Frequentist inference for linear mixed models - continued

Rasmus Waagepetersen Department of Mathematics Aalborg University Denmark

March 15, 2024

イロト 不得 トイヨト イヨト 二日

1/38

Outline for today

- asymptotic inference for general linear mixed models
- a few further exact results

Inference for balanced ANOVA - status

Parameters	Estimation	Tests/Confidence intervals
μ/β	Closed form estimates	exact t- or F-tests for mean
		structure,
		exact conf. intervals
λ - variances	Closed form estimates	exact χ^2 distributions,
		conf. intervals
σ_B^2 - variances	Closed form estimates	F-tests for zero variance

For other models with sufficient balancedness/orthogonality, exact results can be derived too - e.g. orthodont data (see last part of slides).

The general linear mixed model

We do not have the nice exact results for linear mixed models in general.

Then we need to resort to asymptotic results, approximate F-tests or parametric bootstrap.

Can divide parameter vector into (cf. second lecture)

- 1. β : regression parameters for mean
- 2. $\sigma^2:$ variance of uncorrelated homoscedastic noise
- 3. ψ : variance/correlation parameters of random effects

Confidence intervals for regression parameter β in general linear model with known correlation structure

Suppose $Y \sim N(X\beta, \sigma^2 W)$ where W known. Equivalently, inference based on $\tilde{Y} \sim N(\tilde{X}\beta, \sigma^2 I)$ obtained by transforming with $L^{-1}, W = LL^{\mathsf{T}}$.

MLE of
$$\mu = X\beta$$
 and β are

$$\hat{\mu} = X(X^{\mathsf{T}}W^{-1}X)^{-1}X^{\mathsf{T}}W^{-1}Y$$
$$\hat{\beta} = (X^{\mathsf{T}}W^{-1}X)^{-1}X^{\mathsf{T}}W^{-1}Y = (X^{\mathsf{T}}W^{-1}X)^{-1}X^{\mathsf{T}}W^{-1}\hat{\mu}$$

Since

$$\hat{\beta} \sim N(\beta, \sigma^2(X^{\mathsf{T}}W^{-1}X)^{-1})$$

and REML $\tilde{\sigma}^2$ is $\chi^2(n-d)/(n-d)$ -distributed, we can obtain confidence intervals using t statistic.

In practice W typically contains unknown parameter ψ .

Things get more complicated since $\hat{\beta}$ and its distribution then may depend on these unknowns (MLE of $\hat{\beta}$: $W(\psi)$ substituted by $W(\hat{\psi})$ where $\hat{\psi}$ MLE).

If $\hat{\psi}$ consistent then $\hat{\beta}$ will be asymptotically normal and we may use $\hat{\sigma}^2(X^{\mathsf{T}}W^{-1}(\hat{\psi})X)^{-1})$ as approximate covariance matrix.

This gives approximate confidence intervals based on quantiles for normal distribution.

Wald-test

Wald-test: suppose we wish to test $H : K\beta = b$ for some $K : f \times d$ and $b \in \mathbb{R}^{f}$. Under hypothesis H,

$$T = (K\hat{\sigma}^2 (X^{\mathsf{T}} W^{-1}(\hat{\psi}) X)^{-1}) K^{\mathsf{T}})^{-1/2} [K\hat{\beta} - b] \approx N_f(0, I) \quad (1)$$

and

$$\|T\|^2 \approx \chi^2(f)$$

Kenward and Rogers (1997) suggested more accurate F(f, m)approximate distribution of $\frac{\lambda}{f} ||T||^2$ for some scaling factor $\lambda > 0$ and m > 0 - implemented in package pbkrtest

Their idea: match mean and variance of $\frac{\lambda}{f} ||T||^2$ with those of F(f, m) in order to determine scaling factor λ and denominator degrees of freedom m - for more details see Højsgaard and Halekoh (2014).

