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 Analysis of Variance Models in
 Orthogonal Designs
 Tue Tjur

 Institute of Mathematical Statistics, University of Copenhagen, Universitetsparken 5,
 DK-2100 Copenhagen 0, Denmark

 Summary

 This paper presents an approach to analysis of variance modelling in designs where all factors are
 orthogonal, based on formal mathematical definitions of concepts related to factors and experimen-
 tal designs. The structure of an orthogonal design is described by a factor structure diagram
 containing the information about nestedness relations between the factors. An orthogonal design
 determines a unique decomposition of the observation space as a direct sum of orthogonal
 subspaces, one for each factor of the design. A class of well-behaved variance component models,
 stated in terms of fixed and random effects of factors from a given design, is characterized, and the
 solutions to problems of estimation and hypothesis testing within this class are given in terms of the
 factor structure diagram and the analysis of variance table induced by the decomposition.

 Key words: Analysis of variance; ANOVA; Mixed models; Orthogonal designs; Variance component
 models.

 1 Introduction

 This paper deals with analysis of variance (ANOVA) models in experimental designs
 where all factors (treatment factors as well as blockings) are orthogonal. Examples are
 randomized block designs, split-plot designs, completely balanced k-factor designs (with
 or without an orthogonal blocking), Latin and Graeco-Latin squares, fractional replicates
 of complete factorials (but not balanced incomplete block designs, etc.).

 Mathematically, this is a rather exclusive class of experimental designs. Statistically,
 however, it is very important, and more or less standardized methods for the handling of
 analysis of variance models in such designs are given by most books on experimental
 design.

 The main tool of the modern approach to analysis of variance is matrix calculus based
 on concepts from Euclidean geometry (orthogonal projections, etc.). However, in the case
 of orthogonal designs it is generally recognized that the matrix calculations involved are
 purely formal, in the sense that the interpretation of the symbols as matrices plays a
 secondary role. The final results (e.g. formulae for sums of squares of deviations) are not
 stated in terms of matrices anyway, and the intermediate matrix manipulations can be
 more or less replaced by similar operations on other algebraic objects, like symbolic
 expressions for contrasts and interactions in a 2k-design (Fisher, 1935), terms of a
 degrees-of-freedom identity (Nelder, 1965), Kroenecker products of certain types of
 matrices (Nelder, 1965), subsets of the finite set indexing the factors of a k-way table
 (Jensen, 1979), or equivalence relations on the set of experimental units (Speed & Bailey,
 1982). Apart from the classical origin of this, the tedious algebra of quadratic forms
 is expressed by summations, bars, dots and a lot of indices
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 34 T. TJUR

 There is a clear line of development here, from the algebra of quadratic forms, via
 matrices and Euclidean geometry, towards approaches which are more and more directly
 related to the only thing which is really unavoidable in the statistical context: the
 combinatorial structure of the design. The aim of the present paper is to give an
 exposition which is based entirely on this combinatorial structure. Design structures will
 be represented by factor structure diagrams, holding the information about nestedness
 relations between the factors. It will be shown how degrees of freedom, sums of squares of
 deviations, etc. can be derived in a simple way from this diagram. The sums of squares of
 deviations come out as integer linear combinations of square sums of the form ssF =
 E nf,', where the summation is over the levels of a factor F, nf denoting the number of
 observations on level f, yf the average of these. Rules for estimation of variance
 components, allocation of treatment effects to strata, tests for model reductions, estima-
 tion of contrasts, etc. will also be given in terms of the factor structure diagram and the
 analysis of variance table constructed from it.

 The theory in the following is based on formal mathematical definitions of basic
 concepts related to experimental designs. Some of these concepts (e.g. the concept of a
 factor) are so simple and well-known that their mathematical meaning is usually subsumed
 or ignored. It should be noticed, however, that the concept of a minimum of two factors,
 which is a standard mathematical construction and an almost unavoidable part of the
 mathematical formalism, does not correspond directly to a classical statistical concept,
 though related in an obvious way to partial aliasing or partial confounding. The concept of
 a minimum plays a crucial role for the results obtained in the present paper.

 However, these mathematical concepts are not new, nor is their relation to analysis of
 variance models. There is, in particular, an overlap with ideas put forward by Nelder
 (1965), Zedeler (1970), Jensen (1979), Speed & Bailey (1982). More detailed statements
 about this follow below. It is hoped that the present paper will contribute to the
 propagation of the ideas put forward by these authors, and that these ideas are not too
 obscured by the simplifying assumptions and omissions of many other aspects, which are
 made here.

 Related papers. Nelder (1965) developed a theory for a class of analysis of variance
 models (including finite randomization models, which are not discussed in the present
 paper), usually referred to as the generally balanced models. This theory has been
 developed further by Wilkinson (1970) and James & Wilkinson (1971), and some of the
 computational aspects of this theory have been implemented in the GENSTAT 'ANOVA'
 algorithm. For a very rough description, the power of this algorithm lies in the fact that it
 is able to recognize and make use of symmetries in a very large class of analysis of
 variance models. Computationally, as far as linear (single stratum) models are concerned,
 the 'ANOVA' algorithm is situated somewhere between the general linear regression
 solution (involving the representation of the factor structure by a suitable design matrix,
 and the numerical inversion of a k x k matrix for k = the rank of this design matrix) and the
 explicit 'matrix free' solutions required for desk calculators. The 'ANOVA' algorithm
 performs a sequence of 'sweeps' to the data vector. This sequence can be divided into
 subsequences, each of which corresponds to the addition of a term to the model formula.
 The procedure ends up with the vector of residuals in the specified model. A 'sweep' can
 be described as the subtraction of level averages (with respect to a factor of the model)
 from data, possibly with a simple correction for nonorthogonality.

 A more detailed discussion of the generally balanced models is beyond the scope of the
 present paper. See Houtman & Speed (1983) for a mathematically very clear exposition of
 these models and their properties.

This content downloaded from 130.225.53.20 on Fri, 17 Mar 2017 11:09:38 UTC
All use subject to http://about.jstor.org/terms



 Analysis of Variance Models in Orthogonal Designs 35

 However, our concept of an orthogonal design can be viewed as a generalization of the
 orthogonal block structures discussed by Nelder (1965, I). In the terminology of the
 present paper, Nelder's block structures are orthogonal designs, built up from balanced
 factors by repeated use of two operations, 'crossing' and 'nesting'. These operations can
 be regarded as operations on designs. Both give a new design with a set of experimental
 units that can be identified with the Cartesian product of the units sets of the two designs
 operated on. Crossing leads to a design containing all 'direct products' of factors from the
 two designs, while nesting corresponds to the replacement of each experimental unit of
 the first design with a copy of the second.

 It is easy to show that the so constructed designs are orthogonal designs in our sense.
 Conversely, as far as only the random factors (our O in ? 7) are concerned, it is roughly
 correct to say that our block structures 1 coincide with Nelder's block structures, though
 there are some counter-examples (e.g. a Latin square with random effects of row, column
 and Latin letter, which is included in our definition).

 Nelder emphasizes three different forms of the covariance matrix. The two of these
 correspond to the two parameterizations discussed in ? 7 of the present paper, and the
 third is a description in terms of distinct correlations between pairs of experimental units.
 Recursive rules for the expansion of these three forms under nesting and crossing are
 given.

 Note that the arrows -- occurring in the present paper are essentially the reverse of
 those used by Nelder (1965) to indicate nesting. This inconsistency is difficult to avoid,
 because our arrows indicate mappings between finite sets.

 Zedeler (1970) discusses the structure of two-way designs in a mathematical framework
 similar to that of the present paper. The minimum (in our terminology) of two factors is
 characterized as their cointersection in the category of mappings between finite sets, and
 the combinatorial condition for orthogonality (our Proposition 1) is given. The relation of
 these concepts to the analysis of linear models in a two-way design is discussed.

 Speed & Bailey (1982) clarify and develop further some of Nelder's ideas by means of a
 formal definition of factor structures similar to the one given here. A factor is identified by
 the equivalence relation which it imposes on the set of experimental units. The operations
 conjunction and composition on relations are discussed. Conjunction corresponds to our
 formation of products F x G. Compositions are related to our minima F A G. In terms of
 these operations, a characterization in combinatorial terms of balanced orthogonal factors
 with balanced minima (in our terminology) is given, and a version of our Theorem 1, is
 proved. Speed & Bailey relate their exposition to the combinatorial theory of finite
 lattices, see e.g. Aigner (1979), and show the relation to the M6bius function; see ? 4.2.
 Nelder's concepts of crossing and nesting are discussed in this mathematical framework.

 Jensen (1979) discusses variance component models in completely balanced k-factor
 designs. A covariance structure is determined by a set si of subsets of {1,..., k}, each
 subset determining (in our terminology) a random factor B e $. The condition that sd is
 closed under the formation of intersections (slightly generalized here to the condition that
 $ should be closed under the formation of minima) is imposed, and the consequences of a
 second condition, closedness under the formation of unions, are discussed. Three
 parameterizations, corresponding to Nelder's three forms of the covariance matrix, are
 studied, and the six relations connecting these are derived. It is noticed that the
 representation by distinct correlations between pairs of observations (which is not discus-
 sed in the present paper) is only meaningful under the second condition (closedness under
 unions, which holds also for Nelder's orthogonal block structures). The rules for estima-
 tion and hypothesis testing under orthogonal block-treatment structure are derived.
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 36 T. TJUR

 2 Factors: Combinatorial structure

 Let y = (y, Ii I) e RI denote the data set. The elements i of the (finite) index set I are
 called experimental units.

