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WLS and BLUE (prelude to BLUP)

Suppose that Y has mean Xβ and known covariance matrix V
(but Y need not be normal). Then

β̂ = (XTV−1X )−1XTV−1Y

is a weighted least squares estimate since it minimizes

(Y − Xβ)TV−1(Y − Xβ).

It is also the best linear unbiased estimate (BLUE) - that is the
unbiased estimate with smallest variance in the sense that

Varβ̃ − Varβ̂

is positive semi-definite for any other linear unbiased estimate β̃.
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BLUE for general parameter and V = I

Theorem: Suppose EY = µ is in linear subspace M and
CovY = σ2I and ψ = Aµ. Then BLUE of ψ is ψ̂ = Aµ̂ where
µ̂ = PY and P orthogonal projection on M.

Obviously ψ̂ is LUE: Eψ̂ = APµ = Aµ.

Key result:
Cov(ψ̃ − ψ̂, ψ̂) = E[(ψ̃ − ψ̂)ψ̂] = 0

for any other LUE ψ̃ = BY .

Proof of theorem follows by key result:

Var(ψ̃) = Var(ψ̃−ψ̂)+Varψ̂ ⇒ Var(ψ̃)−Varψ̂ = Var(ψ̃−ψ̂) ≥ 0.

Hence ψ̂ is BLUE (here A ≥ B means A−B positive semi definite).
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Proof of key result:

Assume ψ̃ is LUE. I.e. ψ̃ = BY and Eψ̃ = Bµ = Aµ for all µ ∈ M.
Thus for all w ∈ Rp,

(B − AP)Pw = BPw − APw = APw − APw = 0

since Pw ∈ M. This implies (B − AP)P = 0 which gives

Cov(ψ̃ − ψ̂, ψ̂) = σ2(B − AP)PTAT = 0.

Recall: for random vectors X and Y and matrices A and B of
appropriate dimensions

Cov(AX ,BY ) = ACov(X ,Y )BT
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BLUE - non-diagonal covariance matrix

Lemma: suppose Ỹ = KY where K is an invertible matrix. If
ψ̂ = CỸ is BLUE of ψ based on data Ỹ then ψ̂ = CKY is BLUE
based on Y as well.

Corollary: suppose V = LLT is invertible and µ = Xβ where X has
full rank. Then BLUE of µ is µ̂ where
µ̂ = X (XTV−1X )−1XTV−1Y is WLS estimate of µ.

Proof: Ỹ = L−1Y has covariance matrix I and mean µ̃ = X̃β
where µ̃ = L−1µ. Thus by theorem, BLUE of µ = Lµ̃ is
LX̃ (X̃TX̃ )−1X̃TỸ . Applying lemma we get BLUE based on Y is
LX̃ (X̃TX̃ )−1X̃TL−1Y = µ̂.

Remark: µ̂ above is in fact orthogonal projection of Y wrt. inner
product < x , y >= xTV−1y .
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Optimal prediction

X and Y random variables, g real function. General result:

Cov(Y − E[Y |X ], g(X )) =

Cov(E[Y − E[Y |X ]|X ],E[g(X )|X ])+

ECov(Y − E[Y |X ], g(X )|X ) = 0

In particular, for any prediction Ỹ = f (X ) of Y :

E
[
(Y − E[Y |X ])(E[Y |X ]− f (X ))

]
= 0

from which it follows that

E(Y−Ỹ )2 = E(Y−E[Y |X ])2+E(E[Y |X ]−Ỹ )2 ≥ E(Y−E[Y |X ])2

Thus E[Y |X ] minimizes mean square prediction error.
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Decomposition of Y :

Y = E[Y |X ] + (Y − E[Y |X ])

where predictor E[Y |X ] and prediction error Y − E[Y |X ]
uncorrelated.

Moreover,

VarY = VarE[Y |X ]+Var(Y−E[Y |X ]) = VarE[Y |X ]+EVar[Y |X ]

whereby
Var(Y − E[Y |X ]) = EVar[Y |X ].

Prediction variance is equal to the expected conditional variance of
Y .
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BLUP
Consider random vectors Y and X with with mean vectors

EY = µY EX = µX

and covariance matrix

Σ =

[
ΣY ΣYX

ΣXY ΣX

]

Then the best linear unbiased predictor of Y given X is

Ŷ = µY + ΣYXΣ−1
X (X − µX )

in the sense that

Var[Y − (a + BX )]− Var[Y − Ŷ ]

is positive semi-definite for all linear unbiased predictors a + BX
and ‘=’ only if a + BX = Ŷ (unbiased: E[Y − a− BX ] = 0).
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Prediction variance/mean square prediction error
Fact:

Cov[Y − Ŷ ,CX ] = 0 for all C . (1)

Thus Cov[Y − Ŷ , Ŷ ] = 0 which implies

VarŶ = ΣYXΣ−1
X ΣXY = Cov(Y , Ŷ )

It follows that mean square prediction error is

Var[Y − Ŷ ] =VarY + VarŶ − Cov(Y , Ŷ )− Cov(Ŷ ,Y )

=ΣY − ΣYXΣ−1
X ΣXY

Proof of fact:

Cov[Y − Ŷ ,CX ] = Cov[Y ,CX ]− Cov[Ŷ ,CX ] =

ΣYXC
T − ΣYXΣ−1

X ΣXC
T = 0
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Proof of BLUP

By (1), Cov[Y − Ŷ ,CX ] = 0 for all C .