Example: orthodont

(wrong) Model without random effects - test for no interaction

- > ort1=lm(distance~age+age:factor(Sex)+factor(Sex))
- > ort2=lm(distance~age+factor(Sex))
- > anova(ort2,ort1)

Analysis of Variance Table

```
Model 1: distance ~ age + factor(Sex)
Model 2: distance ~ age + age:factor(Sex) + factor(Sex)
Res.Df RSS Df Sum of Sq F Pr(>F)
1 105 541.87
2 104 529.76 1 12.114 2.3782 0.1261
```

F-test with F(1, 104) distribution. *p*-value 0.1261.

t-test with 104 degrees of freedom gives same *p*-value.

orthodont - continued

More appropriate model with random effects:

> ort4=lmer(distance~age*Sex+(1|Subject))
> ort4.1=lmer(distance~age+Sex+(1|Subject))#remove interact
> KRmodcomp(ort4,ort4.1)
F-test with Kenward-Roger approximation; computing time: 0
large : distance ~ age * Sex + (1 | Subject)
small : distance ~ age + Sex + (1 | Subject)
stat ndf ddf F.scaling p.value
Ftest 6.3027 1.0000 79.0000 1 0.0141 *

F-test with F(1,79) distribution.

Now p-value is 0.0141 (due to more appropriate modeling of variance structure). Hence slopes for age appear to be significantly different !

Note: in fact exact test (see slides in the end) \rightarrow

Hierarchical principle revisited

The formula age*Sex creates a model with sex specific slopes and intercept.

Under this model we can test both hypotheses of equal slopes or of equal intercepts (corresponding to models age+Sex respectively age+age:sex (=age:sex)).

Note however, that in case of different slopes, age:Sex, meaning of Sex effect depends strongly on choice of 'zero' for age. We might e.g. wlog consider centered ages -3,-1,1,3 where age 11 is 'zero'. In case of different slopes, Sex intercept difference at 0 and 11 are not the same !

The above discussion supports respecting also the hierarchical principle in case of 'blended' interaction effects (i.e. between a covariate and a factor)

test of Sex effect

Test for sex effect (violating hierarchical principle !)

- > ort4=lmer(distance~age*Sex+(1|Subject),data=Orthodont)
- > ort4.2=lmer(distance~age:Sex+(1|Subject),data=Orthodont)
- > KRmodcomp(ort4,ort4.2)
- F-test with Kenward-Roger approximation; time: 0.03 sec
- large : distance ~ age * Sex + (1 | Subject)
- small : distance ~ age:Sex + (1 | Subject)
- stat ndf ddf F.scaling p.value
- Ftest 0.4507 1.0000 103.9864 1 0.5035

This means that no intercept difference between boys and girls \boldsymbol{at} $\boldsymbol{age}~\boldsymbol{0}$

This is quite an extrapolation given observed ages are between 8 and 14.

F-test not exact (cf. ddf) (would have been with age centered, see slides in the end)

test of Sex effect assuming no interaction

Test for sex effect (same intercept for boys and girls) assuming no interaction

- > ort4.1=lmer(distance~age+Sex+(1|Subject),data=Orthodont)
- > ort4.2=lmer(distance~age+(1|Subject),data=Orthodont)
- > KRmodcomp(ort4.1,ort4.2)
- F-test with Kenward-Roger approximation; computing time: 0
- large : distance ~ age + Sex + (1 | Subject)

small : distance ~ age + (1 | Subject)

stat ndf ddf F.scaling p.value

Ftest 9.2921 1.0000 25.0000 1 0.005375 **

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 '

F-test with F(1, 25) distribution.

Note: This is exact F-test (see slides in the end)

・ロト ・ 同ト ・ ヨト ・ ヨト ・ りゅつ

Genes data revisited

- > fit1=lmer(intensity~treatment*factor(exon)+(1|patient)+(1)
- > fit2=lmer(intensity~treatment+factor(exon)+(1|patient)+(2)
- > KRmodcomp(fit1,fit2)
- F-test with Kenward-Roger approximation; computing time: 0
- large : intensity ~ treatment + factor(exon) + (1 | patient treatment:factor(exon)
- small : intensity ~ treatment + factor(exon) + (1 | patient stat ndf ddf F.scaling p.value Ftest 1.4278 7.0000 126.0000 1 0.1998

Note: in this case KR-approximation coincides with exact F(7, 126)-distribution !

In balanced ANOVA models using lmer we can use KRmodcomp to compute F-tests.

If you load lmerTest, anova() will compute (approximate) *F*-test using Satterthwaite's approximation (default) or KRmodcomp (option).

lmerTest also provides (approximate) p-values for individual mean
parameter estimates.

Guess: distribution of REML $\tilde{\sigma}^2$ close to $\sigma^2 \chi^2 (n-d)/(n-d)$ (where *d* dimension of mean space)

At least true if ψ known.