 A factor qF : I --> F is a mapping p, from I into some other finite set F. The elements f
 of F are called factor levels. Usually, we shall talk about 'the factor F', rather than 'the
 factor q,: I-> F', thus subsuming the mapping qpF as given by the context.

 Two factors play a special role as 'extremes', the trivial factor 0, corresponding to a
 constant mapping o0: I-> 0, where 0 is an arbitrary set with a single element, and the
 units factor I, corresponding to the identity p,: I - I.

 Intuitively, a factor F should be thought of as a partitioning of I into classes ?p'fl(),
 each equipped with a label f e F. Thus, the trivial factor 0 is the 'partitioning' into a single
 class, and I is the partitioning into single units.

 2.1 Balanced factors

 As a standard notation in the following, we let nf denote the number of experimental
 units on the level f of the factor F,

 nf = card j(lyf),

 where card denotes 'number of elements in'. By IFI we denote the number of nonempty
 classes,

 IF! = card {fI nf > 0}.

 A factor F is called balanced if all the classes are of the same size, which is then denoted

 nF= n = Ifl/IFI.

 2.2 Nested factors

 Let two factors F and G be given. Suppose that there exists a mapping pFG:F -> G such that q?FG o 0F = PG. In this case we say that F is nested in or finer than G, or that G is
 marginal to or coarser than F. We write G < F or (in diagrams) F G. Notice that we
 have G <F if and only if any of the G-classes can be written as a union of some of the
 F-classes, namely

 qPG1(g)= U q'(f).
 fC(pj'(g)

 We say that the level f is nested in the level g if ?pl(f) -_ pG'(g), Or, equivalently, PFG(f)= g.

 2.3 Equivalent factors

 Two factors F and G will be called equivalent if both F<G and G<F. Thus,
 equivalent factors are factors which induce the same partitioning of I. Only the labels on
 these classes and the number of empty classes (i.e. factor levels which are not used) may
 be different. For many purposes, the properties of a factor are sufficiently described by its
 equivalence class, and most of the concepts discussed in the following are well defined 'up
 to equivalence', (notice, however, that balancedness is not a property of the equivalence
 class).

 Under the subsumed convention of not distinguishing between equivalent factors, the
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 Analysis of Variance Models in Orthogonal Designs 37

 relation < is a partial ordering of the set of factors. We have the maximal element I and
 the minimal element 0.

 The symbol < is used for 'coarser than and nonequivalent to', that is F< G ?* Fi
 G but not F> G.

 2.4 Cross-classifications

 The product Fx G of two factors F and G, or the cross-classification induced by F and
 G, is the factor

 PFxG : I-> FX G,

 where the set F x G is the ordinary Cartesian product of F and G, and

 PFxG(i) = (PF(i), PG(i))-

 The formation of products can be regarded as an operation on equivalence classes, in the
 sense that replacement of F and G with equivalent factors F' and G' leads to an
 equivalent product F'x G'. Under the partial ordering *, the product Fx G can be
 characterized as the coarsest factor which is finer than both F and G. Indeed, the
 following two properties are easily seen to characterize F x G up to equivalence:

 (i) F <FxG and Gi <FxG;
 (ii) any factor H finer than both F and G is also finer than F x G.

 In this sense, the partially ordered set of (equivalence classes of) factors possesses
 maxima, and the maximum operation, which we would otherwise denote by v, coincides
 with the formation of products ('Fv G = F x G').

 2.5 Minima of factors

 The dual concept, the minimum of two factors, is defined as follows. For two factors F
 and G, their minimum FA G is a factor with the properties:

 (i) FAG<F and FAG<G;
 (ii) any factor H coarser than both F and G is also coarser than FA G.

 It is easy to show that the minimum FA G, if it exists, is uniquely determined up to
 equivalence. Existence of the minimum can be proved as follows. For any factor F, let iIF
 denote the set of subsets of I of the form pI'1(M), where M is a subset of the set F. Then
 SiF is obviously an algebra of subsets of I, that is 4F includes the empty set and the set I,
 and is closed under the formation of intersections, unions and complements; sF can be
 characterized as the algebra spanned by the classes pl'(f) in the partitioning induced by
 F. Conversely, let si be an arbitrary algebra of subsets of I. A factor F with Si = sF can
 be constructed as follows; consider the atoms of 4, that is the minimal nonempty sets in
 4. These constitute a partitioning, and a factor F constructed by suitable labelling of the
 classes will obviously have sF = d.

 Hence, we have the one-to-one correspondence F*- dF between equivalence classes of
 factors and algebras of subsets of L This correspondence is order preserving, in the sense
 that

 F < G H 4F c AG*

 This means that the problem of constructing a minimum of two factors is equivalent to the
 problem of constructing the 'minimum' of two algebras under the usual ordering by
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 38 T. TJUR

 inclusion. But the solution to the latter problem is straightforward, since the intersection
 of two algebras is again an algebra. Hence, the minimum of two factors exists and is
 determined by

 =FAG = 4F G

 2.6 Two examples

 The proof of existence does not give much intuitive feeling for what the operation A
 really does. This is illustrated by the following two examples.

 Example 1. Let I = {1, 2 ... .,9}, and suppose we have two factors R = {rl, r2, r3} and
 C = {c1, c2, C3, c4), i.e. rows and columns, on 3 and 4 levels, respectively. Suppose that the
 allocation of units to R x C levels is as indicated by Table 1. Put H = RA C. From the

 relation H < R we conclude that p, is constant on rows; for example, for the first row,
 'PH(1) = 'PH(2) = (PH(3).

 Similarly, H < C means that ?(H is constant on columns, for example

 (PH(3) = 0PH(6).
 Continuing like this, we can easily show that Hp, must be constant, that is R A C = 0. Thus,
 a criterion for the property RA C= 0, which is sometimes called connectedness of the
 two-way table, is that we can move from any nonempty cell to any other in a finite
 sequence of jumps between nonempty cells within the same row or the same column.
 More generally, this relation between experimental units, that the two corresponding cells
 can be connected by such a sequence of vertical and horizontal jumps, is obviously an
 equivalence relation, and the partitioning of I into equivalence classes under this relation
 coincides with the partitioning induced by the minimum RA C. For example, if the last
 element 9 of I is removed, we will get a nontrivial minimum on two levels, corresponding
 to the partitioning into {1, 2, 3, 4, 5, 6} and {7, 8}.

 Table 1

 Allocation of units to R x C levels

 Columns

 Rows c1 c2 C3 C4

 r1 1,2 3
 r2 4,5 6 9
 r3 7, 8

 Example 2. Let F1,... , Fk be factors such that the product Fix . . . x Fk has n,... > 0 for all (f,--... ,fk) F x... x Fk. This means that we have a k-way table with all cell
 counts positive. For M {1,..., k}, Let

 F, = Fi
 jeM

 denote the cross-classification according to the factors Fi, je M. It is easy to show, then,
 that we have the rule

 FM1 AFM2= FMnM2.

 For example, in a three-way table A x B x C with all cell counts positive,

 (A xB)A(B xC) = B.
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 Analysis of Variance Models in Orthogonal Designs 39

 3 Factors: Linear structure

 In this and ? 4, we shall study the structure imposed by one or several factors on the
 observation space R'. Vectors in R' are regarded as Ix 1 matrices, i.e. column vectors,
 and linear mappings are identified with their matrices as usual; R' is equipped with the
 inner product

 (x I y) = x*y = Yi,
 ieI

 the asterisk denoting transposition, and the corresponding Euclidean norm is denoted

 Ilyll = (y I y).

 The Ix I identity matrix is denoted by I.

 3.1 Notation and some basic relations

 A factor q,: I F induces a linear mapping XF: RF R' defined by

 XF((af)) = (a,,) I EiC I).

 As a matrix, XF is the Ix F matrix with elements

 1 for qF(i) = f,
 (XF)i=0 otherwise.

 Tfie image of the linear mapping XF, which can also be characterized as the space of
 functions I -- R that are constant on the classes induced by F, is denoted

 L, = {XFa Ia ce RF}.

 Notice that dim LF = IFI. By P,: R' - R' we denote the orthogonal projection onto L,.
 According to well-known rules for least squares estimation in a one-way analysis of
 variance model, PF transforms a vector y by replacement of each co-ordinate y, with the
 average Yf of all observations on the same level f = p,(i). Hence, the Ix I matrix PF has
 elements

 (P) ={l/nf for qPF(i) = PF(2) =f,
 t 0 for qPF(il) (PF(i2).

 Notice the relation

 PF = nF1XFXF*, (3.1)

 which holds for any balanced factor F.
 The mapping F - LF is order preserving in the sense that

 F*< G => LF LG,

 and it preserves minima according to the rule

 LFAG = LF n LG.

 Indeed, the inclusion LFAG G LF n LG follows immediately from the order preservation
 property. The opposite inclusion follows if one thinks of a vector v = (v) e LF n LG as a
 factor with real numbers as levels; v e LF n LG means that this factor is coarser than both
 F and G, hence coarser than F A G, by definition of the minimum.
 Maxima are not preserved. It is easy to show that

 LFxG -- LF + LG,
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 40 T. TJUR

 but this inclusion is usually sharp. In a strictly mathematical sense, this is where the
 statistical concept of interaction comes in.

 3.2 Orthogonal factors

 As usual, two linear subspaces L1 and L2 of RI are said to be orthogonal if any vector
 in L, is orthogonal to any vector in L2. Here LI and L2 are called geometrically orthogonal

 if they satisfy the following (weaker) condition. Let LI = V ? VI and L2 = V ( V2 be the
 decompositions of L1 and L2 as direct orthogonal sums of V = L, n L2 and 'remainders'
 V1 = L n V' and V2 = L2n V'; then V1 and V2 are orthogonal.
 The term 'geometrically' is motivated by the fact that this kind of orthogonality is the
 one known from Euclidean geometry, where two planes in R3 may be 'orthogonal' in
 exactly this sense. Roughly speaking, geometric orthogonality means that the subspaces
 are orthogonal except that they may have a nontrivial intersection. The following lemma
 characterizes the concept in a way which is more convenient in the analysis of variance
 context.

