Prediction

Rasmus Waagepetersen
Department of Mathematics
Aalborg University
Denmark

April 3, 2024

WLS and BLUE (prelude to BLUP)

Suppose that Y has mean $X\beta$ and known covariance matrix V (but Y need not be normal). Then

$$\hat{\beta} = (X^{\mathsf{T}} V^{-1} X)^{-1} X^{\mathsf{T}} V^{-1} Y$$

is a weighted least squares estimate since it minimizes

$$(Y-X\beta)^{\mathsf{T}}V^{-1}(Y-X\beta).$$

It is also the best linear unbiased estimate (BLUE) - that is the unbiased estimate with smallest variance in the sense that

$$\mathbb{V}\mathrm{ar}\tilde{\beta} - \mathbb{V}\mathrm{ar}\hat{\beta}$$

is positive semi-definite for any other linear unbiased estimate $\tilde{\beta}$.

BLUE for general parameter and V = I

Theorem: Suppose $\mathbb{E}Y = \mu$ is in linear subspace M and $\mathbb{C}\text{ov}\,Y = \sigma^2 I$ and $\psi = A\mu$. Then BLUE of ψ is $\hat{\psi} = A\hat{\mu}$ where $\hat{\mu} = PY$ and P orthogonal projection on M.

Obviously $\hat{\psi}$ is LUE: $\mathbb{E}\hat{\psi} = AP\mu = A\mu$.

Key result:

$$\mathbb{C}\mathrm{ov}(\tilde{\psi} - \hat{\psi}, \hat{\psi}) = \mathbb{E}[(\tilde{\psi} - \hat{\psi})\hat{\psi}] = 0$$

for any other LUE $\tilde{\psi} = BY$.

Proof of theorem follows by key result:

$$\mathbb{V}\mathrm{ar}(\tilde{\psi}) = \mathbb{V}\mathrm{ar}(\tilde{\psi} - \hat{\psi}) + \mathbb{V}\mathrm{ar}\hat{\psi} \Rightarrow \mathbb{V}\mathrm{ar}(\tilde{\psi}) - \mathbb{V}\mathrm{ar}\hat{\psi} = \mathbb{V}\mathrm{ar}(\tilde{\psi} - \hat{\psi}) \geq 0.$$

Hence $\hat{\psi}$ is BLUE (here $A \geq B$ means A - B positive semi definite).

Proof of key result:

Assume $\tilde{\psi}$ is LUE. I.e. $\tilde{\psi}=BY$ and $\mathbb{E}\tilde{\psi}=B\mu=A\mu$ for all $\mu\in M$. Thus for all $w\in\mathbb{R}^p$,

$$(B - AP)Pw = BPw - APw = APw - APw = 0$$

since $Pw \in M$. This implies (B - AP)P = 0 which gives

$$\mathbb{C}\mathrm{ov}(\tilde{\psi} - \hat{\psi}, \hat{\psi}) = \sigma^{2}(B - AP)P^{T}A^{\mathsf{T}} = 0.$$

Recall: for random vectors X and Y and matrices A and B of appropriate dimensions

$$\mathbb{C}$$
ov $(AX, BY) = A\mathbb{C}$ ov $(X, Y)B^{\mathsf{T}}$

BLUE - non-diagonal covariance matrix

Lemma: suppose $\tilde{Y} = KY$ where K is an invertible matrix. If $\hat{\psi} = C\tilde{Y}$ is BLUE of ψ based on data \tilde{Y} then $\hat{\psi} = CKY$ is BLUE based on Y as well.

Corollary: suppose $V = LL^T$ is invertible and $\mu = X\beta$ where X has full rank. Then BLUE of μ is $\hat{\mu}$ where $\hat{\mu} = X(X^TV^{-1}X)^{-1}X^TV^{-1}Y$ is WLS estimate of μ .