Testing hypotheses regarding σ^2 not relevant (there is always noise/measurement error)

Need to resort to asymptotic results...

Asymptotic inference

Let $I_n(\theta) = \log L_n(\theta)$ denote the log likelihood function and let

$$s_n(\theta) = \frac{\mathrm{d}I_n(\theta)}{\mathrm{d}\theta} \quad j_n(\theta) = -\frac{\mathrm{d}s_n(\theta)}{\mathrm{d}\theta^{\mathsf{T}}}$$

denote the score function and observed information. n is 'number of observations'.

Recall $\mathbb{E}s_n(\theta) = 0$ and $\mathbb{V}ars_n(\theta) = i_n(\theta)$ where $i_n(\theta)$ is the Fisher information.

Asymptotic results for $\hat{\theta}_n$ rely on first order Taylor

$$s_n(\theta) \approx j_n(\theta)(\hat{\theta}_n - \theta) \Leftrightarrow \hat{\theta}_n - \theta \approx j_n(\theta)^{-1}s_n(\theta)$$

If we can replace (asymptotically as $n \to \infty$) j_n by i_n and $s_n(\theta)$ approximately normal $N(0, i_n(\theta))$ we obtain

$$\hat{\theta}_n - \theta \approx N(0, i_n(\theta)^{-1})$$

Asymptotic normality for $s_n(\theta)$ is obtained from CLT.

This works if n large and observations not 'too dependent'.

and

Wald-test: suppose we wish to test $H : K\theta = c$ for some $K : f \times p$ and $c \in \mathbb{R}^{f}$. Under hypothesis H and assuming $\hat{\theta}_{n}$ asymptotically normal,

$$T = (Ki_n(\theta)^{-1}K^{\mathsf{T}})^{-1/2}[K\hat{\theta}_n - c] \approx N_f(0, I)$$
$$\|T\|^2 \approx \chi^2(f)$$

Asymptotic distribution of likelihood ratio

Suppose $H_0: \theta \in \Theta_0$ with alternative hypothesis $\theta \in \Theta$. Then under 'regularity' conditions

$$-2\log Q = -2[l(\hat{ heta}_{0,n}) - l(\hat{ heta}_n)] pprox \chi^2(d-d_0)$$

where d_0 and d number of 'free' parameters under H_0 and alternative, respectively.

Limitations of asymptotic results

- ▶ Usual 'regularity' conditions require that parameters do not fall on the boundary under H_0 ($\hat{\theta}_n \theta_0$ can not be normal under restriction $\hat{\theta}_n \ge \theta_0$). Thus problematic if we want to test whether a variance is zero.
- Under H : τ² = 0 for variance component τ² (or if true τ² close to zero), distribution of τ² skew (not normal).
- Need asymptotic normality of s_n(θ). Not always obvious how to use CLT for general linear mixed models - what should tend to infinity ? - and observations not independent (for independent observations we assume number of observations n tend to infinity and use CLT)

Regarding last item: e.g. in one-way ANOVA we might require k tending to infinity rather than just n = mk tending to infinity.

Faraway (2006), section 8.2 recommends parametric bootstrap for testing variance components (when exact results not applicable):

- 1. Simulate *iid* data Y_1^*, \ldots, Y_B^* from model under null hypothesis.
- 2. Recompute likelihood ratio test for each simulated data set.
- 3. Compare observed LR with simulated distribution.

Note: we can only consider ratios between likelihoods evaluated for the *same* dataset.

For variance components ψ we may use REML likelihoods but *not* for mean parameters β since REML transformed data depends on model for the mean.

Following slides exemplifies for comparison inference based on asymptotic results.

Never do this in practice for balanced ANOVA where exact results are available !!!

Gene-expression data using lmer

```
fit1=lmer(intensity~treatment*factor(exon)
                +(1|patient)+(1|patient:treatment),data=gene1,R
fit2=lmer(intensity~treatment+factor(exon)
                +(1|patient)+(1|patient:treatment),data=gene1,R
anova(fit1,fit2)
          AIC BIC logLik Chisq Chi Df Pr(>Chisq)
    Df
fit2 12 266.80 303.70 -121.40
fit1 19 270.11 328.54 -116.06 10.686
                                         7
                                               0.1529
fit3=lmer(intensity~factor(exon)+
       (1|patient)+(1|patient:treatment),data=gene1,REML=F)
anova(fit2,fit3)
    Df
          AIC BIC logLik Chisq Chi Df Pr(>Chisq)
fit3 11 268.16 301.99 -123.08
```

fit2 12 266.80 303.70 -121.40 3.3627 1 0.06669

Note REML=F. Qualitatively same conclusions as before.

