 | Subject)
stat ndf ddf F.scaling p.value
Ftest 6.3027 1.0000 79.0000 1 0.0141 *

F-test with F(1,79) distribution.

Now p-value is 0.0141 (due to more appropriate modeling of
variance structure). Hence slopes for age appear to be significantly
different !

Note: in fact exact test (see slides in the end)
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Hierarchical principle revisited

The formula age*Sex creates a model with sex specific slopes and
intercept.

Under this model we can test both hypotheses of equal slopes or of
equal intercepts (corresponding to models age+Sex respectively
age+age:sex (=age:sex)).

Note however, that in case of different slopes, age:Sex, meaning
of Sex effect depends strongly on choice of ‘zero’ for age. We
might e.g. wlog consider centered ages -3,-1,1,3 where age 11 is
‘zero’. In case of different slopes, Sex intercept difference at 0 and
11 are not the same !

The above discussion supports respecting also the hierarchical
principle in case of ‘blended’ interaction effects (i.e. between a
covariate and a factor)
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test of Sex effect
Test for sex effect (violating hierarchical principle !)

> ort4=lmer(distance~age*Sex+(1|Subject),data=0rthodont)
> ort4.2=Ilmer(distance”age:Sex+(1|Subject) ,data=0rthodont)
> KRmodcomp (ort4,ort4.2)
F-test with Kenward-Roger approximation; time: 0.03 sec
large : distance ~ age * Sex + (1 | Subject)
small : distance ~ age:Sex + (1 | Subject)
stat ndf ddf F.scaling p.value
Ftest 0.4507 1.0000 103.9864 1 0.5035

This means that no intercept difference between boys and girls at
age 0

This is quite an extrapolation given observed ages are between 8
and 14.

F-test not exact (cf. ddf) (would have been with age centered, see

slides in the end)
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test of Sex effect assuming no interaction

Test for sex effect (same intercept for boys and girls) assuming no
interaction

> ort4.1=lmer(distance~age+Sex+(1|Subject),data=0rthodont)
> ort4.2=lmer(distance”age+(1|Subject) ,data=0rthodont)
> KRmodcomp(ort4.1,ort4.2)
F-test with Kenward-Roger approximation; computing time: O
large : distance ~ age + Sex + (1 | Subject)
small : distance ~ age + (1 | Subject)
stat ndf ddf F.scaling p.value
Ftest 9.2921 1.0000 25.0000 1 0.005375 *x*

Signif. codes: O ‘“x*x*’ 0.001 ‘**’ 0.01 ‘x> 0.056 ‘.’ 0.1 ¢

F-test with F(1,25) distribution.

Note: This is exact F-test (see slides in the end)
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Genes data revisited

> fitl=lmer(intensity treatment*factor(exon)+(1|patient)+(:

> fit2=1lmer(intensity treatment+factor(exon)+(1|patient)+(

> KRmodcomp (fitl,fit2)

F-test with Kenward-Roger approximation; computing time: O

large : intensity ~ treatment + factor(exon) + (1 | patien

treatment:factor (exon)

small : intensity ~ treatment + factor(exon) + (1 | patien
stat ndf ddf F.scaling p.value

Ftest 1.4278  7.0000 126.0000 1 0.1998

Note: in this case KR-approximation coincides with exact
F(7,126)-distribution !

In balanced ANOVA models using 1mer we can use KRmodcomp to
compute F-tests.
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KRmodcomp and ImerTest

If you load 1merTest, anova() will compute (approximate) F-test
using Satterthwaite's approximation (default) or KRmodcomp
(option).

lmerTest also provides (approximate) p-values for individual mean
parameter estimates.
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Noise parameter o?

Guess: distribution of REML &2 close to o?x?(n — d)/(n — d)
(where d dimension of mean space)

At least true if 1 known.

Testing hypotheses regarding o2 not relevant (there is always
noise/measurement error)
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Parameter 1)

Need to resort to asymptotic results...
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Asymptotic inference
Let /1,(0) = log Ln(6) denote the log likelihood function and let

() = 2O gy = 20

denote the score function and observed information. n is ‘number
of observations’.

Recall Es,(0) = 0 and Vars,(6) = i,(0) where i (0) is the Fisher
information.
Asymptotic results for 0, rely on first order Taylor

5n(0) = jn(0) (00 — 0) < B, — 0 = ju(0) " s,(6)

If we can replace (asymptotically as n — o0) j, by ip, and s,(0)
approximately normal N(0,in(¢)) we obtain

0, — 0~ N(0,in(0)™Y)
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Asymptotic normality for s,(6) is obtained from CLT.