 LEMMA 1. Subspaces L1 and L2 are geometrically orthogonal if and only if the corres-

 ponding orthogonal projections PI and P2 commute, that is P1P2 = P2P,.

 The proof is left to the reader, and so is the proof of the following useful result.

 LEMMA 2. Let L1,... , Lk be pairwise geometrically orthogonal, and let P1,. . . , Pk denote
 the corresponding orthogonal projections. Then P = P1...Pk is the orthogonal projection on

 L= Lln...nLk.

 Two factors F and G are said to be orthogonal, written F I G, if the corresponding
 subspaces LF and LG are geometrically orthogonal. Or, equivalently, if

 PFPG = PGPF. (3.2)

 The justification of the concept of orthogonality in relation to analysis of variance lies in
 formula (3.2), which, among other things, yields simple expressions for orthogonal
 projections on sums of subspaces generated by orthogonal factors. For the benefit of
 GENSTAT users, this can be illustrated by the way linear models with orthogonal terms are
 handled by the 'ANOVA' algorithm. Let F1,.. ., Fk be orthogonal factors, and consider the
 model specified by Ey LF1 +... .+ LF. According to Lemma 2, the vector of residuals in
 this model, i.e. the orthogonal projection of the data vector y on

 (LF,+ ...+LF)- = Ln ... L,
 is given by

 r = (I- PF) . (I- P(3.3)

 Indeed, if L, and LG are geometrically orthogonal, this formula follows immediately from
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 Lemma 2, since LF n LG = LFAG. Conversely, if (3.3) holds, we have in particular, since an
 orthogonal projection is symmetric,

 PFPG = (PFPG)* = PFP* = PGPF*

 Now, put H = FAG. For i1, i2 eI, we shall compute the (i1, i2)th element of the two
 matrices PFPG and PH. As to the first one, let f= pF(il) and g = PG(i2); then, with an
 obvious notation for indicator functions, we have

 (PFPG)ili2 = f fl{~n(i)=f}flg lG (i)=g} = fg/I(nfng).

 For the second matrix, we have

 (PHii n1 for qPH(il)= PH(i2)=h,
 S10 for PH(l) # PHU(i2).

 Now, in the case (PH(i1) # PH0(i2) we have obviously, as in the construction of the minimum
 in Example 1 of ? 2.6, nf, = 0, which means that the (il, i2)th element of both matrices is 0
 in this case. Hence, our condition for orthogonality results in Proposition 1.

 PROPOSITION 1. Factors F and G are orthogonal if and only if the relation

 nfgnh = nfng

 holds for all fE F, gE G and heH = FAG such that f and g are nested in h.

 For FAG = 0, this criterion simplifies to nfgII = nfng, which is the well-known condition
 of proportional cell counts. The condition in the general case states that this proportionality
 condition should hold for each of the subtables of the table (nfg) determined by the levels
 of FAG.

 3.3 Example: The balanced k-way table

 It follows from Proposition 1 that F and G are orthogonal if F x G is balanced. In that
 case, FAG = 0, obviously. More generally, let k factors F1, ... , Fk be given and assume
 that the cell counts nf,...fk of the k-way table F1 x.. . x Fk are all equal. It is then easy to
 show that any two factors, formed as products of some of the k factors, are orthogonal.
 This follows from Proposition 1; the rule for formation of minima of such factors is given
 in Example 2 of ? 2.6.

 4 Decomposition of the observation space with respect to an orthogonal design

 4.1 Orthogonal designs

 Our 'universe', when we make analysis of variance modelling for a given data set, is a
 set J of nonequivalent factors, which we shall refer to as the design. The idea is that Q
 should include all factors relevant for the model building, also the cross-classifications
 which are to occur as interaction terms in our models. For example, if data are arranged in
 a balanced k-way table, Q will typically consist of all (or almost all) possible products of
 the k 'main factors'.

 Throughout this paper, we make the following three assumptions.

 Assumption 1. The factor I ~ Q.
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 42 T. TJUR

 Assumption 2. Any two factors in 2 are orthogonal.

 Assumption 3. Set 2 is closed under the formation of minima.

 Notice that only Assumption 2 is really restrictive. The satisfaction of Assumptions 1
 and 3 is a matter of including the factor I and the missing minima, if any, and this
 extension will not destroy the orthogonality. However, in more complicted designs, the
 extension may introduce new factors without any statistical meaning. Such factors will be
 called pseudofactors.

 4.2 The decomposition induced by

 Our approach relies on the following main result.

 THEOREM 1. Under Assumptions 1, 2 and 3, we have a unique decomposition

 Gel

 of the observation space as a direct sum of orthogonal subspaces VG (G E .9), such that for
 any FE ~,

 LF= e VG.
 Gel
 G F

 Remarks. In the following, we shall frequently consider sums or direct sums taken over
 subsets of 2. For notational convenience, we omit the specification G E , writing, for

 example, the last identity of the theorem as L =(DG F VG.
 Since the proof of the theorem is somewhat technical, a few remarks may be of help

 here. It is well known that a set of orthogonal factors induces a decomposition of the
 observation space into orthogonal components. In Nelder's (1965, I) discussion of
 orthogonal block structures, these components are referred to as the strata subspaces.
 They can also be characterized (in this case) as the eigenspaces for the covariance matrix,
 and the corresponding orthogonal projections (constituting what Nelder calls a complete
 binary set) are the generators in the spectral representation of the relationship algebra of
 the design (James, 1957).
 However, the theorem says a little more; namely that there is a canonical way of

 labelling these subspaces by factors of the design, in such a way that the original
 projections P, are recovered as 'cumulated' projections on the components, and that this
 property characterizes the decomposition. This result, which generalizes results given by
 Nelder (1965) and Speed & Bailey (1982), depends crucially on the fact that 2 is closed
 under the formation of minima.

 Proof. Consider the trivial identity

 I= fI (PF+(I-PF)).
 Fe7

 Expanding this as a sum of products of terms PF and (I-P,), we get

 I= C QM,

 where for each subset M of Q the operator QM is defined as

 QM =(EFM ( FH ) M
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 As products of commuting orthogonal projections, these operators QM are again ortho-
 gonal projections. The corresponding subspaces VM are pairwise orthogonal, since
 (obviously)

 M1 M2= QM1QM = 0.

 Hence, the formula I= EMQM corresponds to a decomposition of R' as a direct orthogonal sum of 2c""d subspaces VM, one for each subset M of 2. However, many of
 these subspaces are trivial. Indeed, QM can only be different from 0 if (a) and (b) are
 satisfied.

 (a) If FeM and F<F', then
 F' E M.

 This follows because otherwise QM = 0 follows from the fact that the product of PF and
 I-PF, is 0 for F<F'. Moreover, if QM is to be nonzero, we must assume that the
 minimum G of all factors in M is itself an element of M, that is as follows.

 (b) Factor

 G = min F
 FeM

 belongs to M.

 This follows because otherwise the expression for QM contains the product of (I-PG)
 and Ie,,MPF = PG, which is 0. Thus, if we restrict our attention to nonvanishing terms
 of the decomposition, we need only take into account the subsets M of 2 satisfying (a)
 and (b). However, these sets M can be characterized in a simpler way. A set M satisfying
 (b) contains its own minimum, and if (a) is also satisfied, M must contain any factor finer
 than that minimum. Hence, the only sets M to be considered are those of the form

 MG = {FE 2 IG F},

 which means that we have now reduced to a decomposition into at most card ! nontrivial

 subspaces, R= VMS.
 For simplicity of notation, we write VG and QG instead of Vm and Qm in the following.

 Our next step is to show that this decomposition satisfies the condition of the theorem.
 We notice that

 PFQG = QG for G t<F,
 .0 otherwise.

 Hence,

 PF = PF( QG) PFQG QQG,
 Gec G G F

 or, equivalently,

 LF = 9 VG.
 GCF

 Finally, we must show that the decomposition constructed here is the only one satisfying
 the condition of the theorem. Suppose we had another, say

 R'=eVG or I= QG.
 G G
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 Let -0 c 9 denote the set of factors G for which Q0 # QG. We intend to show that o0 is empty. Suppose that 90 has an element Go. If Go is not the minimal element of 2, we
 conclude from

 E QG =PGo-QGo PGo-QG= G<Go G<Go

 that there must be some G strictly coarser than Go for which QG * QG. Thus, the set 90
 has the property that for any element which is not equal to F0o= min @, it has an element
 which is strictly coarser. From this, it is easy to conclude that Yo must either be empty or

 contain the minimal element F0. But F0 eo is impossible, since QFo= PF. and QFo = PFo-
 Thus, ~o is empty, and the theorem is proved.

 The names QG and VG will be standard notation in the following. Notice that we have
 now two families of orthogonal projections indexed by 2, the canonical projections PF on
 the factor spaces LF (depending on F only, not on the remaining factors of the design),
 and the projections QG on the subspaces VG given by the theorem. The connection
 between these families is

 PF= QG. G <F

 Conversely, QG can be expressed by the projections PF as follows.

