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Examples of estimating equations

Least squares (non-linear) : suppose Y; has mean pu;(3).
Minimizing
n
Z[Yi — ui(B)P?
i=1

leads to estimating equation (first derivative)

DY — u(B)] =0 (1)
where d
D= wﬂr = [dui/dB;],
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Moment estimation: suppose we know Egg(Y’) for some function
g.

Then we estimate 6 by solving

g(y) = Egg(Y) & Egg(Y) —g(y) =0

l.e. choose 6 so that empirical value of g matches its expected
value.

Example:

ESSE=RE) (Yi—Y)*=(n-1)0
i=1
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Maximum likelihood estimation: suppose f(y; ) is likelihood of
observation y. Then maximum likelihood estimate is

0 = argmax f(y; 0) = argmax log f(y; 0)
9 [%

Typically we find 6 by differentiation and equating to zero:

s(6) = <5 log £(y:0) = 0

Exponential family:
f(y:0) = c(0)h(y) exp[t(y) - 0]

Then score is

s(0) = % log f(y; 0) = t(y) — Egt(Y)

Thus (moment estimation)

5(6) = 0 t(y) = Eqt(Y)
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In general: estimating function e is function of data Y and
unknown parameter 6. Estimate @ is given as solution of
estimating equation

e(d)=0

(typically we suppress data Y from the notation).

Hopefully unique solution !
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Optimality (one-dimensional case)

Let 6* denote true value of §. We want:
1. e(6*) close to zero
2. e(0) differs much from zero when 6 differs from 6*

1. OK if e(#) unbiased estimating function
Eg-e(6*) = 0
and Varg-e(6*) small.
2. OK if large sensitivity €'(6*)
This leads to criteria (Eg-€/(6%))? /Varg-e(6*) which should be as

big as possible. Equivalently, Varg-e(0*)/ (Eg-€'(6*))? should be
as small as possible.
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In the multidimensional case we consider
I = S(6%)"Varg-e(6*)715(6%)

where S is sensitivity matrix

S(0) = ~E[re(0)

We then say that e; is better than e if
h—h
is positive semi-definite.

e is optimal within a class of estimating functions if it is better
than any other estimating function in the class.

| is called the Godambe information.
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Another view on optimality

By linear approximation (asymptotically) (assuming S™1(6*) exists)

0=-e(@) ~e(6*)—SO)O—06") < (0 —0") = STHH)e(6")

Thus
Varf ~ S7YOM)Z(S7L(0")T =171 L = Vare(9*)

Hence we say e; is better than e; if
Varéz - Varél = 52_122(52_1)1— - 51_121(51_1)1—

is positive definite.

Same as before since
S (ST =Sstn(S ) =Lt -0

which is positive semi-definite if /1 — |, is positive semi-definite
(see useful matrix result on next slide).
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Useful matrix result

Assume A and B invertible.
B 1Al =AY A-B)B'AA™ = A"} [(A-B)B"}(B+A-B)|A!
=AY A-B+(A-B)B 1 (A-B)A!

Hence if A — B is positive definite so is B~1 — A™1.
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Case of MLE

For likehood score (under suitable regularity conditions®)
Vargs(8) = S
so that Godambe information
=S5

is equal to the Fisher information.

Varf ~ S~ 1

!E.g. interchange of differentiation and integration allowed
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Estimating functions and the likelihood score

The following result holds for an unbiased estimating function
(under suitable regularity conditions) (one-dimensional case for
ease of notation):

Es(0)e(0) = Cov[s(0),e(0)] = S

This implies

s? !
Corrls(0). eO) = oo Tare(@) — Vars(@)

That is the optimal estimating function has maximal correlation
with the likelihood score.

Corollary: the likelihood score is optimal among all estimating
functions.
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Useful condition for optimality (Theorem 2.1, Heyde, 1997)

Consider a class £ of estimating functions. e® is optimal within £
if for some constant invertible matrix K,

Y eeo = Covle, €°] = ScK (2)
foralle € £.

If £ is convex then the converse is true too.

Note: if e° is optimal then (K~!)Te° optimal too. Hence we can
let K = | without loss of generality. Then (2) implies Vare® = S.o
and we obtain properties

Ieo = Seo Varéo ~ 5;;1

as for the likelihood score.
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Proof of if part:
Define standardized estimating function e; = ST¥ - 1e.
Then X, = Vare; = l.. Thus leo — lo = Varel — Vares.