This works if n large and observations not ‘too dependent’.
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Wald-test (again)

Wald-test: suppose we wish to test H : KO = ¢ for some K : f x p
and ¢ € Rf. Under hypothesis H and assuming 6, asymptotically
normal,

T = (Kin(0)"*KT)"Y2[K0, — c] =~ N¢(0, 1)

and
ITI? =~ X*(f)
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Asymptotic distribution of likelihood ratio

Suppose Hp : 6 € ©g with alternative hypothesis § € ©. Then
under ‘regularity’ conditions

—2log @ = _2[/(é07n) - I(én)] ~ X2(d — do)

where dy and d number of ‘free’ parameters under Hy and
alternative, respectively.
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Limitations of asymptotic results

» Usual ‘regularity’ conditions require that parameters do not
fall on the boundary under Hy (6, — 6 can not be normal
under restriction 6, > 6p). Thus problematic if we want to

test whether a variance is zero.

» Under H : 72 = 0 for variance component 72 (or if true 72

close to zero), distribution of 72 skew (not normal).

» Need asymptotic normality of s,(6). Not always obvious how
to use CLT for general linear mixed models - what should tend
to infinity ? - and observations not independent (for
independent observations we assume number of observations
n tend to infinity and use CLT)

Regarding last item: e.g. in one-way ANOVA we might require k
tending to infinity rather than just n = mk tending to infinity.
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Faraway (2006), section 8.2 recommends parametric bootstrap for
testing variance components (when exact results not applicable):

1. Simulate jid data Y7, ..., Y5 from model under null
hypothesis.

2. Recompute likelihood ratio test for each simulated data set.

3. Compare observed LR with simulated distribution.
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Likelihood ratio tests: ML vs REML

Note: we can only consider ratios between likelihoods evaluated for
the same dataset.

For variance components 1) we may use REML likelihoods but not
for mean parameters 3 since REML transformed data depends on

model for the mean.
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Following slides exemplifies for comparison inference based on
asymptotic results.

Never do this in practice for balanced ANOVA
where exact results are available !!!
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Gene-expression data using lmer

fitl=1lmer(intensity treatment*factor (exon)
+(1|patient)+(1|patient:treatment),data=genel,R

fit2=1lmer(intensity treatment+factor (exon)
+(1|patient)+(1|patient:treatment),data=genel,R

anova(fitl,fit2)

Df  AIC  BIC logLik Chisq Chi Df Pr(>Chisq)
fit2 12 266.80 303.70 -121.40
fitl 19 270.11 328.54 -116.06 10.686 7 0.1529

fit3=1mer(intensity~factor (exon)+
(1|patient)+(1|patient:treatment) ,data=genel,REML=F)
anova(fit2,fit3)

Df AIC BIC 1logLik Chisq Chi Df Pr(>Chisq)
fit3 11 268.16 301.99 -123.08
£fit2 12 266.80 303.70 -121.40 3.3627 1 0.06669

Note REML=F. Qualitatively same conclusions as before.
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Estimates of fixed effects parameters and “t"-tests

Estimate Std. Error t wvalue

(Intercept) 2.8776 0.1558 18.474
treatmentT -0.2847 0.1431 -1.990
factor(exon)2316222 -1.4461 0.1475 -9.806
factor (exon)2316227 -0.3440 0.1475 -2.333
factor (exon)2316230 -0.2567 0.1475 -1.741
factor (exon)2316231 -0.2757 0.1475 -1.870
factor (exon) 2316232 1.5414 0.1475 10.452
factor (exon) 2316233 2.9420 0.1475 19.949
factor(exon)2316234  0.2695 0.1475 1.828

#pvalue for treatment:
> 2% (1-pnorm(1.99))
0.04659

p-value based on asymptotic normality bit smaller than for exact
F-test.
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REML-test of zero chip variance:

fitl=lmer(intensity~treatment+factor (exon)+

(1|patient)+(1|patient:treatment) ,dat
fit2=1mer(intensity~treatment+factor(exon)+(1|patient) ,data=gene
anova(fitl,fit2)

Df AIC BIC 1logLik Chisq Chi Df Pr(>Chisq)
fit2 11 276.93 310.76 -127.47
fitl 12 266.82 303.73 -121.41 12.11 1 0.0005016 **x

Same qualitative conclusion as before: variance is non-zero.