 COROLLARY 1. The projection QG can be expressed as

 QG = PG H (PG -PF).
 F<G

 Proof. In the proof of the theorem, QG was constructed as

 QG =QMG = PF)( (I-PF))=PG H (I-PF) ;:G F-G FF G

 =PG (PG - PFAG) = PG (PG - PH).
 F4G H<G

 If desirable, an expression of QG as a linear combination

 QG a F
 = G aGP F

 can be obtained from Corollary 1 by straightforward applications of the distributive law
 and the rule PFPF, = PFF'. These computations are simplified if it is noticed that only the
 maximal factors F among those strictly coarser than G need to be included in the product
 HI (PG -PF), since terms (PG -PF') with F'< F < G are absorbed by (PG-PF) anyway.
 Similarly, the first term PG can be omitted if the product is nonempty, i.e. if G min 9.
 Notice also that aS # 0 only for F< G.

 It is easy to show that the 9 x 9 matrix (as) of integer coefficients can be characterized
 as the (transposed) inverse of the 9 x 9 matrix (1{GCF}). In the combinatorial theory of
 finite lattices, the function aG on x ~ is known as the M6ibius function (Speed &
 Bailey, 1982; Aigner, 1979). However, this characterization plays a secondary role in the
 present exposition. It is usually simpler to work directly with the expression of the P,'s as
 sums of QG's.

This content downloaded from 130.225.53.20 on Fri, 17 Mar 2017 11:09:38 UTC
All use subject to http://about.jstor.org/terms



 Analysis of Variance Models in Orthogonal Designs 45

 4.3 Example

 Consider a connected two-way table with proportional cell counts, that is R A C = 0 and
 R I C. We assume n, > 1 for some (r, c), that is I and R x C are not equivalent. Put
 9= {I, R x C, R, C, 0}. Then 9 satisfies the Assumptions 1, 2 and 3. The ordering

 I- R RxC 0

 Figure 1. Nestedness relations between the factors of example of ? 4.3.

 structure of 2 is given by Fig. 1. Applying Corollary 1 or solving the equations
 P, = GF QG directly, we obtain the following well-known formulae:

 Q1 = I- PRxC,

 QRXC = PRxC - PR - Pc + Po,
 QR = PR -Po,

 Qc = Pc - Po,
 Q0 = P0.

 Accordingly, the matrix

 0 1 -1 -1 1

 (a[) = 0 0 1 0 -1
 0 0 0 1 -1

 is the transposed inverse of

 10000

 (1~~GF)= 1 1 1 0 0

 5 The analysis of variance table and the factor structure diagram

 By the analysis of variance table for the data set y in the design 9 we mean a table

 which for each G e  gives the quantities dG = dim VG and SSDG = G1 QY 12. It should be
 emphasized that the analysis of variance table is not related to a particular statistical
 model. We are not talking about models yet. The analysis of variance table is a
 computational tool, containing the quantities relevant for hypothesis testing and variance
 component estimation in all analysis of variance models that can be stated in terms of
 factors from 2.

 5.1 Construction of the analysis of variance table

 Computationally, the analysis of variance table can be obtained as follows. Put
 ss, = II\\Psy2 (and notice that we distinguish between ss = sum of squares and SSD = sum of
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 squares of deviations). The quantities ssF are obtained as

 SSF = S/flf,
 feF

 where Sf denotes the sum of all observations on the level f of F. Let QG = XF F be the
 expression of QG as an integer linear combination of the projections PF. Then

 SSDG = IQGY?2 = y*QGY = F aGy*PF
 F

 = ajlljFyjjll2= aSSF.
 F F

 Thus, the sums of squares of deviations SSDG are obtained as linear combinations of the
 sums of squares ssF in exactly the same way as the projections QG are obtained as linear
 combinations of the projections PF. Similarly, the formula

 dG = tr QG = tr 2 aGPF = 2 aG tr PF
 F F

 = C ~ dim LF = 2 aljFI F F

 shows that the degrees of freedom dG can be obtained as linear combinations of the
 integers IFI in exactly the same manner.
 In concrete situations, it is not even necessary to compute the coefficients a F. The
 formulae for the SSDG'S constitute the solution to the equations

 SSF = SSDG,
 G -F

 and it is just as simple to work directly with these equations, solving them recursively as F
 varies from the coarsest factor (usually 0) to the finest (I). Similarly, degrees of freedom
 are obtained by solving

 IFI= 2 dG.
 G-<F

 This can be done by means of a factor structure diagram, like Fig. 1, holding the
 information about the nestedness relations between factors in 9. The following examples
 illustrate this method.

 5.2 Four examples

 The balanced two-way table. Suppose we have a two-way scheme R x C, for simplicity

 assumed to be balanced with cell counts nRxc >I 2. Let 9 consist of the factors occurring in Fig. 1. In order to compute the degrees of freedom dG, we write as a superscript to each
 factor the number of (effectively used) factor levels IFI and as a subscript the dimension dF
 of VF. Filling in the superscripts JFl first, it is easy to obtain the subscripts dF recursively,
 in each step computing dF as the difference between the corresponding superscript 0F and
 the sum of all subscripts to factors G strictly coarser than F. For example, for IR =4,
 Cl = 5 and Iil = 2 x 4 x 5 = 40, we get the picture given by Fig. 2a. The sums of squares of
 deviations are obtained similarly, using superscripts ss, and subscripts SSDF, and we obtain
 the analysis of variance table given as Table 2a.

 One-way classification (arbitrary group sizes). For an arbitrary factor F, we take
 S= {0, F, I}. The ordering structure is linear in this case, given by

 Ik-+ Fi1 --01 (n = II, k = Fl).
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 (a) (b)

 140 o Rx C20 O k2

 20 12 5 k'2-3k+2 ----* C., ---1-~*o 4 k
 Lk-1

 (c)

 - 30 AP-x B A0-- - B2

 1i A541
 Figure 2. Factor structure diagrams: (a) balanced two-wayiable; (b) Latin square of order k; (c) split-plot design.

 The analysis of variance table is given as Table 2b.
 Latin square of order k. A Latin square of order k can be described as a design of the

 form 2 = {0, R, C, L, I}, where R (rows), C (columns) and L (latin letter) are factors on k
 levels such that the three cross-classifications R x C, R x L and C x L are balanced and
 equivalent to L The factor structure diagram is given as Fig. 2b, the analysis of variance
 table as Table 2c.

 Split-plot design (Cochran & Cox, 1957, p. 293). Suppose that five treatments
 al, a2,... , a5 are applied to 15 plots, each treatment being applied to 3 plots. Each plot is
 divided into two subplots, to which the two further treatments b, and b2 are applied.
 Thus, the relevant factors are: I on 30 levels (subplots); P on 15 levels (plots);
 A = {al, a2, .., a5}; B = {b1, b2}; A xB on 10 levels. Adding 0 = AA B, we obtain a set 2
 of factors satisfying our conditions for an orthogonal design. The factor structure with

 Table 2

 Analysis of variance table

 (a) Balanced two-way table (b) One-way classification
 Degrees Degrees
 of Sum of squares of Sum of squares

 Factor freedom of deviations Factor freedom of deviations

 0 1 sso 0 1 sso
 C 4 ssc - sso F k - 1 ss-sso
 R 3 SSR - sso I n-k ssI - ss,
 Rx C 12 SSRxC - SSR - SSc +SSO
 I 20 ssI - SSRxC Sum n ssi

 Sum 40 ssi

 (c) Latin square of order k (d) Split-plot design
 Degrees Degrees
 of Sum of squares of Sum of squares

 Factor freedom of deviations Factor freedom of deviations

 0 1 sso 0 1 sso
 L k - 1 ssL - sso A 4 SSA - so
 C k - 1 ss - sso B 1 ssB - sso
 R k -1 ssR -sso P 10 SSP - SSA
 I k2 -3k +2 SSI - SSR - SS - SSL +2SS Ax B 4 SSAxB -SSA -BSS +SSO

 I 10 ssi - SSp - ssA B + SSA
 Sum k2 ss1

 Sum 30 ssi
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 degrees of freedom is given by Fig. 2c, and the analysis of variance table as Table 2d.
 We have ignored a factor 'replicate', dividing the 15 plots into 3 groups of 5.

 Depending on the concrete circumstances, this factor may or may not be relevant as a
 third level of blocking. The inclusion of it is left to the reader as an exercise.

 6 Linear models

 By a linear model we mean a model assuming that the data vector is (the realization of)
 a normally distributed random vector with covariance matrix oC2I and mean vector ti in a
 specified linear subspace L of R'. We shall restrict our attention to cases where the linear
 structure is given as an additive effect of factors from our design, that is

 L=Y Lr -_T--. TJ"

 Thus, a linear model is specified by a subset 3- of 9. However, different subsets of !@ may
 specify the same model. For instance, in the two-way design, the two sets {R, C} and
 {R, C, 0} represent the same model because LR + Lc = LR + Lc + L0.

 6.1 Model formulae

 We shall refer to the subset 3- of ! as the model formula. This is merely a notational
 convention, according to which we list the elements of 3- separated by pluses instead of
 commas and without the braces, { }. For example, we talk about the additivity model
 R + C in a two-way design. Notice, however, that we do not adopt more advanced model
 formula conventions (Wilkinson & Rogers, 1973), like distributivity of x over +, nesting
 operations, etc. A model formula in this text is nothing but a set of factors, written in this
 special way.

 6.2 Parameterizations of the mean

 The intuitive appeal of the model formula notation lies in the fact that it reflects the
 parametric representation of linear models. For example, the additivity model R + C can
 be stated as

 Ey =fLi = ar + 3P,

 if we subsume r = qR,(i), c = q c(i). Or, in vector notation, with a = (ar) e RR, 13 = ((3c) e Rc,

 I = XRa + Xc.

