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Outline for today

I asymptotic inference for general linear mixed models

I a few further exact results
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Inference for balanced ANOVA - status

Parameters Estimation Tests/Confidence intervals

µ/β Closed form estimates exact t- or F -tests for mean
structure,
exact conf. intervals

λ - variances Closed form estimates exact χ2 distributions,
conf. intervals

σ2B - variances Closed form estimates F -tests for zero variance

For other models with sufficient balancedness/orthogonality, exact
results can be derived too - e.g. orthodont data (see last part of
slides).
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The general linear mixed model

We do not have the nice exact results for linear mixed models in
general.

Then we need to resort to asymptotic results, approximate F -tests
or parametric bootstrap.

Can divide parameter vector into (cf. second lecture)

1. β: regression parameters for mean

2. σ2: variance of uncorrelated homoscedastic noise

3. ψ: variance/correlation parameters of random effects
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Confidence intervals for regression parameter β in general
linear model with known correlation structure

Suppose Y ∼ N(Xβ, σ2W ) where W known. Equivalently,
inference based on Ỹ ∼ N(X̃β, σ2I ) obtained by transforming with
L−1,W = LLT.

MLE of µ = Xβ and β are

µ̂ = X (XTW−1X )−1XTW−1Y

β̂ = (XTW−1X )−1XTW−1Y = (XTW−1X )−1XTW−1µ̂

Since
β̂ ∼ N(β, σ2(XTW−1X )−1)

and REML σ̃2 is χ2(n − d)/(n − d)-distributed, we can obtain
confidence intervals using t statistic.

5 / 38



In practice W typically contains unknown parameter ψ.

Things get more complicated since β̂ and its distribution then may
depend on these unknowns (MLE of β̂: W (ψ) substituted by
W (ψ̂) where ψ̂ MLE).

If ψ̂ consistent then β̂ will be asymptotically normal and we may
use σ̂2(XTW−1(ψ̂)X )−1) as approximate covariance matrix.

This gives approximate confidence intervals based on quantiles for
normal distribution.
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Wald-test

Wald-test: suppose we wish to test H : Kβ = b for some K : f × d
and b ∈ Rf . Under hypothesis H,

T = (K σ̂2(XTW−1(ψ̂)X )−1)KT)−1/2[K β̂ − b] ≈ Nf (0, I ) (1)

and
‖T‖2 ≈ χ2(f )

Kenward and Rogers (1997) suggested more accurate F (f ,m)
approximate distribution of λ

f ‖T‖
2 for some scaling factor λ > 0

and m > 0 - implemented in package pbkrtest

Their idea: match mean and variance of λ
f ‖T‖

2 with those of
F (f ,m) in order to determine scaling factor λ and denominator
degrees of freedom m - for more details see Højsgaard and Halekoh
(2014).
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Example: orthodont

(wrong) Model without random effects - test for no interaction

> ort1=lm(distance~age+age:factor(Sex)+factor(Sex))

> ort2=lm(distance~age+factor(Sex))

> anova(ort2,ort1)

Analysis of Variance Table

Model 1: distance ~ age + factor(Sex)

Model 2: distance ~ age + age:factor(Sex) + factor(Sex)

Res.Df RSS Df Sum of Sq F Pr(>F)

1 105 541.87

2 104 529.76 1 12.114 2.3782 0.1261

F -test with F (1, 104) distribution. p-value 0.1261.

t-test with 104 degrees of freedom gives same p-value.
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orthodont - continued
More appropriate model with random effects:

> ort4=lmer(distance~age*Sex+(1|Subject))

> ort4.1=lmer(distance~age+Sex+(1|Subject))#remove interaction

> KRmodcomp(ort4,ort4.1)

F-test with Kenward-Roger approximation; computing time: 0.05 sec.

large : distance ~ age * Sex + (1 | Subject)

small : distance ~ age + Sex + (1 | Subject)

stat ndf ddf F.scaling p.value

Ftest 6.3027 1.0000 79.0000 1 0.0141 *

F -test with F (1, 79) distribution.

Now p-value is 0.0141 (due to more appropriate modeling of
variance structure). Hence slopes for age appear to be significantly
different !

Note: in fact exact test (see slides in the end)
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Hierarchical principle revisited

The formula age*Sex creates a model with sex specific slopes and
intercept.

Under this model we can test both hypotheses of equal slopes or of
equal intercepts (corresponding to models age+Sex respectively
age+age:sex (=age:sex)).

Note however, that in case of different slopes, age:Sex, meaning
of Sex effect depends strongly on choice of ‘zero’ for age. We
might e.g. wlog consider centered ages -3,-1,1,3 where age 11 is
‘zero’. In case of different slopes, Sex intercept difference at 0 and
11 are not the same !