Var[Y − (a + BX )] = Var[Y − Ŷ ] + Var[Ŷ − (a + BX )]+

Cov[Y − Ŷ , Ŷ − (a + BX )] + Cov[Ŷ − (a + BX ),Y − Ŷ ] =

Var[Y − Ŷ ] + Var[Ŷ − (a + BX )]

Hence Var[Y − (a + BX )]− Var[Y − Ŷ ] = Var[Ŷ − (a + BX )]
where right hand side is positive semi-definite.
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Conditional distribution in multivariate normal distribution
Consider jointly normal random vectors Y and X with mean vector

µ = (µY , µX )

and covariance matrix

Σ =

[
ΣY ΣYX

ΣXY ΣX

]
Then (provided ΣX invertible)

Y |X = x ∼ N(µY + ΣYXΣ−1
X (x − µX ),ΣY − ΣYXΣ−1

X ΣXY )

Proof: By BLUP
Y = Ŷ + R

where Ŷ = µY + ΣYXΣ−1
X (X − µX ),

R = Y − Ŷ ∼ N(0,ΣY − ΣYXΣ−1
X ΣXY ) and Cov(R,X ) = 0. By

normality R is independent of X . Given X = x , Ŷ is constant and
distribution of R is not affected. Thus result follows.
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Optimal prediction for jointly normal random vectors

By previous result it follows that BLUP of Y given X coincides
with E [Y |X ] when (X ,Y ) jointly normal.

Hence for normally distributed (X ,Y ), BLUP is optimal prediction.
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Prediction in linear mixed model
Let U ∼ N(0,Ψ) and Y |U = u ∼ N(Xβ + Zu,Σ).

Then Cov[U,Y ] = ΨZT and VarY = V = ZΨZT + Σ.

Thus
Û = E[U|Y ] = ΨZTV−1(Y − Xβ)

NB: by Woodbury

ΨZT(ZΨZT + Σ)−1 = (Ψ−1 + ZTΣ−1Z )−1ZTΣ−1

- e.g. useful if Ψ−1 is sparse (like AR-model).

Similarly

Var[U−Û] = EVar[U|Y ] = Ψ−ΨZTV−1ZΨT = (Ψ−1+ZTΣ−1Z )−1

One-way anova example at p. 186 in M & T.
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IQ example

Y measurement of IQ, U subject specific random effect:

Y = µ+ U + ε

where standard deviation of U and ε are 15 and 5 and µ = 100.

Given Y = 130, E[µ+ U|Y = 130] = 127.

Example of shrinkage to the mean.

14 / 31



BLUP as hierarchical likelihood estimates

Maximization of joint density (‘hierarchical likelihood’)

f (y |u;β)f (u;ψ)

with respect to u gives BLUP (M & T p. 171-172 for one-way
anova and p. 183 for general linear mixed model)

Joint maximization wrt. u and β gives Henderson’s mixed-model
equations (M & T p. 184) leading to BLUE β̂ and BLUP û.
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BLUP of mixed effect with unknown β

Assume EX = Cβ and EY = Dβ. Given X and β, BLUP of

K = Aβ + BY

is
K̂ (β) = Aβ + BŶ (β)

where BLUP Ŷ (β) = Dβ + ΣYXΣ−1
X (X − Cβ).

Typically β is unknown. Then BLUP is

K̂ = Aβ̂ + BŶ (β̂)

where β̂ is BLUE (Harville, 1991)
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Proof: K̂ (β) can be rewritten as

Aβ+BŶ (β) = [A+BD−BΣYXΣ−1
X C ]β+BΣYXΣ−1

X X = T+BΣYXΣ−1
X X

Note BLUE of T = [A + BD − BΣYXΣ−1
X C ]β is

T̂ = [A + BD − BΣYXΣ−1
X C ]β̂.

Now consider a LUP K̃ = HX = [H − BΣYXΣ−1
X ]X + BΣYXΣ−1

X X
of K. By unbiasedness,

T̃ = [H − BΣYXΣ−1
X ]X

is LUE of T . Hence Var[T̃ − T ] ≥ Var[T̂ − T ]. Also note by (1)

Cov[T̃ − T , K̂ (β)− K ] = 0 and Cov[T̂ − T , K̂ (β)− K ] = 0

Using this it follows that

Var[K̃ − K ] ≥ Var[K̂ − K ]

Hint: subtract and add K̂ (β) both in Var[K̃ −K ] and Var[K̂ −K ].
17 / 31



Application to model assessment

From the mixed model formulation

Y = Xβ + ZU + ε

we obtain
ε = Y − Xβ − ZU

It is then easy to see that BLUP of ε given Y and β is

ε̂(β) = Y − Xβ − ZÛ(β)

where Û(β) is BLUP of U given β. When unknown β is replaced
by BLUE β̂, previous slides give that residual

ε̂ = Y − X β̂ − ZÛ(β̂)

is BLUP of ε (this is returned by applying residuals to lmer

object).
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EBLUP and EBLUE

Typically covariance matrix depends on unknown parameters.