Proof: $\tilde{Y} = L^{-1}Y$ has covariance matrix I and mean $\tilde{\mu} = \tilde{X}\beta$ where $\tilde{\mu} = L^{-1}\mu$. Thus by theorem, BLUE of $\mu = L\tilde{\mu}$ is $L\tilde{X}(\tilde{X}^T\tilde{X})^{-1}\tilde{X}^T\tilde{Y}$. Applying lemma we get BLUE based on Y is $L\tilde{X}(\tilde{X}^T\tilde{X})^{-1}\tilde{X}^TL^{-1}Y = \hat{\mu}$.

Remark: $\hat{\mu}$ above is in fact orthogonal projection of Y wrt. inner product $\langle x, y \rangle = x^{\mathsf{T}} V^{-1} y$.

Optimal prediction

X and Y random variables, g real function. General result:

$$\mathbb{C}\text{ov}(Y - \mathbb{E}[Y|X], g(X)) = \\ \mathbb{C}\text{ov}(\mathbb{E}[Y - \mathbb{E}[Y|X]|X], \mathbb{E}[g(X)|X]) + \\ \mathbb{E}\mathbb{C}\text{ov}(Y - \mathbb{E}[Y|X], g(X)|X) = 0$$

In particular, for any prediction $\tilde{Y} = f(X)$ of Y:

$$\mathbb{E}[(Y - \mathbb{E}[Y|X])(\mathbb{E}[Y|X] - f(X))] = 0$$

from which it follows that

$$\mathbb{E}(Y - \tilde{Y})^2 = \mathbb{E}(Y - \mathbb{E}[Y|X])^2 + \mathbb{E}(\mathbb{E}[Y|X] - \tilde{Y})^2 \ge \mathbb{E}(Y - \mathbb{E}[Y|X])^2$$

Thus $\mathbb{E}[Y|X]$ minimizes mean square prediction error.

Decomposition of Y:

$$Y = \mathbb{E}[Y|X] + (Y - \mathbb{E}[Y|X])$$

where predictor $\mathbb{E}[Y|X]$ and prediction error $Y - \mathbb{E}[Y|X]$ uncorrelated.

Moreover,

$$\mathbb{V}\mathrm{ar}\,Y = \mathbb{V}\mathrm{ar}\mathbb{E}[Y|X] + \mathbb{V}\mathrm{ar}(Y - \mathbb{E}[Y|X]) = \mathbb{V}\mathrm{ar}\mathbb{E}[Y|X] + \mathbb{E}\mathbb{V}\mathrm{ar}[Y|X]$$

whereby

$$\operatorname{Var}(Y - \mathbb{E}[Y|X]) = \operatorname{\mathbb{E}}\operatorname{Var}[Y|X].$$

Prediction variance is equal to the expected conditional variance of Y.

BLUP

Consider random vectors Y and X with with mean vectors

$$\mathbb{E}Y = \mu_Y \quad \mathbb{E}X = \mu_X$$

and covariance matrix

$$\Sigma = \begin{bmatrix} \Sigma_Y & \Sigma_{YX} \\ \Sigma_{XY} & \Sigma_X \end{bmatrix}$$

Then the best *linear* unbiased predictor of Y given X is

$$\hat{Y} = \mu_Y + \Sigma_{YX} \Sigma_X^{-1} (X - \mu_X)$$

in the sense that

$$\operatorname{Var}[Y - (a + BX)] - \operatorname{Var}[Y - \hat{Y}]$$

is positive semi-definite for all linear unbiased predictors a + BX and '=' only if $a + BX = \hat{Y}$ (unbiased: $\mathbb{E}[Y - a - BX] = 0$).