The above discussion supports respecting also the hierarchical
principle in case of ‘blended’ interaction effects (i.e. between a
covariate and a factor)
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test of Sex effect
Test for sex effect (violating hierarchical principle !)

> ort4=lmer(distance~age*Sex+(1|Subject),data=Orthodont)

> ort4.2=lmer(distance~age:Sex+(1|Subject),data=Orthodont)

> KRmodcomp(ort4,ort4.2)

F-test with Kenward-Roger approximation; time: 0.03 sec

large : distance ~ age * Sex + (1 | Subject)

small : distance ~ age:Sex + (1 | Subject)

stat ndf ddf F.scaling p.value

Ftest 0.4507 1.0000 103.9864 1 0.5035

This means that no intercept difference between boys and girls at
age 0

This is quite an extrapolation given observed ages are between 8
and 14.

F-test not exact (cf. ddf) (would have been with age centered, see
slides in the end)
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test of Sex effect assuming no interaction

Test for sex effect (same intercept for boys and girls) assuming no
interaction

> ort4.1=lmer(distance~age+Sex+(1|Subject),data=Orthodont)

> ort4.2=lmer(distance~age+(1|Subject),data=Orthodont)

> KRmodcomp(ort4.1,ort4.2)

F-test with Kenward-Roger approximation; computing time: 0.30 sec.

large : distance ~ age + Sex + (1 | Subject)

small : distance ~ age + (1 | Subject)

stat ndf ddf F.scaling p.value

Ftest 9.2921 1.0000 25.0000 1 0.005375 **

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

F -test with F (1, 25) distribution.

Note: This is exact F-test (see slides in the end)
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Genes data revisited

> fit1=lmer(intensity~treatment*factor(exon)+(1|patient)+(1|patient:treatment),data=gene1,REML=F)

> fit2=lmer(intensity~treatment+factor(exon)+(1|patient)+(1|patient:treatment),data=gene1,REML=F)

> KRmodcomp(fit1,fit2)

F-test with Kenward-Roger approximation; computing time: 0.21 sec.

large : intensity ~ treatment + factor(exon) + (1 | patient) + (1 | patient:treatment) +

treatment:factor(exon)

small : intensity ~ treatment + factor(exon) + (1 | patient) + (1 | patient:treatment)

stat ndf ddf F.scaling p.value

Ftest 1.4278 7.0000 126.0000 1 0.1998

Note: in this case KR-approximation coincides with exact
F (7, 126)-distribution !

In balanced ANOVA models using lmer we can use KRmodcomp to
compute F -tests.
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KRmodcomp and lmerTest

If you load lmerTest, anova() will compute (approximate) F -test
using Satterthwaite’s approximation (default) or KRmodcomp
(option).

lmerTest also provides (approximate) p-values for individual mean
parameter estimates.
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Noise parameter σ2

Guess: distribution of REML σ̃2 close to σ2χ2(n − d)/(n − d)
(where d dimension of mean space)

At least true if ψ known.

Testing hypotheses regarding σ2 not relevant (there is always
noise/measurement error)
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Parameter ψ

Need to resort to asymptotic results...
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Asymptotic inference
Let ln(θ) = log Ln(θ) denote the log likelihood function and let

sn(θ) =
dln(θ)

dθ
jn(θ) = −dsn(θ)

dθT

denote the score function and observed information. n is ‘number
of observations’.

Recall Esn(θ) = 0 and Varsn(θ) = in(θ) where in(θ) is the Fisher
information.

Asymptotic results for θ̂n rely on first order Taylor

sn(θ) ≈ jn(θ)(θ̂n − θ)⇔ θ̂n − θ ≈ jn(θ)−1sn(θ)

If we can replace (asymptotically as n→∞) jn by in and sn(θ)
approximately normal N(0, in(θ)) we obtain

θ̂n − θ ≈ N(0, in(θ)−1)
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Asymptotic normality for sn(θ) is obtained from CLT.

This works if n large and observations not ‘too dependent’.
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Wald-test (again)

Wald-test: suppose we wish to test H : Kθ = c for some K : f × p
and c ∈ Rf . Under hypothesis H and assuming θ̂n asymptotically
normal,

T = (Kin(θ)−1KT)−1/2[K θ̂n − c] ≈ Nf (0, I )

and
‖T‖2 ≈ χ2(f )
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Asymptotic distribution of likelihood ratio

Suppose H0 : θ ∈ Θ0 with alternative hypothesis θ ∈ Θ. Then
under ‘regularity’ conditions

−2 logQ = −2[l(θ̂0,n)− l(θ̂n)] ≈ χ2(d − d0)

where d0 and d number of ‘free’ parameters under H0 and
alternative, respectively.
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Limitations of asymptotic results

I Usual ‘regularity’ conditions require that parameters do not
fall on the boundary under H0 (θ̂n − θ0 can not be normal
under restriction θ̂n ≥ θ0). Thus problematic if we want to
test whether a variance is zero.