But 2 approximation could be very poor. Check out
simulation study in exercise 2
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Summary inference for general linear mixed model

Parameters  Estimation Tests/Confidence intervals

I} Closed form estimates given v»  Approximate F-test and conf.
int. based on approx. normality

o? Closed form estimates given ¢»  Approximate x? distribution

¥ (72, 6) Numerical approximation Asymptotic results (?!) or

parametric bootstrap
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Some further examples of exact results

» Orthogonal decomposition and exact F-tests for orthodont
data

> Test for variance components in general variance components
model

29/38



Back to orthodont data
Model in vector form:

Y =XB+ZsU +¢

Here X is design matrix for intercept, age, sex and age:sex effects
while Zs is design matrix for subject factor S (balanced).

Decomposition of covariance matrix (like for one-way ANOVA):

CovY = 472Ps+0%l = A\sPs+02Q; s = 41°+0% Q; = I1—Ps

Removing redundant columns, X has columns 1,, age, sex and
age:sex where sex; is female indicator (1 or 0) for ith observation
and age:sex; = age;sex;.

Further age® denotes the centered age covariate obtained by
subtracting the mean age mge = 11 and age“:sex; = agefsex;.
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Then for the particular study design

Psl, =1, Psage = 1,Mage

Pssex = sex Psage:sex = mygesex
and

Q1,=0 Qage = age®

Qisex =0  Qage:sex = age“:sex
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Decomposition of data vectors:

PsY ~ N(]_n(§ + Bagemage) + SeX(Bsex + Bage:sexmage)a ASPS)

and
O/ Y ~ N(agecﬁage + agecisexﬁage:sem 02 c’j/)

Note Q; is projection on 108 — 27 = 81 dimensional subspace.
Mean vector in 2-dimensional subspace. Thus F-test for no
sex-age interaction:

”Page*sexély - Page@lsz o HPage*sexY - Page YH2
&2 a &2

~ F(1,81-2)

where P,gessex projection on span{age®, age“:sex} while Pygec
projection on span{age‘}.
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Ps projection on 27 dimensional subspace. Mean space for PsY is
2 dimensional. F-test for no sex effect:

|PsexPsY — PoPs Y| _ [|PsexY — PoY|?

~ F(1,27 — 2)
As AS

> anova(lm(distance~age*Sex+Subject,data=0rthodont))

Df Sum Sq Mean Sq F value Pr(>F)
age 1 235.36 235.356 122.4502 < 2.2e-16 **x*
Sex 1 140.46 140.465 73.0806 7.407e-13 *xx*
Subject 25 377.91 15.117 7.8648 7.484e-13 xxx
age:Sex 1 12.11 12.114 6.3027 0.0141 =*
Residuals 79 151.84 1.922

F-test for Sex: 140.465/15.117= 9.2919 - compare with previous
results !

These results also explain why estimates of mean parameters same
for models with and without random effects.
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Exact tests for variance components in general variance
components model

Consider
K

Y=XB8+) ZlU+e
i=1

where U; ~ Ng,(0,021)'s and € ~ N,(0,02/) independent (not
necessarily balanced model).

Let L =span{X,Zi,...,Zx} and L_1 = span{X, Z»,...,Zx}.
Assume L # L_;1. Then

R'=L,0ViQV,

where V1 =Ls L_1.
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Let @1 orthogonal projection on V; and Q; orthogonal projection
on V;. Then

QLY ~ N(0,02Q1 + ?QZ1ZT Q1) QY ~ N(0,5%Q))

and independent.

Under Hy : 02 =0, ||@.Y||? and || @ Y||? independent scaled x?

and )
|QY]]7/d

~ F(dy, d
[Qviz/d ~ Fld)

Large values critical.
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Exercises

1. Show that T in (1) has approximate Ny(0, /) distribution.
2. Consider code on webpage with simulation study and
parametric bootstrap for one-way anova. Fix 62 = 1 and
consider four scenarios a) 72 = 0,k = 5, m = 50, b)
72 =0,k=50,m=5,c) 72 =0.5k=>5m=50, d)
72 =05,k =50,m=5.

For each scenario simulate 1000 data sets and

2.1 estimate 72 and o2 for each simulation. Assess the distribution
(mean and histograms) of the estimates.

2.2 compute likelihood ratio test for hypothesis 72 = 0 for each
simulation. Compare distribution of simulated -2 log likelihood
ratio tests with the x2(1)-distribution.

2.3 for each data set compute p-values for the hypothesis 72 = 0
using 1) exact anova test 2) likelihood ratio test using
asymptotic x?(1) distribution and 3) likelihood ratio test using
bootstrap.

What are the probabilies of rejecting the hypothesis (5%
significance level) using the different types of tests 7 (i.e.
probability that p-value less than 5% for each test) 37/38



3. Suppose 3 € RY. How can you choose K and b so that the
Wald-test can be used to test the hypothesis

H:B1=p8="=fq.
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