Prediction variance/mean square prediction error

Fact:

$$Cov[Y - \hat{Y}, CX] = 0 \quad \text{for all} \quad C. \tag{1}$$

Thus $\mathbb{C}\text{ov}[Y - \hat{Y}, \hat{Y}] = 0$ which implies

$$\operatorname{\mathbb{V}ar} \hat{Y} = \Sigma_{YX} \Sigma_X^{-1} \Sigma_{XY} = \operatorname{\mathbb{C}ov}(Y, \hat{Y})$$

It follows that mean square prediction error is

$$\begin{aligned} \mathbb{V}\mathrm{ar}[Y - \hat{Y}] = & \mathbb{V}\mathrm{ar}Y + \mathbb{V}\mathrm{ar}\hat{Y} - \mathbb{C}\mathrm{ov}(Y, \hat{Y}) - \mathbb{C}\mathrm{ov}(\hat{Y}, Y) \\ = & \Sigma_{Y} - \Sigma_{YX}\Sigma_{X}^{-1}\Sigma_{XY} \end{aligned}$$

Proof of fact:

$$\begin{split} \mathbb{C}\mathrm{ov}[Y - \hat{Y}, CX] &= \mathbb{C}\mathrm{ov}[Y, CX] - \mathbb{C}\mathrm{ov}[\hat{Y}, CX] = \\ &\quad \Sigma_{YX} C^\mathsf{T} - \Sigma_{YX} \Sigma_X^{-1} \Sigma_X C^\mathsf{T} = 0 \end{split}$$

Proof of BLUP

By (1),
$$\mathbb{C}\text{ov}[Y - \hat{Y}, CX] = 0$$
 for all C .

$$\begin{aligned} \mathbb{V}\mathrm{ar}[Y - (a + BX)] &= \mathbb{V}\mathrm{ar}[Y - \hat{Y}] + \mathbb{V}\mathrm{ar}[\hat{Y} - (a + BX)] + \\ \mathbb{C}\mathrm{ov}[Y - \hat{Y}, \hat{Y} - (a + BX)] + \mathbb{C}\mathrm{ov}[\hat{Y} - (a + BX), Y - \hat{Y}] &= \\ \mathbb{V}\mathrm{ar}[Y - \hat{Y}] + \mathbb{V}\mathrm{ar}[\hat{Y} - (a + BX)] \end{aligned}$$

Hence $\mathbb{V}ar[Y - (a + BX)] - \mathbb{V}ar[Y - \hat{Y}] = \mathbb{V}ar[\hat{Y} - (a + BX)]$ where right hand side is positive semi-definite.

Conditional distribution in multivariate normal distribution

Consider jointly normal random vectors Y and X with mean vector

$$\mu = (\mu_Y, \mu_X)$$

and covariance matrix

$$\Sigma = \begin{bmatrix} \Sigma_Y & \Sigma_{YX} \\ \Sigma_{XY} & \Sigma_X \end{bmatrix}$$

Then (provided Σ_X invertible)

$$Y|X = x \sim N(\mu_Y + \Sigma_{YX}\Sigma_X^{-1}(x - \mu_X), \Sigma_Y - \Sigma_{YX}\Sigma_X^{-1}\Sigma_{XY})$$

Proof: By BLUP

$$Y = \hat{Y} + R$$

where $\hat{Y} = \mu_Y + \Sigma_{YX}\Sigma_X^{-1}(X - \mu_X)$, $R = Y - \hat{Y} \sim N(0, \Sigma_Y - \Sigma_{YX}\Sigma_X^{-1}\Sigma_{XY})$ and $\mathbb{C}\mathrm{ov}(R, X) = 0$. By normality R is independent of X. Given X = x, \hat{Y} is constant and distribution of R is not affected. Thus result follows.

11/31

Optimal prediction for jointly normal random vectors

By previous result it follows that BLUP of Y given X coincides with E[Y|X] when (X,Y) jointly normal.

Hence for normally distributed (X, Y), BLUP is optimal prediction.

Prediction in linear mixed model

Let $U \sim N(0, \Psi)$ and $Y|U = u \sim N(X\beta + Zu, \Sigma)$.

Then $\mathbb{C}\text{ov}[U, Y] = \Psi Z^{\mathsf{T}}$ and $\mathbb{V}\text{ar}\,Y = V = Z\Psi Z^{\mathsf{T}} + \Sigma$.