I Under H : τ2 = 0 for variance component τ2 (or if true τ2

close to zero), distribution of τ̂2 skew (not normal).

I Need asymptotic normality of sn(θ). Not always obvious how
to use CLT for general linear mixed models - what should tend
to infinity ? - and observations not independent (for
independent observations we assume number of observations
n tend to infinity and use CLT)

Regarding last item: e.g. in one-way ANOVA we might require k
tending to infinity rather than just n = mk tending to infinity.
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Faraway (2006), section 8.2 recommends parametric bootstrap for
testing variance components (when exact results not applicable):

1. Simulate iid data Y ∗
1 , . . . ,Y

∗
B from model under null

hypothesis.

2. Recompute likelihood ratio test for each simulated data set.

3. Compare observed LR with simulated distribution.
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Likelihood ratio tests: ML vs REML

Note: we can only consider ratios between likelihoods evaluated for
the same dataset.

For variance components ψ we may use REML likelihoods but not
for mean parameters β since REML transformed data depends on
model for the mean.
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Following slides exemplifies for comparison inference based on
asymptotic results.

Never do this in practice for balanced ANOVA
where exact results are available !!!
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Gene-expression data using lmer

fit1=lmer(intensity~treatment*factor(exon)

+(1|patient)+(1|patient:treatment),data=gene1,REML=F)

fit2=lmer(intensity~treatment+factor(exon)

+(1|patient)+(1|patient:treatment),data=gene1,REML=F)

anova(fit1,fit2)

Df AIC BIC logLik Chisq Chi Df Pr(>Chisq)

fit2 12 266.80 303.70 -121.40

fit1 19 270.11 328.54 -116.06 10.686 7 0.1529

fit3=lmer(intensity~factor(exon)+

(1|patient)+(1|patient:treatment),data=gene1,REML=F)

anova(fit2,fit3)

Df AIC BIC logLik Chisq Chi Df Pr(>Chisq)

fit3 11 268.16 301.99 -123.08

fit2 12 266.80 303.70 -121.40 3.3627 1 0.06669

Note REML=F. Qualitatively same conclusions as before.

25 / 38



Estimates of fixed effects parameters and “t”-tests

Estimate Std. Error t value

(Intercept) 2.8776 0.1558 18.474

treatmentT -0.2847 0.1431 -1.990

factor(exon)2316222 -1.4461 0.1475 -9.806

factor(exon)2316227 -0.3440 0.1475 -2.333

factor(exon)2316230 -0.2567 0.1475 -1.741

factor(exon)2316231 -0.2757 0.1475 -1.870

factor(exon)2316232 1.5414 0.1475 10.452

factor(exon)2316233 2.9420 0.1475 19.949

factor(exon)2316234 0.2695 0.1475 1.828

#pvalue for treatment:

> 2*(1-pnorm(1.99))

0.04659

p-value based on asymptotic normality bit smaller than for exact
F -test.

26 / 38



REML-test of zero chip variance:

fit1=lmer(intensity~treatment+factor(exon)+

(1|patient)+(1|patient:treatment),data=gene1)

fit2=lmer(intensity~treatment+factor(exon)+(1|patient),data=gene1)

anova(fit1,fit2)

Df AIC BIC logLik Chisq Chi Df Pr(>Chisq)

fit2 11 276.93 310.76 -127.47

fit1 12 266.82 303.73 -121.41 12.11 1 0.0005016 ***

Same qualitative conclusion as before: variance is non-zero.

But χ2 approximation could be very poor. Check out
simulation study in exercise 2
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Summary inference for general linear mixed model

Parameters Estimation Tests/Confidence intervals
β Closed form estimates given ψ Approximate F -test and conf.

int. based on approx. normality
σ2 Closed form estimates given ψ Approximate χ2 distribution
ψ (τ 2, θ) Numerical approximation Asymptotic results (?!) or

parametric bootstrap
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Some further examples of exact results

I Orthogonal decomposition and exact F -tests for orthodont
data

I Test for variance components in general variance components
model
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Back to orthodont data
Model in vector form:

Y = Xβ + ZSU + ε

Here X is design matrix for intercept, age, sex and age:sex effects
while ZS is design matrix for subject factor S (balanced).