 More generally, there is an immediate one-to-one correspondence between model form-
 ulae and parameterizations of linear models, given by

 Notice that these parameterizations of the mean are usually not one-to-one. In fact, as
 soon as more than one term is involved, we have a nonidentifiability of parameters, since
 a constant may be added to the linear parameters of a first factor and subtracted from
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 those of a second, without changing the mean. We shall not discuss restrictions imposed
 on the parameters in order to make such parameterizations one-to-one. The noniden-
 tifiabilities are usually well justified in the applied context. For instance, in a two-way
 additive model R + C, the parameter functions of interest are typically differences be-
 tween row parameters, whereas absolute row levels are only meaningful in situations
 where vanishing (or random) column effect can be assumed. Similarly, estimation of a
 main effect in a two-way table is usually not meaningful in the presence of interaction.
 Constraints on parameters (like the usual assumption that summation of any model term
 over any of its indices should give zero) should be regarded merely as computational tools,
 if they have to be considered at all. We seem to be in agreement with Nelder (1977) on
 these matters.

 Notice also that we do not impose restrictions on the set 3T of terms in a model formula.
 For example, the interaction model in a two-way table can be written R x C, R x C + R,
 R x C+ R + C + 0, etc. These model formulae correspond to different parameterizations
 of the same model, each possessing its own rules for identifiability of contrasts. Some of
 these parameterizations may be of limited interest, but there seems to be no a priori
 reason for excluding them.

 6.3 Estimation of the variance

 By 3* we denote the set of factors Fe -9 such that F is marginal to (or equal to) some
 factor in 3t. One may think of V* as the maximal model formula, in the sense that VT*
 specifies the same model as 3-, but with the greatest possible number of redundant terms.
 By Theorem 1, we have

 L= L, '-= E( VG)G VG= E VG. Te- TO G-T G zT Ge Ge

 From this we conclude that the orthogonal projection P on L is given by

 P= 2 QG,
 GeT*

 while the residual operator, the orthogonal projection on L', is given by

 I-P= 2 QG.

 Accordingly, the residual sum of squares can be obtained from the analysis of variance
 table and the factor structure diagram as the sum of the SSDG for factors G which are not
 marginal to factors occurring in the model formula,

 SSDres = IY- Py2 = SSDG.
 Gea*

 The degrees of freedom for this residual sum of squares of deviations are obtained
 similarly as

 dres= C dG.

 By standard linear model theory, the variance O"2 should then be estimated by &2= SSDres/dres
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 6.4 Test for model reduction

 Let Vo c (-* be the maximal model formula for a reduced model -0o, and let SSDes and d0es denote the residual sum of squares of deviations and its degrees of freedom in this
 reduced model. By standard linear model theory, the likelihood ratio test for 3T0 against 2T
 is equivalent to the F test

 (SSDdes - SSDres)/(des - d res)

 F(dros - dres, dre) = 0d0 0 SSDres/dres

 All quantities in this expression are easily obtained from the analysis of variance table and

 the factor structure diagram. In particular, in the most important case where 3F* is
 obtained from V* be removal of a single factor T, the test for 'no T-effect' becomes

 SSDT/dT
 F(dr, dres) =SSresres

 SSDres/dres"

 6.5 Estimation of the linear parameters

 We shall restrict our attention to estimation of contrasts of the form aT,- a,, t', t"e T,
 T e T3. The first question posing itself is, of course, whether or not a given contrast of this
 form can be estimated at all. The answer to this question and the rule for estimation is
 given by the following theorem.

 THEOREM 2. Consider the model

 Ey = = R XTaTJ (aTeRT).
 TeT

 For t' and t" e To, Toe 3-, the following two conditions are equivalent:

 (i) the parameter function aTo- a o is estimable, that is it can be written as a function
 of i';

 (ii) for any other factor Te 2T, t' and t" are nested in the same level of ToA T.

 In case of estimability, the maximum likelihood estimate of this contrast is

 where Yo = S,o/n denotes the average of all observations on the level to of To. The variance
 on this estimate is (nF-?+ n-1)2.

 We illustrate by an example. In a balanced three-way scheme A X B x C, consider the

 model A x B + B x C, co-ordinatewise parameterized as jit = aab +3bc. A contrast of the form a'b' - aa"b" is estimable if and only if (a', b') and (a", b") are nested in the same level
 of (Ax B) A (B x C)= B; this means that the contrast is estimable if and only if b' = b".

 Proof. First assume that (ii) is satisfied, and define v e R' by

 = -1/nt for PTo(i) =t,
 0 otherwise.

 Notice that v*y = - 5,. The vector v belongs to LTo, because vi as a function of i is
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 constant on the classes determined by To. For any other factor TE , we have

 PTV = PTPTV = PT^ToV = 0,

 because condition (ii) implies that the two classes p--(t') and --1(t") are contained in the same To^ T class, from which it follows that averaging vi over an arbitrary To^ T class
 gives 0. Hence, the linear functional v* vanishes on the subspace L, for T# To. From this
 we conclude that

 v*(I) = V*( XTa) = v*XTO o = ato -a T

 This means that our contrast is a function of ti. The maximum likelihood estimate is given
 by

 v*L = v*Py = (Pv)*y = v*y = y 0- y,.

 The calculation of the variance on this estimate is straightforward. It remains to be shown
 that (i) implies (ii). Suppose that (ii) is not satisfied, that is, there exists a factor T e (T such

 that t' and t" are on different levels of To^ T. Put H = To^ T, and let h' and h" denote the
 corresponding levels of H. Let M' and Mo denote the subsets of T and To, respectively, of
 factor levels nested in the level h' of H. Now, suppose that the corresponding parameter

 vectors aT and aTo are modified by the addition of a constant AX= 0 to acT for teM' and
 the subtraction of that same constant from aTo for to e Mo. This will leave the mean tI
 unchanged, while the contrast ao - at decreases by A. From this we conclude that the
 contrast is not estimable.

 7 Variance component models

 By a variance component model in the design we mean a model of the form

 y = C Xa' + C O XSUS,

 where 3- and A are subsets of !, aT = (aT) E R' (Te 3) and arB >0 (B e A) are unknown
 parameters, and uB = (u') RB (B e ) denote independent, normalized normally distri-
 buted vectors.

 Co-ordinatewise, we can write this model as

 S T+ Yi at+ C rBu , Teg" B G3

 subsuming t = 'PT(i) and b = PB (i). The idea is that the observation yi is assumed to come
 out as a sum of fixed effects a T (Te =) and random effects OrBuu (B Ee ). The variance on
 a single observation yi is

 var(yi)= C o',
 and the parameters o-E are, accordingly, called variance components.

 Alternatively, we may specify the model by mean and covariance matrix of the data set
 y. We have

 Ey = = X,=C, cov (y)= C U *XBXX. TE~ J ~
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 7.1 An example

 Suppose we have a balanced two-way table R x C with nRxc ~2, and put 9 =
 {0, R, C, R x C, I}. Consider the variance component model given by

 ={R, C}, A = {R Rx C, I}.

 Co-ordinatewise, this model can be written

 Yi = a, + 3c + Vc + oau,

 where a, and 13 are the row and column parameters, respectively, w2 and Ur2 the variance components, and v, and uN ((r, c)E R x C, i e I) are independent random variables, nor-
 mally distributed with mean 0 and variance 1. This is the two-way additive model with
 random interaction, frequently referred to as the justification for fitting an additive model
 to the cell averages in situations where the interaction is too large to be ignored against
 the intracell variation.

 7.2 Model formulae

 A variance component model is specified by the two subsets 3- and A of !. We shall
 condense this information in a single model formula, adopting the convention that random
 factors should be in brackets. Thus, the two-way additive model with random interaction
 is written

 R + C+[Rx C + I],

 and the general idea is to write + [A]. Notice that linear models are variance compo-
 nent models with A = {I}, and that our conventions for model formulae are consistent
 with those introduced in ? 6.1 if an error term '+ [I]' is subsumed. These ideas will be
 familiar to GENSTAT users (the model formulae 3- and A are simply those occurring in the
 'TREATMENTS' and 'BLOCKS' directives).

 7.3 Assumptions

 As in our discussion of linear models, 3T is an arbitrary subset of our orthogonal design
 9. However, A is assumed to satisfy the following conditions.

 Condition 1. Assume Ie a.

 Condition 2. All factors in A are balanced.

 Condition 3. Assume A is closed under the formation of minima.

 Condition 4. The matrices XBX* are linearly independent.

 Condition 1 means that an 'error term', taking care of the random variation between
 experimental units, should be present in the model. In practice, this condition seems to be
 unrestrictive.

 Condition 2 is obviously restrictive, but indispensable. It is well known that even for the
 simplest model, a one-way model with random variation between groups, a satisfactory
 solution of the unbalanced case requires a technique going far beyond classical analysis of
 variance methods. The immediate reason for this is that formula (3.1), which, as we shall
 see, establishes the link between the variance components and the spectral decomposition
 of the covariance matrix, is only valid for balanced factors.

 Similarly, Condition 3 is necessary for an algebraically nice solution, and somewhat
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 restrictive. The treatment of variance component models not satisfying Condition 3 can,
 to some extent, be based on the extension to a larger model (including some random
 'pseudo' factors) satisfying Condition 3. The simplest example is the two-way model
 0 + [R + C + I] with both main effects random. Extension to 0 + [0 + R + C + I] yields
 simple and relatively well-behaved estimates of the variance components. However, these
 estimates may correspond to a covariance matrix (in the original model) which is not
 positively definite. In particular, the estimated variance on the grand mean y may come
 out negative.

 Condition 4 ensures identifiability of the variance components; compare with the
 parameterization of cov (y). Linear dependence seems to occur only in pathological
 situations (the simplest example is a Latin square of order 2, with the three 'main' factors
 and I as random).