Thus

$$\hat{U} = \mathbb{E}[U|Y] = \Psi Z^{\mathsf{T}} V^{-1} (Y - X\beta)$$

NB: by Woodbury

$$\Psi Z^{\mathsf{T}} (Z \Psi Z^{\mathsf{T}} + \Sigma)^{-1} = (\Psi^{-1} + Z^{\mathsf{T}} \Sigma^{-1} Z)^{-1} Z^{\mathsf{T}} \Sigma^{-1}$$

- e.g. useful if Ψ^{-1} is sparse (like AR-model).

Similarly

$$\mathbb{V}\mathrm{ar}[U-\hat{U}] = \mathbb{E}\mathbb{V}\mathrm{ar}[U|Y] = \Psi - \Psi Z^\mathsf{T} V^{-1} Z \Psi^\mathsf{T} = (\Psi^{-1} + Z^\mathsf{T} \Sigma^{-1} Z)^{-1}$$

One-way anova example at p. 186 in M & T.

IQ example

Y measurement of IQ, U subject specific random effect:

$$Y = \mu + U + \epsilon$$

where standard deviation of U and ϵ are 15 and 5 and $\mu=100$.

Given
$$Y = 130$$
, $\mathbb{E}[\mu + U|Y = 130] = 127$.

Example of shrinkage to the mean.

BLUP as hierarchical likelihood estimates

Maximization of joint density ('hierarchical likelihood')

$$f(y|u;\beta)f(u;\psi)$$

with respect to u gives BLUP (M & T p. 171-172 for one-way anova and p. 183 for general linear mixed model)

Joint maximization wrt. u and β gives Henderson's mixed-model equations (M & T p. 184) leading to BLUE $\hat{\beta}$ and BLUP \hat{u} .

BLUP of mixed effect with unknown β

Assume $\mathbb{E}X = C\beta$ and $\mathbb{E}Y = D\beta$. Given X and β , BLUP of

$$K = A\beta + BY$$

is

$$\hat{K}(\beta) = A\beta + B\hat{Y}(\beta)$$

where BLUP $\hat{Y}(\beta) = D\beta + \Sigma_{YX}\Sigma_X^{-1}(X - C\beta)$.

Typically β is unknown. Then BLUP is

$$\hat{K} = A\hat{\beta} + B\hat{Y}(\hat{\beta})$$

where $\hat{\beta}$ is BLUE (Harville, 1991)

Proof: $\hat{K}(eta)$ can be rewritten as

$$A\beta + B\hat{Y}(\beta) = [A + BD - B\Sigma_{YX}\Sigma_X^{-1}C]\beta + B\Sigma_{YX}\Sigma_X^{-1}X = T + B\Sigma_{YX}\Sigma_X^{-1}X$$
Note BLUE of $T = [A + BD - B\Sigma_{YX}\Sigma_X^{-1}C]\beta$ is

 $\hat{T} = [A + BD - B\Sigma_{YX}\Sigma_X^{-1}C]\hat{\beta}.$

Now consider a LUP $\tilde{K} = HX = [H - B\Sigma_{YX}\Sigma_X^{-1}]X + B\Sigma_{YX}\Sigma_X^{-1}X$ of K. By unbiasedness,

 $\tilde{T} = [H - B\Sigma_{YX}\Sigma_{Y}^{-1}]X$

is LUE of
$$T$$
. Hence $\mathbb{V}\mathrm{ar}[\tilde{T}-T] \geq \mathbb{V}\mathrm{ar}[\hat{T}-T]$. Also note by (1)

 $\mathbb{C}\mathrm{ov}[ilde{\mathcal{T}}-\mathcal{T},\hat{\mathcal{K}}(eta)-\mathcal{K}]=0$ and $\mathbb{C}\mathrm{ov}[\hat{\mathcal{T}}-\mathcal{T},\hat{\mathcal{K}}(eta)-\mathcal{K}]=0$

Using this it follows that

$$\mathbb{V}\mathrm{ar}[ilde{\mathcal{K}}-\mathcal{K}] \geq \mathbb{V}\mathrm{ar}[\hat{\mathcal{K}}-\mathcal{K}]$$

 \mathbb{V} $\text{ar}[K-K] \geq \mathbb{V}$ ar[K-K] and \mathbb{V} $\text{ar}[\hat{K}-K]$.