Decomposition of covariance matrix (like for one-way ANOVA):

CovY = 4τ2PS+σ2I = λSPS+σ2Q̃I λS = 4τ2+σ2 Q̃I = I−PS

Removing redundant columns, X has columns 1n, age, sex and
age:sex where sexi is female indicator (1 or 0) for ith observation
and age:sexi = agei sexi .

Further agec denotes the centered age covariate obtained by
subtracting the mean age mage = 11 and agec :sexi = ageci sexi .
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Then for the particular study design

PS1n = 1n PSage = 1nmage

PSsex = sex PSage:sex = magesex

and

Q̃I1n = 0 Q̃Iage = agec

Q̃I sex = 0 Q̃Iage:sex = agec :sex
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Decomposition of data vectors:

PSY ∼ N(1n(ξ + βagemage) + sex(βsex + βage:sexmage), λSPS)

and

Q̃IY ∼ N(agecβage + agec :sexβage:sex, σ
2Q̃I ).

Note Q̃I is projection on 108− 27 = 81 dimensional subspace.
Mean vector in 2-dimensional subspace. Thus F -test for no
sex-age interaction:

‖Page∗sex Q̃IY − PageQ̃IY ‖2

σ̃2
=
‖Page∗sexY − PageY ‖2

σ̃2
∼ F (1, 81−2)

where Page∗sex projection on span{agec , agec :sex} while Pagec

projection on span{agec}.
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PS projection on 27 dimensional subspace. Mean space for PSY is
2 dimensional. F -test for no sex effect:

‖PsexPSY − P0PSY ‖2

λ̃S
=
‖PsexY − P0Y ‖2

λ̃S
∼ F (1, 27− 2)

> anova(lm(distance~age*Sex+Subject,data=Orthodont))

Df Sum Sq Mean Sq F value Pr(>F)

age 1 235.36 235.356 122.4502 < 2.2e-16 ***

Sex 1 140.46 140.465 73.0806 7.407e-13 ***

Subject 25 377.91 15.117 7.8648 7.484e-13 ***

age:Sex 1 12.11 12.114 6.3027 0.0141 *

Residuals 79 151.84 1.922

F-test for Sex: 140.465/15.117= 9.2919 - compare with previous
results !

These results also explain why estimates of mean parameters same
for models with and without random effects.
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Exact tests for variance components in general variance
components model

Consider

Y = Xβ +
K∑
i=1

ZiUi + ε

where Ui ∼ Ndi (0, σ2i I )’s and ε ∼ Nn(0, σ2I ) independent (not
necessarily balanced model).

Let L = span{X ,Z1, . . . ,ZK} and L−1 = span{X ,Z2, . . . ,ZK}.
Assume L 6= L−1. Then

Rn = L−1 ⊕ V1 ⊕ VI

where V1 = L	 L−1.

35 / 38



Let Q1 orthogonal projection on V1 and QI orthogonal projection
on VI . Then

Q1Y ∼ N(0, σ2Q1 + σ21Q1Z1Z
T
1 Q1) QIY ∼ N(0, σ2QI )

and independent.

Under H1 : σ21 = 0, ‖Q1Y ‖2 and ‖QIY ‖2 independent scaled χ2

and
‖Q1Y ‖2/d1
‖QIY ‖2/dI

∼ F (d1, dI )

Large values critical.
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Exercises
1. Show that T in (1) has approximate Nd(0, I ) distribution.
2. Consider code on webpage with simulation study and

parametric bootstrap for one-way anova. Fix σ2 = 1 and
consider four scenarios a) τ2 = 0, k = 5,m = 50, b)
τ2 = 0, k = 50,m = 5, c) τ2 = 0.5, k = 5,m = 50, d)
τ2 = 0.5, k = 50,m = 5.

For each scenario simulate 1000 data sets and
2.1 estimate τ 2 and σ2 for each simulation. Assess the distribution

(mean and histograms) of the estimates.
2.2 compute likelihood ratio test for hypothesis τ 2 = 0 for each

simulation. Compare distribution of simulated -2 log likelihood
ratio tests with the χ2(1)-distribution.

2.3 for each data set compute p-values for the hypothesis τ 2 = 0
using 1) exact anova test 2) likelihood ratio test using
asymptotic χ2(1) distribution and 3) likelihood ratio test using
bootstrap.
What are the probabilies of rejecting the hypothesis (5%
significance level) using the different types of tests ? (i.e.
probability that p-value less than 5% for each test) 37 / 38



3. Suppose β ∈ Rd . How can you choose K and b so that the
Wald-test can be used to test the hypothesis

H : β1 = β2 = · · · = βd .
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