Estimates of fixed effects parameters and "t"-tests

	Estimate	Std. Error t value
(Intercept)	2.8776	0.1558 18.474
treatmentT	-0.2847	0.1431 -1.990
factor(exon)2316222	-1.4461	0.1475 -9.806
factor(exon)2316227	-0.3440	0.1475 -2.333
factor(exon)2316230	-0.2567	0.1475 -1.741
factor(exon)2316231	-0.2757	0.1475 -1.870
factor(exon)2316232	1.5414	0.1475 10.452
factor(exon)2316233	2.9420	0.1475 19.949
<pre>factor(exon)2316234</pre>	0.2695	0.1475 1.828

#pvalue for treatment:
> 2*(1-pnorm(1.99))
0.04659

p-value based on asymptotic normality bit smaller than for exact F-test.

REML-test of zero chip variance:

Df AIC BIC logLik Chisq Chi Df Pr(>Chisq) fit2 11 276.93 310.76 -127.47 fit1 12 266.82 303.73 -121.41 12.11 1 0.0005016 ***

Same qualitative conclusion as before: variance is non-zero.

But χ^2 approximation could be very poor. Check out simulation study in exercise 2

Summary inference for general linear mixed model

Parameters	Estimation	Tests/Confidence intervals
β	Closed form estimates given ψ	Approximate <i>F</i> -test and conf.
$\sigma^2 \ \psi \ (au^2, \ heta)$	Closed form estimates given ψ Numerical approximation	int. based on approx. normality Approximate χ^2 distribution Asymptotic results (?!) or parametric bootstrap

Some further examples of exact results

- Orthogonal decomposition and exact *F*-tests for orthodont data
- Test for variance components in general variance components model

Back to orthodont data

Model in vector form:

$$Y = X\beta + Z_S U + \epsilon$$

Here X is design matrix for intercept, age, sex and age:sex effects while Z_S is design matrix for subject factor S (balanced).

Decomposition of covariance matrix (like for one-way ANOVA):

$$\mathbb{C} \text{ov} Y = 4\tau^2 P_S + \sigma^2 I = \lambda_S P_S + \sigma^2 \tilde{Q}_I \quad \lambda_S = 4\tau^2 + \sigma^2 \quad \tilde{Q}_I = I - P_S$$

Removing redundant columns, X has columns 1_n , age, sex and age:sex where sex_i is female indicator (1 or 0) for *i*th observation and age:sex_i = age_isex_i.

Further age^c denotes the centered age covariate obtained by subtracting the mean age $m_{age} = 11$ and $age^c : sex_i = age^c_i sex_i$.

Then for the particular study design

$$P_{S}1_{n} = 1_{n}$$
 $P_{S}age = 1_{n}m_{age}$
 $P_{S}sex = sex$ $P_{S}age:sex = m_{age}sex$

 $\quad \text{and} \quad$

$$ilde{Q}_{I}1_{n} = 0$$
 $ilde{Q}_{I}age = age^{c}$
 $ilde{Q}_{I}sex = 0$ $ilde{Q}_{I}age:sex = age^{c}:sex$

<ロト < 回 > < 目 > < 目 > < 目 > < 目 > < 目 > 31/38

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Decomposition of data vectors:

$$P_S Y \sim N(1_n(\xi + \beta_{age}m_{age}) + sex(\beta_{sex} + \beta_{age:sex}m_{age}), \lambda_S P_S)$$

and

$$\tilde{Q}_{I}Y \sim N(\mathsf{age}^{c}\beta_{\mathsf{age}} + \mathsf{age}^{c}:\mathsf{sex}\beta_{\mathsf{age}:\mathsf{sex}}, \sigma^{2}\tilde{Q}_{I}).$$

Note \tilde{Q}_I is projection on 108 - 27 = 81 dimensional subspace. Mean vector in 2-dimensional subspace. Thus *F*-test for no sex-age interaction:

$$\frac{\|P_{age*sex}\tilde{Q}_{I}Y - P_{age}\tilde{Q}_{I}Y\|^{2}}{\tilde{\sigma}^{2}} = \frac{\|P_{age*sex}Y - P_{age}Y\|^{2}}{\tilde{\sigma}^{2}} \sim F(1, 81-2)$$

where $P_{age*sex}$ projection on span{age^c, age^c:sex} while P_{age^c} projection on span{age^c}.