Application to model assessment

From the mixed model formulation

$$Y = X\beta + ZU + \epsilon$$

we obtain

$$\epsilon = Y - X\beta - ZU$$

It is then easy to see that BLUP of ϵ given Y and β is

$$\hat{\epsilon}(\beta) = Y - X\beta - Z\hat{U}(\beta)$$

where $\hat{U}(\beta)$ is BLUP of U given β . When unknown β is replaced by BLUE $\hat{\beta}$, previous slides give that residual

$$\hat{\epsilon} = Y - X\hat{\beta} - Z\hat{U}(\hat{\beta})$$

is BLUP of ϵ (this is returned by applying residuals to lmer object).

EBLUP and EBLUE

Typically covariance matrix depends on unknown parameters.

EBLUPS are obtained by replacing unknown variance parameters by their estimates (similar for EBLUE).

Model assessment

Make histograms, qq-plots etc. for EBLUPs of ϵ and U.

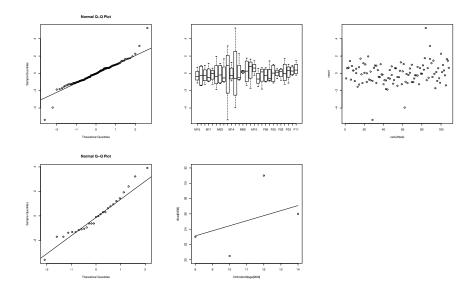
May be advantageous to consider standardized EBLUPS. Standardized BLUP is

$$[\mathbb{C}\mathrm{ov}\,\hat{U}]^{-1/2}\,\hat{U}$$

Example: prediction of random intercepts and slopes in orthodont data

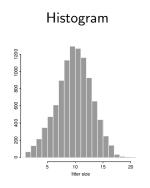
```
ort7=lmer(distance~age+factor(Sex)+(1|Subject),data=Orthodo
#check of model ort7
#residuals
res=residuals(ort7)
qqnorm(res)
qqline(res)
#outliers occur for subjects MO9 and M13
#plot residuals against subjects
boxplot(resort~Orthodont$Subject)
#plot residuals against fitted values
fitted=fitted(ort7)
plot(rank(fitted),resort)
```

```
#extract predictions of random intercepts
raneffects=ranef(ort7)
#qqplot of random intercepts
qqnorm(ranint[[1]])
qqline(ranint[[1]])
#plot for subject M09
M09=Orthodont$Subject=="M09"
plot(Orthodont$age[M09],fitted[M09],type="1",ylim=c(20,32))
points(Orthodont$age[M09],Orthodont$distance[M09])
```



Example: quantitative genetics (Sorensen and Waagepetersen 2003)

 X_{ij} size of jth litter of ith pig.





- w pig without observation.
- 2 pig with observation.

 U_i , \tilde{U}_i random genetic effects influencing size and variability of X_{ij} :

$$X_{ij}|U_i = u_i, \tilde{U}_i = \tilde{u}_i \sim N(\mu_i + u_i, \exp(\tilde{\mu}_i + \tilde{u}_i))$$

$$(U_1,\ldots,U_n,\tilde{U}_1,\ldots,\tilde{U}_n)\sim N(0,G\otimes A)$$

A: additive genetic relationship (correlation) matrix (depending on pedigree). Correlation structure derived from simple model:

$$U_{\text{offspring}} = \frac{1}{2}(U_{\text{father}} + U_{\text{mother}}) + \epsilon$$

 $\Rightarrow Q = A^{-1}$ sparse ! (generalization of AR(1))

$$G = \left[\begin{array}{cc} \sigma_u^2 & \rho \sigma_u \sigma_{\tilde{u}} \\ \rho \sigma_u \sigma_{\tilde{u}} & \sigma_{\tilde{u}}^2 \end{array} \right]$$

 ρ : coefficient of genetic correlation between U_i and \tilde{U}_i .