 Notice that we do not make explicit assumptions against nonestimability of variance
 components due to confounding with fixed effects. Obviously, a variance component o-
 can not be estimated if 3T contains a factor finer than B. The similar problem for linear
 models occurs when L = R', with zero degrees of freedom left for the residual. Formally,
 it is an advantage not to exclude models with such nonestimable variance components, see
 the above remarks on the model 0 + [0?+ R + C + I], where oCF is nonestimable in exactly
 this sense. However, some of our later results on estimation and hypothesis testing are
 based on the (subsumed) assumption that the degrees of freedom involved are strictly
 positive.

 7.4 The null analysis of variance

 The set A of random factors satisfies, in particular, Assumptions 1, 2 and 3 in ? 4.1 for
 an orthogonal design. Hence, by Theorem 1, induces a decomposition of R' similar to
 that induced by !. In order to distinguish, components of this new decomposition will be
 equipped with the superscript 0. Thus,

 B e

 is the decomposition induced by A. Or, in terms of orthogonal projections,

 B e

 Sums of squares of deviations and their degrees of freedom are similarly denoted by

 SSD = jiQyll2, d? = dim V?.

 The condensed analysis of variance table, giving for each B e the quantities SSD? and
 dl, corresponds to what Nelder (1.965) calls the null analysis of variance, the analysis
 without treatment structure. The components of the decomposition after A are called
 error strata.

 The decomposition induced by 2 is coarser than that induced by the whole design 9, in
 the sense that each V? is a direct sum of some of the subspaces VG (Ge p2). We say that

 the factor G belongs to B-stratum if VG _ V?. The rule for allocation of factors to strata follows from the following proposition

 PROPOSITION 2. We have

 vo= e VG,
 G EB
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 where ,B consists of those factors G e - for which B is the coarsest random factor finer than
 G, that is

 Bd = GGe IBn= minB'
 GaB'

 Thus, the rule for allocation to strata by means of the factor structure diagram is that a
 factor G belongs to the stratum of the coarsest random factor finer than G. Notice that
 the decomposition after ! may have components VG Of dimension zero; such factors G
 are assigned to any stratum according to the rule VG c V?, while the proposition assigns
 G uniquely to a single stratum. However, the allocation of such factors to strata is
 irrelevant for the analysis. The corresponding lines of the analysis of variance table can
 simply be deleted.

 Proof. Define a mapping S: 9 - ->A by

 S(G) = min B'.
 GBB'

 Then 2B = S-I(B), and the sets !B are seen to form a partitioning of 2. Moreover, for
 any fixed Bo = A, we have

 G < B0 < S(G) Bo0.

 Indeed, Bo is finer than G if and only if B0 is finer than the coarsest factor in A which is
 finer than G. Now, the set of factors G satisfying this can be rewritten as follows:

 {G E( I S(G)<; Bo}= S-1({B eI I B <B0})
 = U S-'(B)= U 2B.
 Be!9 Be9A

 B -Bo B BBo

 This means that the set of factors Ge (=! coarser than a given random factor B0 equals the
 (disjoint) union of the sets 2B for B < B0. Now define

 WB = O VG
 GEa] GEB

 Obviously, these subspaces constitute a decomposition of R' as a direct sum of orthogonal
 subspaces, formed by collapse of the subspaces VG according to the partitioning 2 =
 U 2B. From what was shown above, we conclude that

 LEBo = VG= (EvG)=G W.
 GE9 BEA \GEaB BE~ a
 GeBo B Bo B Bo

 Hence, the decomposition R' = 0 W? satisfies the condition of Theorem 1, for the
 decomposition with respect to 2. Since this condition was shown to characterize the
 decomposition uniquely, we must have

 v=wo= G VG,
 GEB

 which concludes the proof.
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 7.5 The spectral decomposition of the covariance matrix

 PROPOSITION 3. The two sets of matrices

 {XBX I BEc }, {QB lB c}

 span the same linear subspace of RI

 Proof. It sufficies to show that any of the matrices XBX can be written as a linear
 combination of the matrices QO, and vice versa. Since the random factors are assumed to
 be balanced, we have, see formula (3.1)

 XBX = nBPB = nB QB.
 B',e
 B'<B

 Conversely, by the remarks following Corollary 1 in ? 4.2, we have an expression

 =QO 1 b ~ B '= b'nXB,XB.,
 B',EG B'eB

 with integer coefficients b ', corresponding to the coefficients aG of ? 4.2.
 It follows from Proposition 3 that we have an alternative parametrization of the

 covariance matrix as

 cov (y)= 1 ABQB,

 where the new parameters XB (Be c) are the eigenvalues of the covariance matrix
 corresponding to the eigenspaces V?. The explicit solution of the variance component
 model is based on this parameterization, which relies heavily on our Conditions 1-4. In
 particular, Condition 3, which was noticed by Jensen (1979) in the case of balanced
 k-factor designs, is essential. Szatrowski & Miller (1980) give a similar condition. There
 they give the criterion for existence of explicit maximum likelihood estimates that the
 set of all co-ordinatewise products of columns of the 1 x {0, F1,..., Fk} matrix ((1{F-B}))
 has exactly card 1 elements, but that they do not acknowledge Jensen's (equivalent)
 condition that the set of rows of this matrix is closed under co-ordinatewise multiplication.

 The connection between the two parameterizations is obtained as follows:

 kB'QB' =2B : (Be b nB'XBXB) B n'( b'XB')XBXB; B'B'3 BE! BE!3 BIE13

 that is

 .2 -n' 1 b'AB,', (7.1)
 where the coefficents b", are determined by QL, = ZB b',PB. And

 Be~A BeA BeA B'e B'e( B
 B'<B B'<B

 that is

 XB' C nlBU2. (7.2)
 B'EB
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 7.6 Negative variance components

 Our discussion of the parameterization of the covariance matrix by its eigenvalues hB
 ignores the problem of specifying the domain of variation for these new parameters.
 Proposition 3 gives an identity between the linear spaces spanned by two sets of matrices,
 but the corresponding cones of nonnegative linear combinations are usually not identical.
 Formula (7.2) expressing AB as a linear combination of the variance components shows
 that nonnegative variance components imply nonnegative eigenvalues, but the converse is
 not always true. This leads to a well-known problem of 'negative variance components',
 which can be explained as follows. A nice solution to the model is only available when the
 parameters are allowed to vary freely in their maximal domain, given by AB > 0. But this
 may lead to negative estimates for some of the variance components. We shall not discuss
 formal procedures for estimation of the variance components in their original domain
 cr2 I>0. In practice, this seems to be a secondary problem. The interpretation of a negative
 variance component Uo2 is that correlations between observations in the same B class are
 smaller than correlations between observations in different B classes, all other random
 factor levels kept fixed. This phenomenon is explainable in some applied contexts, and in
 some it is not. Quite often, the occurrence of a negative variance component estimate can
 be taken as a welcome opportunity to simplify the model by removal of the corresponding
 variance component. Of course, a significantly negative estimate of a variance component,
 which should be positive, will always be a problem. But the immediate conclusion in this
 case seems to be that the model fails to describe data, rather than that a more sophisticated
 estimation procedure is required. See Nelder (1954) and Searle (1971) for more careful
 discussions of these matters. In the following, we will simply ignore this problem and work

 with the extended model given by AB >0.

 7.7 Solving the variance component model

 The basic, and classical, observation behind the solution to the variance component
 model in the 'balanced' case (i.e. under the conditions assumed here) is that the
 decomposition according to 3A decomposes the data vector y as a sum of stochastically
 independent components Qgy, one in each error stratum, and that each of these
 components is described by its own linear model. Indeed, the data components Q~y are
 easily seen to be independent, normally distributed with means,

 RB = E(Q\y) = QO(Ey) = QO'(tL),

 and covariance matrices,

 cov (Q'y) = XB QB.

 The parameters ILB and AB of the distribution of Q~y are functionally independent of
 those describing the distributions of the remaining data components. Thus, estimation in
 the original model reduces to estimation in each stratum of the parameters nLB and AB.
 This is straightforward, because the model for Q~y is essentially, i.e. in a co-ordinate-free
 sense, an ordinary linear model with data space V?. The covariance matrix hBQB is a
 constant XB times the 'identity' Qo on V?, and 11B varies in the linear subspace L n V?,

 for L = ZTer Lr. The orthogonal projection onto this space is PQo, for P = the orthogonal
 projection on L, as usual, since L and V? are geomtrically orthogonal. Estimating as usual
 in a linear model, we obtain the estimates I^,B = PQgy and, provided that dim V?>
 dim (L n V),

 XB = IIQgy-PQgyll2/(dim V - dim (L n V?)).
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 The estimates ^IB are recombined to

 R IB =-PY,

 which is recognized as the estimate for the mean in a linear model specified by 3.
 The estimates XB can be computed from the analysis of variance table and the factor

 structure diagram as follows. We have

 P= X QG,
 Ge *

 where T* is defined in ? 6.3, and

 QO= QG
 G E QB

 where dB is defined in Proposition 2. Thus, the residual operator for our linear model in
 B stratum is

 Q - PQ = X QG,
 G e ?B \3-*

 and the residual sum of squares in B stratum is, accordingly,

 IQy- PQyjI2 = SSDG.

 Applying the analogous rules for computation of degrees of freedom, we get

 IB = X SSDG/X dG,

 where both sums are to be taken over G-e 2B \ *, that is over all factors G in B stratum
 which are not in 3- and not marginal to factors in 3T. Very often, at least for the initial
 model in a statistical analysis, this set consists of B only, in which case we have the
 simpler formula

 XB = SSDBIdB.