 P_S projection on 27 dimensional subspace. Mean space for $P_S Y$ is 2 dimensional. *F*-test for no sex effect:

$$\frac{\|P_{sex}P_SY - P_0P_SY\|^2}{\tilde{\lambda}_S} = \frac{\|P_{sex}Y - P_0Y\|^2}{\tilde{\lambda}_S} \sim F(1, 27 - 2)$$

> anova(lm(distance~age*Sex+Subject,data=Orthodont))

Df Sum Sq Mean Sq F valuePr(>F)age1 235.36 235.356 122.4502 < 2.2e-16 ***</td>Sex1 140.46 140.465 73.0806 7.407e-13 ***Subject25 377.91 15.117 7.8648 7.484e-13 ***age:Sex1 12.11 12.114 6.3027 0.0141 *Residuals79 151.84 1.922

F-test for Sex: 140.465/15.117 = 9.2919 - compare with previous results !

These results also explain why estimates of mean parameters same for models with and without random effects.

イロト 不得 トイヨト イヨト ヨー ろくで

Exact tests for variance components in general variance components model

Consider

$$Y = X\beta + \sum_{i=1}^{K} Z_i U_i + \epsilon$$

where $U_i \sim N_{d_i}(0, \sigma_i^2 I)$'s and $\epsilon \sim N_n(0, \sigma^2 I)$ independent (not necessarily balanced model).

Let $L = \text{span}\{X, Z_1, \dots, Z_K\}$ and $L_{-1} = \text{span}\{X, Z_2, \dots, Z_K\}$. Assume $L \neq L_{-1}$. Then

$$\mathbb{R}^n = L_{-1} \oplus V_1 \oplus V_I$$

where $V_1 = L \ominus L_{-1}$.

Let Q_1 orthogonal projection on V_1 and Q_1 orthogonal projection on V_1 . Then

$$Q_1 \mathbf{Y} \sim N(\mathbf{0}, \sigma^2 Q_1 + \sigma_1^2 Q_1 Z_1 Z_1^{\mathsf{T}} Q_1) \quad Q_I \mathbf{Y} \sim N(\mathbf{0}, \sigma^2 Q_I)$$

and independent.

Under $H_1 : \sigma_1^2 = 0$, $||Q_1Y||^2$ and $||Q_lY||^2$ independent scaled χ^2 and $\frac{||Q_1Y||^2/d_1}{||Q_lY||^2/d_l} \sim F(d_1, d_l)$

Large values critical.

Exercises

- 1. Show that T in (1) has approximate $N_d(0, I)$ distribution.
- 2. Consider code on webpage with simulation study and parametric bootstrap for one-way anova. Fix $\sigma^2 = 1$ and consider four scenarios a) $\tau^2 = 0, k = 5, m = 50$, b) $\tau^2 = 0, k = 50, m = 5$, c) $\tau^2 = 0.5, k = 5, m = 50$, d) $\tau^2 = 0.5, k = 50, m = 5$.

For each scenario simulate 1000 data sets and

- 2.1 estimate τ^2 and σ^2 for each simulation. Assess the distribution (mean and histograms) of the estimates.
- 2.2 compute likelihood ratio test for hypothesis $\tau^2 = 0$ for each simulation. Compare distribution of simulated -2 log likelihood ratio tests with the $\chi^2(1)$ -distribution.
- 2.3 for each data set compute *p*-values for the hypothesis $\tau^2 = 0$ using 1) exact anova test 2) likelihood ratio test using asymptotic $\chi^2(1)$ distribution and 3) likelihood ratio test using bootstrap.

What are the probabilies of rejecting the hypothesis (5% significance level) using the different types of tests? (i.e. probability that *p*-value less than 5% for each test)

37 / 38

3. Suppose $\beta \in \mathbb{R}^d$. How can you choose K and b so that the Wald-test can be used to test the hypothesis

$$H:\beta_1=\beta_2=\cdots=\beta_d.$$