Moreover (2) is equivalent to Y ¢ o = Yoo, = XLe,. Then

Var[e; — es] = Lo — X,

which proves the result since the LHS is positive semi-definite.
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Exercises

1. calculate S and X and / for the non-linear least squares
estimating function (1). Is the estimating function unbiased ?

2. Show that & log(c(6)~1) = Egt(Y) for the exponential
family model on slide 5.

3. show results on slide ‘Estimating functions and the likelihood
score’ (hint: use the rule for differentiation of a product to
show the first result)
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Exercises cntd.

4. (Quasi-likelihood) Suppose Y = (Y1,..., Y,) has mean vector
w(B) and (known) covariance matrix V.

Consider the class of estimating functions

ALY — u(B)]

where A g x n (all linear combinations of residual vector).
Show that the optimal choice is A= DTV~

What is the Godambe information matrix ?
5. Check the proof on slide 14.
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Now: inhomogeneous point processes.
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Data example: tropical rain forest trees
Observation window W = [0,1000] x [0, 500]

Beilschmiedia
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Sources of variation: elevation and gradient covariates and possible

clustering/aggregation due to unobserved covariates and/or seed
dispersal. 16 /64



Spatial point process

Spatial point process: random
collection of points

(finite number of points in
bounded sets)
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Intensity of a spatial point process

Fundamental characteristic of point process: mean of counts
N(A) = #(X N A).
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Intensity of a spatial point process

Fundamental characteristic of point process: mean of counts
N(A) = #(X N A).

Intensity measure p:

uw(A) = EN(A), ACR?
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Intensity of a spatial point process

Fundamental characteristic of point process: mean of counts
N(A) = #(X N A).

Intensity measure p:
u(A) = EN(A), ACR?

In practice often given in terms of intensity function

H(A) = /A p(u)du
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Intensity of a spatial point process

Fundamental characteristic of point process: mean of counts
N(A) = #(X N A).

Intensity measure p:
u(A) = EN(A), ACR?

In practice often given in terms of intensity function

H(A) = /A p(u)du

Infinitesimal interpretation: N(A) binary variable (presence or
absence of point in A) when A very small. Hence

p(u)|Al = EN(A) ~ P(X has a point in A)
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Covariance of counts and pair correlation function

Pair correlation function

#
E Z llue A, veB]= /A/Bp(u)p(v) dudv

u,veX

Covariance between counts:

Cov[N(A), N(B)] = /A o /A /B p(0)p(V) )dudv

Pair correlation g(u, v) > 1 implies positive correlation.
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Campbell formulae

From definitions of intensity and pair correlation function we
obtain the Campbell formulae:

EY h() = /h(u)p(u)du

ueX

E Z h(u,v) // u, v)p(u)p(v)g(u, v)dudv

u,veX

25 /64



The Poisson process

Assume 1 locally finite measure on R? with density p.
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The Poisson process

Assume 1 locally finite measure on R? with density p.

X is a Poisson process with intensity measure p if for any bounded
region B with u(B) > 0:

1. N(B) ~ Poisson(u(B))
2. Given N(B), points in X N B i.i.d. with density « p(u), u e B

B =[0,1] x [0,0.7]:

Homogeneous: p = 150/0.7 Inhomogeneous: p(x,y) o< e~10:6¥
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Independence properties of Poisson process

1. if A and B are disjoint then N(A) and N(B) independent
2. - this implies Cov[N(A),N(B)]=0if ANB =10

3. - which in turn implies g(u,v) = 1 for a Poisson process
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Inhomogeneous Poisson process with covariates

Log linear intensity function

,Oﬁ(U) = exp(Z(U)IBT), Z(U) = (17Ze|ev(u)7zgrad(u))

29/ 64



Inhomogeneous Poisson process with covariates

Log linear intensity function

pﬁ(u) = eXp(Z(U)IBT), Z(U) = (17Ze|ev(u)7zgrad(u))

Consider indicators N; = 1[X N C; # )] of occurrence of points in
disjoint C; (W = UG;) where P(N; = 1) = pg(u;)|Ci|, ui € C;
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Inhomogeneous Poisson process with covariates

Log linear intensity function

pﬂ(u) = exp(Z(U)IBT), Z(U) = (17Ze|ev(u)7zgrad(u))

Consider indicators N; = 1[X N C; # )] of occurrence of points in
disjoint C; (W = UG;) where P(N; = 1) = pg(u;)|Ci|, ui € C;

Limit (|Gj| — 0) of likelihood ratios

ﬁ (ps(u)|GNi(1 = pp(up)l GNP {1 p(ui)Mi(1 — ps(ui)| Gi|)E N

Sooaahva-aysNe o T (I—1G)-N

o) =1 IT st ew(WI= [ pstwo)

ueXNW
This is the Poisson likelihood function.
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Maximum likelihood parameter estimate
Score function:

s(p) = 4 log L(B) = Z z(u) — /W z(u)ps(u)du

d'B ueXNw

Maximum likelihood estimate 3 maximizes L(3). l.e. solution of

5(8) = 0.
Note by Campbell s(/3) unbiased:
Es(B) = 0.