 7.8 Estimation of the variance components

 Estimates U6 are immediately obtained from the estimates ^B by means of (7.1) or
 (7.2). With reference to the literature on general variance component models, these are
 the restricted maximum likelihood (REML) estimates, without the variance component
 constraint crB :0. Notice that these estimates are usually not X2 distributed, except a.,
 which is always equal to ^X. In particular, some of them may be negative. However, the
 moments of &2 are not difficult to obtain, and various methods for construction of
 confidence limits exist (Scheffe, 1959; Searle, 1971).

 7.9 Hypothesis testing: Treatment structure

 Let ~0 be a subset of T specifying a reduced model To + [ ]. we assume c* _ 7* and,
 accordingly, Lo L, where Lo = ZTeJo LT. In order to obtain an ordinary F test for the model reduction
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 we must assume that the corresponding square sum of deviations

 IJPy- PoYlI2 = Y SSDG,
 Ge cT*\*30

 for PO equal to the orthogonal projection on Lo, consists of contributions from a single

 stratum Bo only, that is F* \ o W cB0o. Notice that this condition is automatically satisfied in the frequently occuring case where T* is obtained from T* by removal of a single
 factor.

 Under this condition, the model reduction can be regarded as a reduction of the linear

 model for the data component Q~oy, while the models for the remaining data components
 are left unchanged. Accordingly, the likelihood ratio test takes the form of an ordinary F
 test for reduction of the linear model in Bo stratum,

 C1 SSDGj1 dG

 F(,1 dG, X2 dG)= E, SSDG/EI dG Z2 SSDG/E2 dG

 where El stands for summation over Ge *\ 0 and E2 for summation over Ge YB0o\T*. The rules for inclusion of terms in nominator and denominator are exactly as in
 the test for reduction of a linear model, see ? 6.4, except that only factors from Bo stratum
 should be taken into account. Usually, when forming the analysis of variance table to
 analyse a variance component model, it is convenient to arrange the lines in such a way
 that strata are collected as subtables, as in output from the GENSTAT 'ANOVA' algorithm.
 Under this convention, tests for reduction of linear structure are carried out exactly as in
 the case of a linear model, on the basis of the relevant subtable and the factor structure
 diagram.

 In more complicated situations, it is sometimes desirable to test reductions of linear
 structure which do not take place in a single error stratum. This happens, typically, when a
 partial confounding of a treatment factor T with a blocking B induces a nontrivial
 minimum B A T. Removal of T from the model formula in this case implies removal of T
 and the pseudofactor B A T from the maximal model formula 3*. Formally, this corres-
 ponds to simultaneous reduction of linear models for separate data sets, and there seems
 to be no standard way of doing it. The immediate thing to do is to perform the relevant F
 test in each of the strata involved. If no decisive conclusion comes out of this, some kind
 of weighted test statistic (e.g. the likelihood ratio), summarizing the information from
 different strata, may be considered.

 7.10 Hypothesis testing: Block structure

 We shall restrict our attention to model reductions of the form 3-+[13]-- +[o[34],
 where 3o is obtained from A by removal of a single factor B. Thus, in parametric terms,
 we are considering the hypothesis ri = 0.

 In order to derive an explicit test, we must assume that 0o, as well as A, satisfies
 Conditions 1-4 of ? 7.3. This means that the 'measurement error' I must not be removed,

 and that 2o should again be closed under the formation of minima; Conditions 2 and 4
 are automatically carried over from 2 to ,0. Closedness under minima is satisfied by /o
 if and only if the minimum Bo of all factors B' e 2o which are finer than B is distinct from
 B, that is

 Bo = min B' y B. (7.3)
 B' ~oB'

 Indeed, if this condition is satisfied, we can obviously not have B' A B"= B for factors B'
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 and B" e (3o, which means that B' A B" must be among the factors left in 34o. Conversely,
 if (7.3) was not satisfied, we would have a collection of factors from 13o, namely those
 finer than B, possessing a minimum not in 340.

 Under this condition (7.3), we have

 AB = nBaB + XBo-

 This follows from (7.2), if we note that the expression for AB differs from the expression

 for XBo only by the occurrence of the term nBr3V. Hence, the hypothesis a2= 0 is
 equivalent to AB = ABo. Recalling our interpretation of the model as a product of models
 for the data components Qoy, this hypothesis is formally equivalent to a hypothesis stating
 that two linear models for separate, independent data sets have the same variance. The
 usual procedure for test of this is the comparison of the two variance estimates by a
 two-sided F test on their ratio, that is

 F(d, do)= AB/IBo,

 where d and do are the degrees of freedom occurring in the denominators of the

 expressions for XB and Bo-. Large values of this test statistic indicate XB > XBo, or oB> 0. Small values indicate that ag is negative. Hence, the test should be carried out as two
 sided when negative values of or- are to be taken into account. Apart from this, the test is
 formally equivalent to a test for reduction of treatment structure, namely the test in Bo
 stratum for

 3+ + [!3+ -> 3+ [o3]

 7.11 Estimation of contrasts

 It was shown in ? 7.7 that the maximum likelihood estimate of the mean coincides with

 that in the linear model specified by 3T. In particular, a contrast of the form at-a,-
 (T e cT, t', t"E T) should be estimated as in the linear model, by the difference between the
 corresponding averages. Obviously, the rules for estimability of contrasts are also as in the
 linear model, so it remains only to give the formula for the variance of an estimated
 contrast as follows.

 PRoposrrIoN 4. Let ao- aTTo be an estimable contrast, that is t' and t" are nested in the
 same level of TA To for any other Te 37. Then the estimate t- 5, has the variance

 BE i

 where

 S= for t', t" nested in same level of ToA B

 =nh- + nJ for t', t" nested in distinct levels h', h" of H = To ^ B.

 Proof. Let v e R' be defined, as in the proof of Theorem 2, by v'y = ;- t. Since
 ve LTo, we have

 var (v*y) = vcov (y)v = v* ge XBX)v

 = h nBnow vPBv= s nBatoVPToPBPTov= nBOt tIIPTothB o a2 BI Be Be

 The proposition follows if we can show that IIPTo^B V12 = CB. If we note that the operator
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 PTo^B replaces each vi by the average over the corresponding To^B class, this is a matter of straightforward computations which are left to the reader.

 PROPOSITION 5. Suppose that To belongs to B0 stratum and that t' and t" are nested in the

 same level of To A B for any random factor B which is strictly coarser than Bo. Then

 var (Y,o- Yt;) = (n- + n; 1)ABo-
 Proof. Under these assumptions, we obviously have vE VBo, see the proof of Proposi-
 tion 4, since v e LBO but PBV = 0 for B <Bo, B Ec . Hence

 var (5,k- 55) = v* cov (y)v= v* (B AB Q)v
 = AXBV*QoV = A olBlVl2 = o XB(nt r1 nt-.

 Contrasts satisfying the condition of Proposition 5 are called estimable in a single
 stratum, namely B0 stratum. For such contrasts, and only for such contrasts, can the
 pairwise comparison of the levels t' and t" be performed as an exact t test, since the

 estimated variance on ,5- A, is X2 distributed.

 8 Two examples

 8.1 The split-plot experiment

 In the split-plot design of the example in ? 5.2, consider the model A x B + [P + I]; or,
 in parametric terms,

 Yi = Tab + WoVp + o'Ui.

 Proposition 2 in ? 7.4 and the factor structure diagram, Fig. 2c, gives the allocation of
 factors to strata:

 .. = {I, A XB, B}, ~, = {P, A, 0},

 reflecting the facts that A contrasts in an additive model A + B + [P+ I] should be
 estimated from plot totals, while the estimation of B contrasts and the test for A x B
 interaction is based on differences within plots. The analysis of variance table, arranged by
 strata, is given as Table 3.

 The estimated eigenvalues of the covariance matrix are, see ? 7.7,

 AX = SSD./10, Ap = SSDp/10.

 Estimates for the two variance components are obtained as the solutions to (7.2) with the

 Table 3

 Analysis of variance table for the split-plot example

 Degrees
 of Sums of squares

 Stratum Factor freedom of deviations

 P 0 1 sso
 A 4 SSA - SSo
 P 10 SSP - SSA

 I B 1 SSB -sso
 Ax B 4 SSA xB - SSA - SSB + SSo

 I 10 SSr - SSP - SSAXB + SSA
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 estimated eigenvalues inserted:

 ^I=6 2, X p=2V2+2,
 giving

 ^ 2 = S = SSDd/10, 2 = (p - ^X)/2 = (SSDp - SSD1)/20.

 Notice that t2 may be negative.
 The test for w2 = 0 is, see ? 7.10,

 F(10, 10) = (ssD/10)/(ssD/10).

 If (2 = 0, the two strata collapse, and we are left with an ordinary 5 x 2 scheme with 3
 observations per cell. However, we shall assume that this hypothesis is rejected or not
 considered at all, i.e. the division into plots is assumed to be relevant. In this case, the test
 for interaction, i.e. the reduction

 A x B + [P + I] -- A + B + [P + I],

 is performed in I stratum, see ? 7.9, by

 F(4, 10) = (SSDAXB/4)/(SSDI/10).

 If this model reduction is accepted, we are left with an additive model, Tab = a, + 3b, with
 the main effect of B in I stratum and the main effect of A in P stratum. The tests for main

 effects are

 F(1, 14) = (SSDB/1)/((SSD, + SSDAxB)/14)),

 F(4, 10) = (SSDA/4)/(SSDp/10).