NB: high dimension n > 6000.

Aim: identify pigs with favorable genetic effects

Exercises

- 1. Fill in the details of the proofs on slides 4-5.
- 2. Fill in the details of the proof on slide 17.
- 3. Verify the results on page 186 in M&T regarding BLUPs in case of a one-way anova.

Further results

Rasmus Waagepetersen
Department of Mathematics
Aalborg University
Denmark

April 3, 2024

†Estimable parameters and BLUE

Definition: A linear combination $a^{T}\beta$ is estimable if it has a LUE $b^{T}Y$.

Result: $a^T \beta$ is estimable $\Leftrightarrow a^T \beta = c^T \mu$ for some c.

By results on previous slides: If $a^T\beta$ is estimable then BLUE is $c^T\hat{\mu}$.

†Pythagoras and conditional expectation

Space of real random variables with finite variance may be viewed as a vector space with inner product and (L_2) norm

$$\langle X, Y \rangle = \mathbb{E}(XY) \quad ||X|| = \sqrt{\mathbb{E}X^2}$$

Orthogonal decomposition (Pythagoras):

$$||Y||^2 = ||\mathbb{E}[Y|X]||^2 + ||Y - \mathbb{E}[Y|X]||^2$$

 $\mathbb{E}[Y|X]$ may be viewed as projection of Y on X since it minimizes distance

$$\mathbb{E}(Y-\tilde{Y})^2$$

among all predictors $\tilde{Y} = f(X)$.

For zero-mean random variables, orthogonal is the same as uncorrelated.

(Grimmett & Stirzaker, Prob. and Random Processes, Chapter 7.9 good source on this perspective on prediction and conditional expectation)

†BLUP as projection

Y scalar for consistency with slide on L_2 space view.

 $X = (X_1, ..., X_n)^T$. Assume wlog that all variables are centered $\mathbb{E}Y = \mathbb{E}X_i = 0$ (otherwise consider prediction of $Y - \mathbb{E}Y$ based on $X_i - \mathbb{E}X_i$).

BLUP is projection of Y onto *linear* subspace spanned by X_1, \ldots, X_n (with orthonormal basis U_1, \ldots, U_n where $U = \Sigma_X^{-1/2} X$):

$$\hat{Y} = \sum_{i=1}^{n} \mathbb{E}[YU_i]U_i = \Sigma_{YX}\Sigma_X^{-1}X$$

(analogue to least squares $\hat{Y} = X(X^TX)^{-1}X^TY$).

NB: conditional expectation $\mathbb{E}[Y|X]$ projection of Y onto space of all variables $Z = f(X_1, \dots, X_n)$ where f real function.

[†]Conditional simulation using prediction

Suppose Y and X are jointly normal and we wish to simulate Y|X=x. By previous result

$$Y|X = x \sim \hat{y} + R$$

where $\hat{y} = \mu_Y + \Sigma_{YX} \Sigma_X^{-1} (x - \mu_X)$. We thus need to simulate R. This can be done by 'simulated prediction': simulate (Y^*, X^*) and compute \hat{Y}^* and $R^* = Y^* - \hat{Y}^*$.

Then our conditional simulation is

$$\hat{y} + R^*$$

Advantageous if it is easier to simulate (Y^*, X^*) and compute \hat{Y}^* than simulate directly from conditional distribution of Y|X=x

(e.g. if simulation of
$$(Y,X)$$
 easy but $\Sigma_Y - \Sigma_{YX}\Sigma_X^{-1}\Sigma_{XY}$ difficult)