Observed information (p x p matrix):

109) = ~35e5(0) = | 2" 2(ups(u)du

Unique maximum/root if /() positive definite,
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By Campbell formulae

Vars(8) = 1(B)
and according to standard asymptotic results for MLE (8* ‘true’
value)
B~ N5
‘n' (number of observations) tends to infinity ?

Possibilities: increasing observation window or increasing intensity

Problem: Poisson process does not fit rain forest data due to
excess clustering (e.g. seed dispersal) !

Hence variance of B is underestimated by /(3*)~! when a Poisson
process is assumed.
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Cluster process: Inhomogeneous Thomas process
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Parents stationary Poisson point process

intensity x

Poisson(a) number of offspring

distributed around parents according to
bivariate Gaussian density with std. dev.

w

Inhomogeneity: offspring survive

according

depending on covariates (independent

thinning).

to probability

p(u) oc exp(z(u)BT)
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Intensity and pair correlation function for Thomas
We can write Thomas process X as

X = Ucerc

where C stationary Poisson process of intensity x and given C, the
X are independent Poisson processes with intensity functions
p(u)ak(u — c) where k(-) density of Np(0,w?/).

With p(u) = exp(z(u)3T)/M the intensity becomes
p(u) = arexplz(u)5T]/M = exp[fo + z(u)B"]
where exp(5y) = ax/M.

The pair correlation function becomes (for Thomas process in RY)
g(u,v) = 14 (4nw?) =2 exp[~{r/(2w)}’)/r r=v—ul

Note g(u,v) > 1!
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Parameter estimation: regression parameters

Likelihood function for inhomogeneous Thomas process is
complicated.

Can instead use Poisson score s(/3) as an estimating function
(Poisson likelihood now composite likelihood).

l.e. estimate /3 again solution of

s(8) =0

But now larger variance of s(3) due to positive correlation !
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Exercises

1. Show that s(3) is an unbiased estimating function (both in
the Poisson case and for the inhom. Thomas).

2. For a Poisson process, show that
Vars(8) = Var ) cxqw 2(u) = 1(B).

3. Compute the inverse Godambe information for the estimating
function s(3) when X is a general point process with pair
correlation function g # 1 (hint: use second-order Campbell
formula). Compare with the case of a Poisson process
(g =1).

4. Verify the expressions for the intensity and pair correlation
function of a Thomas process (slide 35).
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Quasi-likelihood for spatial point processes

Quasi-likelihood based on data vector Y was optimal linear

transformation
DTV7IR

of residual vector
R=Y —u(p)

Can we adapt quasi-likelihood to spatial point processes ?

What is residual in this case ?
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Residual measure
For point process X and A C R? residual measure is

R(A) = N(A) — EN(A) = 3" 1lu e A] - / 1[u € Alp(u: 8)du

ueX

(N(A) number of points in A).
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Residual measure
For point process X and A C R? residual measure is

R(A) = N(A) —EN(A) = > 1[u € Al - /l[u € Alp(u; B)du
ueX
(N(A) number of points in A).

In analogy with quasi-likelihood look for optimal linear
transformation of the residual measure

er(9) = [ i RMD = Y- F(wi 8) ~ [ F(ui B)p(us )

ueX

where f : R? — RP real vector-valued “weight” function.

Estimate ff solves estimating equation

ef(,B) =0
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Remember: ¢ is optimal if
Covley, er] = S¢ (3)

for all f.
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Remember: ¢ is optimal if
Covley, er] = S¢ (3)
for all f.

Using the Campbell formulae one can show that this is satisfied if
¢ solves following integral equation:

o(u; B) + /W t(u, v)o(v; B)dv = % logp(u; 8) weW (4)

where integral operator kernel is

t(u,v) = p(v: B)lg(u,v) — 1]
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Poisson process case

Poisson process case: g(u,v) = 1 so integral equation simplifies

o(u) + /W o(vi B)e(u,v) — 1Jo(v)dv = % log p(u; ) =

o) = L log p(u; ) = ZL25)

dg p(u; B)

Hence resulting estimating function is

> pl(u.;g)) —/WP/(U;ﬂ)du

ueEXNW p(u,

which coincides with score of Poisson process log likelihood.
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Quasi-likelihood

Integral equation approximated using
Riemann sum dividing W into cells C;
with representative points u;.

