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1 Model with AR(1) errors

Assume
Y ∼ N(Xβ, V ) (1)

where V is the covariance matrix of a zero-mean stationary AR(1) process
with parameters τ 2 and a (cf. handouts for lecture 2). Then V and V −1 have
factorizations

V = BCBT and V −1 = (B−1)TC−1B−1

where C is diagonal and B−1 is zero except for the diagonal and the entries
just below the diagonal. We can write C = τ 2D where τ 2 is the variance of
the innovations of the AR(1) process and D only depends on a. Let V = τ 2W
where W = BDBT. Let S = D−1/2B−1.

1. Show that Ỹ = SY ∼ N(X̃β, τ 2I) where X̃ = SX.

2. Show that the densities f and f̃ of Y and Ỹ are related by

f(y) = f̃(ỹ)|S|

3. Assume a is known. Argue that estimates of β and τ 2 based on the
likelihood of Y coincides with estimates based on the likelihood of Ỹ .

4. Write a piece of R code that for a given a produces the maximum like-
lihood estimates of β and τ 2 and returns the value of the log likelihood
function (hint: transform Y and X into Ỹ and X̃ and apply the lm()
function in R - see also example code)
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5. Simulate a data set from the model (1) and try out your code on this
to obtain maximum likelihood estimates of β, τ 2, a.

6. Conduct a simulation study to assess the distribution of the maximum
likelihood estimates when a = 0, a = 0.5 and a = 0.99. Try small
n = 20 and large n = 1000.

2 Model extended with independent noise (hid-

den Markov process)

We now extend the model (1) by adding independent normal errors each with
variance σ2. That is, we consider

Y ∼ N(Xβ, τ 2BDBT + σ2I). (2)

This corresponds to the general setting for which we developed maximum
likelihood (and restricted maximum likelihood) estimation on the handouts
for lecture 2. Note that in this case neither τ 2BDBT + σ2I nor its inverse
are sparse. Also I do not know how to obtain a square root of the inverse in
an efficient manner. However, we can still come up with a computationally
efficient implementation of maximum likelihood estimation.

Recall that Q = (BDBT)−1 is a sparse tri-diagonal matrix.

1. let φ = τ 2/σ2 and show that

(τ 2BDBT + σ2I)−1 = σ−2(φI +Q)−1Q

2. show that the determinant of |τ 2BDBT+σ2I| is σn2|φI+Q|/|Q| where
n is the dimension of Y .

3. one can compute (see accompanying R code) a Cholesky factorization
LLT of Q̃ = φI +Q. Show that the determinant of Q̃ is the product of
squared diagonal elements of L.

4. For a vector z computing Qz is of course straightforward. To compute
x = (φI + Q)−1z note that this is equivalent to solving the equation
(φI + Q)x = z. How can we apply the Cholesky factorization LLT

of the sparse matrix (φI + Q) to solve (φI + Q)x = z in an efficient
manner (recall L is lower triangular) ?
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5. Use the above results to implement maximum likelihood estimation of
β and σ2 given fixed values of a and φ. Next use this to implement
profile likelihood estimation of a and φ (see also example R code).

3 Inference for noise variance

Consider the electricity consumption-temperature data.

1. Fit the models from Section 1-2 with Y equal to the electricity con-
sumption andX the matrix with a first column of ones, a second column
given by the temperatures, and a third column given by the binary D
variable (weekday vs. weekend).

2. Conduct a likelihood ratio test for H0 : σ2 = 0. Use a parametric
bootstrap to approximate the distribution of the likelihood ratio under
H0.

4 Prediction

Consider the model from Section 2. Note that we can write

Yi = Zi + εi

where Z follows the AR(1) model from Section 1 and ε ∼ N(0, σ2I) is inde-
pendent of Z.

Compute E[Z|Y ] using respectively

1. The Kalman-filter/smoother.

2. Matrix computations applying the sparse Cholesky decomposition.

Take home message: The sparsity of the precision matrix of the hidden
process is important. The approach using sparse Cholesky is more general
than the Kalman filter since the sparse Cholesky decomposition does not
require a notion of time (past/present) which is crucial for the Kalman filter.
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