EBLUPS are obtained by replacing unknown variance parameters
by their estimates (similar for EBLUE).
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Model assessment

Make histograms, qq-plots etc. for EBLUPs of ε and U.

May be advantageous to consider standardized EBLUPS.
Standardized BLUP is

[CovÛ]−1/2Û
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Example: prediction of random intercepts and slopes in
orthodont data

ort7=lmer(distance~age+factor(Sex)+(1|Subject),data=Orthodont)

#check of model ort7

#residuals

res=residuals(ort7)

qqnorm(res)

qqline(res)

#outliers occur for subjects M09 and M13

#plot residuals against subjects

boxplot(resort~Orthodont$Subject)

#plot residuals against fitted values

fitted=fitted(ort7)

plot(rank(fitted),resort)
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#extract predictions of random intercepts

raneffects=ranef(ort7)

#qqplot of random intercepts

qqnorm(ranint[[1]])

qqline(ranint[[1]])

#plot for subject M09

M09=Orthodont$Subject=="M09"

plot(Orthodont$age[M09],fitted[M09],type="l",ylim=c(20,32))

points(Orthodont$age[M09],Orthodont$distance[M09])
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Example: quantitative genetics (Sorensen and
Waagepetersen 2003)

Xij size of jth litter of ith pig.

Histogram Pedigree
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Ui , Ũi random genetic effects influencing size and variability of Xij :

Xij |Ui = ui , Ũi = ũi ∼ N (µi + ui , exp(µ̃i + ũi ))

(U1, . . . ,Un, Ũ1, . . . , Ũn) ∼ N(0,G ⊗ A)

A: additive genetic relationship (correlation) matrix (depending on
pedigree). Correlation structure derived from simple model:

Uoffspring =
1

2
(Ufather + Umother) + ε

⇒ Q = A−1 sparse ! (generalization of AR(1))

G =

[
σ2
u ρσuσũ

ρσuσũ σ2
ũ

]
ρ: coefficient of genetic correlation between Ui and Ũi .

NB: high dimension n > 6000.

Aim: identify pigs with favorable genetic effects
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Exercises

1. Fill in the details of the proofs on slides 4-5.

2. Fill in the details of the proof on slide 17.

3. Verify the results on page 186 in M&T regarding BLUPs in
case of a one-way anova.
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†Estimable parameters and BLUE

Definition: A linear combination aTβ is estimable if it has a LUE
bTY .

Result: aTβ is estimable ⇔ aTβ = cTµ for some c .

By results on previous slides: If aTβ is estimable then BLUE is cTµ̂.
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†Pythagoras and conditional expectation
Space of real random variables with finite variance may be viewed
as a vector space with inner product and (L2) norm

< X ,Y >= E(XY ) ‖X‖ =
√
EX 2

Orthogonal decomposition (Pythagoras):

‖Y ‖2 = ‖E[Y |X ]‖2 + ‖Y − E[Y |X ]‖2

E[Y |X ] may be viewed as projection of Y on X since it minimizes
distance

E(Y − Ỹ )2

among all predictors Ỹ = f (X ).

For zero-mean random variables, orthogonal is the same as
uncorrelated.

(Grimmett & Stirzaker, Prob. and Random Processes, Chapter 7.9 good

source on this perspective on prediction and conditional expectation)
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†BLUP as projection

Y scalar for consistency with slide on L2 space view.
X = (X1, . . . ,Xn)T. Assume wlog that all variables are centered
EY = EXi = 0 (otherwise consider prediction of Y − EY based on
Xi − EXi ).

BLUP is projection of Y onto linear subspace spanned by
X1, . . . ,Xn (with orthonormal basis U1, . . . ,Un where

U = Σ
−1/2
X X ):

Ŷ =
n∑

i=1

E[YUi ]Ui = ΣYXΣ−1
X X

(analogue to least squares Ŷ = X (XTX )−1XTY ).

NB: conditional expectation E[Y |X ] projection of Y onto space of
all variables Z = f (X1, . . . ,Xn) where f real function.
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†Conditional simulation using prediction

Suppose Y and X are jointly normal and we wish to simulate
Y |X = x . By previous result

Y |X = x ∼ ŷ + R

where ŷ = µY + ΣYXΣ−1
X (x − µX ). We thus need to simulate R.

This can be done by ‘simulated prediction’: simulate (Y ∗,X ∗) and
compute Ŷ ∗ and R∗ = Y ∗ − Ŷ ∗.

Then our conditional simulation is

ŷ + R∗

Advantageous if it is easier to simulate (Y ∗,X ∗) and compute Ŷ ∗

than simulate directly from conditional distribution of Y |X = x

(e.g. if simulation of (Y ,X ) easy but ΣY − ΣYXΣ−1
X ΣXY difficult)
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