Resulting estimating function is quasi-likelihood score
DTVHY — 4]
based on

Y =(Ye,...,Ym)", Yi=1[X has point in G].

1 mean of Y:
pi =EY; = p(ui; 8)|C| and D = [dp(u;)/dB;];
V covariance of Y

Vj = Cov[Y;, Yj] = pdli = j] + pinjl —1]
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Exercise

1. Show that (4) implies (3).

Hint: start by evaluating (3) using the Campbell formulae
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All models are wrong...

“All models are wrong but some are useful”

If any model we propose/select/estimate is wrong how can we talk
of a ‘true’ parameter value, true model, optimal estimation
method... ?

Approach:

> consider ‘least false’ model - i.e. model among a set of
candidate models which is closest to the unknown true model

» consider ‘least false' parameter value - i.e. parameter value
that makes a given model closest to unknown true model
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Kullback-Leibler divergence

Consider two densities f and g with same support and X ~ f.
Then Kullback-Leibler divergence of g from f is

Dii(f.g) = /Iog f(x)%dx = —Elog igﬁ;

By Jensen's inequality or just log(x) < x — 1, (exercise)

DKL(f7g) > 0 (5)
and “=" only if f = g almost everywhere (Gibbs' inequality).
Suppose f represents true distribution of data and gy,...,gx are

candidate models.

We may then declare g; to be the least false model if

I = argmin Dy (f, gk)
k=1,....K
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Similar, if the g are parametrized by some unknown parameter
Ok € ©) we may declare 0} to be the least false parameter value
for gy if

05 = argmin Dk, (f, g(+; 0k))
0,0,
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Case of composite likelihood for point process

Suppose X is a point process with true intensity function A and p
is some other intensity function.

Also let /(-; A) and /(+; p) denote corresponding Poisson log density
functions (first order composite likelihood functions)

Then we may define composite Kullback-Leibler divergence as

CDkr (A, p) = —E[I(X; p) = I(X; A)]

Again

CKL()‘vp) >0 (6)
and "=" only if A = p almost surely with respect to distribution of
X (exercise).
Least false intensity function among p1,..., pkx minimizes

CDkr (N, pi).
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For parametric model pi(-; 6x), least false 6 is

0% = argmin CDk (N, I(+; p(+; 6k)))
0,€0,
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Regression model for the intensity function

X spatial point process observed in window W C RY.
Popular log-linear model for the intensity function:

p(u; B) = explz(u) T ]

where z(u) = (z1(u), ..., zp(u)) covariate vector associated to
spatial location wu.

Model selection problem: which subset of covariates should be
used ?

One approach is to use information criteria (AIC, BIC

How to do this in case of a spatial point process ?
| got this question back in 2008 while | was in Spar Nord Bank :)
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Notation: / index for collection of models M, characterized by

varying subsets z;(u) of covariates and with parameter vectors ;.

le. z)(u) = (zj(t))uey, h €{1,....,p}.

The log-likelihood for model M, in case of a Poisson process is
1B X) =Y z/(u)" B — / p(u; Br)du
ueX w

AlC:
_2/(5;)() +2p;

Is this theoretically justified for a Poisson process ?

Moreover, we often use /(3;; X) as a kind of composite likelihood
in case X is not a Poisson process.

Can we still use AIC or do we need to consider composite
information criterion (CIC) ?
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Bayesian information criterion

What about BIC:
—2/(B1; X) + log(n)p,

What is n ? (“number of observations”) ?

> 17
» Number N of points in XN W ?
» Size of observation window |W/| ?

» Number of points used in quadrature scheme for
approximation of likelihood ? (analogy to logistic regression)
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Asymptotic results for misspecified model
‘Least false 8", B}, minimizes Kullback-Leibler distance:

5 = argmin KL(p(- ), ) = argmin E[~1(5; X)]

Given (wrong) model M; we can under reasonable conditions show
that

B — B = N(0, V)
That is, composite likelihood estimate will asympotically make the
fitted model M, least false.

The covariance matrix has the following expression:
S8 T EiSI(B)

where unfortunately ¥ is not known...