 The estimation of contrast variances is straightforward in this case, by Proposition 5.
 However, suppose that additivity cannot be accepted. For illustrative purposes, we may

 even consider the situation where the product structure of the treatment factor T = A x B
 is irrelevant, the experiment being designed for comparison of ITI= 10 different treat-
 ments, arbitrarily arranged in 5 pairs, each pair being applied to the pair of subplots of 3
 plots. The relevant factors in this case are I, P, T and 0, but Assumption 3 in ? 4.1 forces
 us to include the pseudofactor PA T (= A above) on 5 levels, reflecting the partial
 confounding of treatments with plots. Thus, we take

 ~ = {I, P, T, PA T, O}

 and obtain the factor structure diagram given as Fig. 3. This diagram is the same as that of
 Fig. 2c except that the factor B has been removed and the degrees of freedom have been
 changed accordingly. Random factors are in brackets to simplify the allocation of factors
 to strata. The analysis of variance table is given as Table 4.

 The test for overall treatment effect provides an example of a test which does not take
 place in a single stratum, see ? 7.9. Indeed, the model reduction T + [P + I] - 0 + [P + I]
 corresponds to the removal of two factors T and P A T from the maximal model formula

 []3 0A T5o

 ra1[P];I15 ol---- 0

 Figure 3. Factor structure diagram of the modified split-plot example.
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 Table 4

 Modified analysis of variance table for the split-plot
 example

 Degrees
 of Sum of squares

 Stratum Factor freedom of deviations

 P 0 1 sso .
 PAT 4 SSPAT - SSO
 P 10 SSp - SSpAT

 I T 5 SST - SSPAT
 I 10 SSI - SSP - SST + SSPAT

 f*= T+P A T +0, and these are not in the same stratum. The two F tests are

 F(5, 10) = (SSDT/5)/(SSDI/10)

 testing in I stratum for differences between treatments within pairs, and

 F(4, 10) = (SSDpAT/4)/(SSDp/10)

 testing in P stratum for differences between pair totals.
 Accordingly, certain contrasts are not estimable in a single stratum. For treatments in

 the same pair, we have, by Proposition 5 since t' and t" are on the same level of PAT in
 this case,

 var (,,- ,,) = A(3-1+ 3-1) = 2o-2/3;

 but for t' and t" not in the same pair, we must apply Proposition 4, obtaining

 var (y,, - ,,,) = 2(6-1 + 6-1)o2 + (3-1+ 3-1)o2 = 2(wo2 + U2)/3.

 8.2 Three replicates of a complete 2' factorial in blocks of four (Cochran & Cox, 1957,
 p. 183; Federer, 1955, p. 233)

 The eight combinations of three dichotomous treatment factors

 A = {ao, al}, B = {b0, bi}, C = {co, c,)

 are applied to 24 plots, divided into six blocks of four plots, as follows, after randomized
 labelling of blocks and plots within blocks:

 Blocks 1, 3 and 5: aobocl aobxco alboco alblcl

 Blocks 2, 4 and 6: aoboco aoblcl aiboc, albco.

 The rule is that treatment combinations with an odd/even sum of indices occur in
 odd/even numbered blocks. We denote the blocking by P = {1,..., 6}, since the symbol B
 is reserved for one of the treatment factors. The relevant factors are: I (plots) on 24
 levels; P (blocks) on 6 levels; A x B x C on 8 levels; A x B, A x C and B x C on 4 levels;
 A, B and C on 2 levels; 0 on 1 level. There is also a pseudofactor PA (Ax B x C) on 2
 levels, reflecting the classification of experimental units by parity of the block number.

 The factor structure diagram is given as Fig. 4 and the analysis of variance table as
 Table 5, arranged according to the covariance structure 9 = {I, P}. We shall not discuss
 the statistical analysis in detail. Notice, however, that SSDAXBXc=0, since dAXBXc=0,
 while the usual square sum for three-factor interaction in a 23 table occurs in P stratum as
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 AxB 8'
 I >

 [I] - ---AxBxC ----- AxC 8

 BxCf 2

 [P]4 - a (AXBXC)AP2

 Figure 4. Factor structure diagram of the 23 example.

 SSDPA(AXBXC). This represents a characteristic feature of 2" designs with orthogonal
 blockings, where the role of the pseudofactors is merely to keep track of the allocation of
 main effects and interactions to strata. Model reductions taking place in several strata
 simultaneously do not occur here, since all the relevant model reductions are of dimension
 one. In the present example, the occurrence of the nontrivial minimum P A (Ax B x C)
 reflects the confounding of the three-factor interaction with blocks. Thus, the test for
 three-factor interaction takes place in P stratum, while two-factor interactions and main
 effects are tested for in I stratum.

 Table 5

 Analysis of variance table for the 23 design

 Degrees
 of Sum of squares

 Stratum Factor freedom of deviations

 P 0 1 sso
 PA(Ax B x C) 1 SSPA(A xB xC)- SSO

 P 4 SSP - SSPA(A xB xC)
 A 1 SSA - SSO
 B 1 SSB - SSO
 C 1 ssc - sso

 Ax B 1 SSA xB - SSA - SSB + SS
 Ax C 1 SSA xC - SSA - SSC + SS
 BxC 1 SSB xc - SSB - ssc + ssO

 A B x C 0 O= (SSAxBxC - SSAxB --SSAxC --SSBxC SA
 SSSB + SSC - SS) - (SPA(Ax B xC)- SSO)

 I 12 SSI - SSA xB xC- SSP + SSPA(A xB xC)

 9 Some suggestions for further research

 9.1 Computational aspects

 As a computational tool, the theory of the present paper can be regarded as a unified
 way of deriving the formulae needed for classical desk calculator methods in the
 orthogonal case. It is tempting (at least for the author) to consider its potential ability as a
 computer algorithm also. Factor structure diagrams could easily be stored as binary .? x 9
 matrices, and optional checks for orthogonality, nestedness and missing minima should
 also be within the limits of relatively straightforward combinatorial programming. In
 practice, however, this work is not likely to be worth the trouble. The gain in space and
 computing time over the GENSTAT 'ANOVA' algorithm would hardly be significant, and the
 need for auxiliary facilities (such as replacement of missing values, covariance analysis and
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 general data structure manipulations) makes the idea of an isolated 'orthogonal ANOVA
 package' rather unrealistic.

 9.2 Group generated designs

 Most orthogonal designs are constructed, or can be constructed, in such a way that the
 set I of experimental units has a commutative group structure, under which the factors of
 the design can be regarded as homomorphisms 9PF into other groups F. Such factors are
 balanced if and only if they are surjective as mappings. Any two such factors are
 orthogonal, and there is a simple interpretation of their minimum. A detailed study of
 these designs in relation to the theory presented here might be of some interest. A
 potential aspect of this would be the algebraic rules for aliasing and confounding in
 fractionally replicated 2" designs, and their more complicated counterparts for 3" designs,
 etc.; see the 23 example of ? 8.

 9.3 Generally balanced designs

 We have called our approach 'combinatorial' because linear estimates and sums of
 squares of deviations come out as linear combinations of sums Sf or square sums ssF with
 combinatorial coefficients, i.e. coefficients given in terms of the factor structure diagram,
 the cell counts nf and the level counts IFI. A similar approach for the wider class of
 generally balanced designs (Nelder, 1965) is not available. The class is known to include
 balanced incomplete block designs, certain partially balanced incomplete block designs
 (provided that suitable 'pseudofactors' are included in the design) and some other designs
 with nice combinatorial properties. But an exhaustive characterization of these designs by
 their combinatorial properties seems not to exist. Such a characterization could throw new
 light on the ideas behind the GENSTAT 'ANOVA' algorithm, and might even yield a simpler
 'desk calculator algorithm' for these designs. However, this theory is bound to be much
 more complicated than the theory for orthogonal designs. Even the rules for computation
 of degrees of freedom would have to be modified. Three nonorthogonal factors F, G and
 H with FAG=GA H= FA H= 0 may be 'confounded' in the sense that

 dim (LF + LG + LH) < IFI + IGI + IHI- 2,

 which means that the algorithm of ? 5 for computation of degrees of freedom does not
 always hold for nonorthogonal designs. The step from orthogonal designs to generally
 balanced designs corresponds, in a sense, to a generalization from commutative algebras
 to certain noncommutative algebras. The counterpart to our Theorem 1 should, in
 principle, be something like the theory presented by James & Wilkinson (1971). It is not a
 priori given, that a 'combinatorial version' of this theory will be simple enough to be of
 any use.
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 R6sume

 L'objet de cet article est de presenter une theorie de modules de l'analyse de la variance dans plans
 d'exp6rience compose de facteurs orthogonaux. La structure d'un plan d'exp6rience orthogonale est r6sumbe par
 un diagramme de structure des facteurs, contenant l'information sur les relations de subordination entre les
 facteurs. Un plan d'exp6rience orthogonal determine une decomposition unique de l'espace des donnees, comme
 une somme directe de sous-espaces orthogonaux. Une classe de modeles mixtes, exprim6s par des facteurs fixes
 et des facteurs al6atoires, est caracterisee. D6crirons l'estimation des composantes de la variance et des tests de
 signification dans cette classe au moyen de la diagramme de structure des facteurs et du tableau d'analyse de la
 variance correspondant a la decomposition de l'espace des donne6s.

 [Paper received April 1982, revised March 1983]

 Discussion of paper by T. Tjur

 R.A. Bailey

 Statistics Department, Rothamsted Experimental Station, Harpenden, Hertfordshire, AL5
 2JQ, UK

 I am very pleased both to read and to be invited to comment on Tjur's paper, which is a
 careful coherent account of a subject whose edges have been chipped at by many people. I
 hope that these ideas become widely accepted. I have assembled my comments under
 subject headings. A major theme is a plea for standardization of helpful terminology and
 notation.

 D1 Balance

 This word has been over-used in the statistical literature: see Preece (1982). So I hope
 an alternative can be found for 'balanced' in 'balanced factor' (? 2.1). Speed & Bailey
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