Under reasonable conditions, S;(3;)1%,S/(87) 7! is of the order
Wit
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Model selection

Choose model so that

Clp(: 81)) = E[-1(87: X)]

is minimal.
Issue: B unknown in practice since it depends on unknown A(-).

Suggestion: given data X and resulting estimates 3,, minimize

N

EC(p(+ 81))

over models M.

Problem: expectation unknown...
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Estimation of EC(p(; 5))

SuppPSe we have two independent copies of the point process X
and X and we obtain 3, from X.

Then

S 2B~ [ puiBi)du
< w
ueX
would be an unbiased estimate of

EC(p(-: B1) = EE[/(3: X)|X]

(similar to cross validation)
However, we only have the single realization X.

The observed likelihood
> z(u)"B —/ p(u; Br)du
ueX w

is a biased (too large) estimate due to overfitting. e



Estimation of bias

We can approximate log likelihood using second-order Taylor
expansion:

131 %) = 155 KI5 K0T Br-57) 5 (BT S Br—60)
and (observed likelihood)
15 X) ~ 65 X015 XV (Br=67)— (=57 S (B Br—57)
Here S(p3) is sensitivity

5(8) = = |z ai(u)o(u; A

Bias:

EI(51;X) — EI(B;X) = ~EVI(8}; X)" (6 — 5}) + E[op(1)]
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Using first order Taylor
EVI(B7: X)T (B — B) = EVI(BF; X)TS(87) V18] X) + Eop(1)
—trace [S(ﬁ}")_lZ,] + EOP(].)

where
Y, = VarVI(5]; X)

The previous expansions work when we have
By — B = Op(IW|7V?)

‘consistency wrt least false parameter value under M,

As mentioned before we can obtain this consistency for wide class
of point processes (including Cox and Cluster)

To obtain
Eop(1) = o(1)
we need technical condition of uniform integrability. Often ignored

in literature.
58 /64



What about AIC 7

Suppose X is a Poisson process and M, is the true model. Then by
standard Bartlett identity

X = Sa(B/)

and
traceZ,S,,(ﬂ,*)_1 = tracel,, = p; = lengthj,

This gives AIC criterion for model M; !

In general we need to estimate (Takeuchi) bias correction

traceS(8;) 1L,
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Suggestion so far: estimate S(f;) by S(3)

Regarding ¥ ;:
Y, = VarVI(5))

:/ z,(u)Tz/(u))\(u)du—l—/ z/(u)Tz/(V)AMw)A(V)[g(u, v) — 1]dudv
w w2

We approximate A(u) &~ p(u; ) and obtain

traceX;S(67) ™ ~ p; + trace[T(5))S(8) Y]

T(A) = [ 2() 2o Aotv: A)lE(u — v) ~ Lduay

These quantities and estimate g can be obtained from output of
spatstat procedure kppm.

Current work: check how it works in simulation studies.
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Bayesian information Criterion
Very different type of reasoning compared to AIC.

Impose prior P(M = M;) for model M and prior p(3;|M,) for f3
given M = M.

Given M, and (3; assume X Poisson process with density
f(X|ﬂ/, M/)

Suppose uniform prior on models M,. Then posterior of M is
P(M = M/‘X) X P(X‘M/)P(M/) X P(X|M/)
:/p F(X|B81, M) p(Bi|Mp)d
RPI

Using a Laplace approximation of the integral one obtains
log P(X|M;) = 1(3;; X) — £ 1og (1) + O(1)

where p is marginal mean of number of points‘in X: 61 /60



Neglecting O(1) terms and estimating ;. ~ N where N is number
of points in X we obtain

BIC(M,) = —21(5; X) + Np

l.e. ‘'number of observations’ is number of points !

Comparison with AIC/CIC:
> In Bayesian setting, we by assumption use the true model. No
mention of ‘least false parameter value'.
> 3, convenient starting point for second order Taylor expansion
underlying Laplace approximation.
» For technical reasons need almost sure convergence of B to
fixed value 3/

> Asymptotics underlying Laplace approximation deterministic
since conditioning on X.
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Simulation studies

BIC: use of window size |W/| or number of points in quadrature
approximation of likelihood useless.

AIC vs BIC (Poisson process): AIC tends to choose too complex
models

CIC (cluster process): in progress
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Exercises

1. show (5) and (6).

2. Show that if sensitivity S() is positive definite then least
false parameter value 3/ is well-defined (exists and is unique)

3. Show EV/(B7; X)TS(B8;)"1VI(B}; X) = trace [S(BF) %]
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