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Examples of estimating equations

Least squares (non-linear) : suppose Y; has mean pu;(3).
Minimizing

Z[Yi — ui(B)PP

i=1

leads to estimating equation (first derivative)

DT[Y — u(B)] =0 (1)
where d
D = 357 = /a3
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Moment estimation: suppose we know Egg(Y') for some function
g.

Then we estimate 6 by solving

g(y) = Egg(Y) & Egg(Y) —g(y) =0

l.e. choose 6 so that empirical value of g matches its expected
value.

Example:

ESSE=EY (Y;— Y)* =(n—1)0?
i=1
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Maximum likelihood estimation: suppose f(y; ) is likelihood of
observation y. Then maximum likelihood estimate is

0 = argmax f(y; 0) = argmax log f(y; 0)
2] (4

Typically we find @ by differentiation and equating to zero:

d log f(y;0) =0

s(0) = T

Exponential family:

f(y;0) = c(0)h(y)exp(t(y) - 0]

Then score is

5(6) = 1108 F(y:6) = t(y) ~ Bat(¥)

Thus (moment estimation)

5(6) = 0 t(y) = Egt(Y)
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In general: estimating function e is function of data Y and
unknown parameter 0. Estimate 8 is given as solution of
estimating equation

e(d)=0

(typically we suppress data Y from the notation).

Hopefully unique solution !
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Optimality (one-dimensional case)

Let 6* denote true value of 8. We want:
1. e(6*) close to zero

2. e(#) differs much from zero when 6 differs from 6*
1. OK if e(#) unbiased estimating function
Ep-e(60*) =0
and Varg-e(0*) small.
2. OK if large sensitivity €’(6*)
This leads to criteria (Eg-€'(6*))? /Varg- e(6*) which should be as

big as possible. Equivalently, Varg-e(6*)/ (Eg-€'(6*))* should be
as small as possible.
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In the multidimensional case we consider
= S(0%)"Varg-e(9*)715(6%)

where S is sensitivity matrix

5(0) = ~El gre(®)

We then say that e; is better than e, if
h—b
is positive semi-definite.

e is optimal within a class of estimating functions if it is better
than any other estimating function in the class.

| is called the Godambe information.
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Another view on optimality

By linear approximation (asymptotically) (assuming S—1(6*) exists)

0= e(d) ~ e(6%) — S(0")(0 — 6*) = (6 — 0%) ~ S~1(0%)e(6")

Thus
Varf ~ SH0")Z(S7H(6*)T =171 ¥ = Vare(6*)

Hence we say e; is better than e; if
Val"éz — Varél = Sglzg(Sgl)T — Sflzl(S;l)T

is positive definite.

Same as before since
S E C IO SO HEY

which is positive semi-definite if ; — / is positive semi-definite
(see useful matrix result on next slide).
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Useful matrix result

Assume A and B invertible.
B 1-Al=AYA-B)B1AA™ = A7} [(A-B)B }(B+A-B)]A !
=AA-B+(A-B)B}(A-B)A!

Hence if A — B is positive definite so is B~1 — A™1,

10/65



Case of MLE

For likehood score (under suitable regularity conditions?)
Vargs(0) = S
so that Godambe information
=5

is equal to the Fisher information.

Varf ~ S~ 1

!E.g. interchange of differentiation and integration allowed
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Estimating functions and the likelihood score

The following result holds for an unbiased estimating function
(under suitable regularity conditions) (one-dimensional case for
ease of notation):

Es(0)e(0) = Cov[s(),e(0)] =S

This implies

s? !
Corr[s(0), e(0)]* = Vars(0)Vare(0) B Vars(0)

That is the optimal estimating function has maximal correlation
with the likelihood score.

Corollary: the likelihood score is optimal among all estimating
functions.
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Useful condition for optimality

Consider a class £ of estimating functions. e is optimal within & if
Y eeo = Covle, e°] = S (2)
forallee &.
The property (2) implies Vare® = Seo = SJ, and we obtain
leo = Seo Varf® ~ S}

as for the likelihood score.
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Proof of if part:

Define standardized estimating function es = ST¥ e.
Then X, = Vares = l.. Thus leo — [ = Varel — Vares.
Moreover (2) is equivalent to Y e eo = Yeoe, = Xe,. Then

Var[e) — es] = Lo — L,

which proves the result since the LHS is positive semi-definite.

14 /65



Exercises

1. calculate S and X and / for the non-linear least squares
estimating function (1). Is the estimating function unbiased ?

2. Show that & log(c(6)~1) = Egt(Y) for the exponential
family model on slide 5.

3. show results on slide ‘Estimating functions and the likelihood
score’ (hint: use the rule for differentiation of a product to
show the first result)
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Exercises cntd.

4. (Quasi-likelihood) Suppose Y = (Y1,..., Y,) has mean vector
w(B) and (known) covariance matrix V.

Consider the class of estimating functions

ALY — u(B)]

where A g x n (all linear combinations of residual vector).
Show that the optimal choice is A= DTV~1.

What is the Godambe information matrix ?
5. Check the proof on slide 14.
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Now: inhomogeneous point processes.
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Data example: tropical rain forest trees
Observation window W = [0,1000] x [0,500]

Beilschmiedia
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Sources of variation: elevation and gradient covariates and possible

clustering/aggregation due to unobserved covariates and/or seed
dispersal. 18/65



Spatial point process

Spatial point process: random
collection of points

(finite number of points in
bounded sets)
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Intensity of a spatial point process

Fundamental characteristic of point process: mean of counts
N(A) = #(XN A).
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Intensity of a spatial point process

Fundamental characteristic of point process: mean of counts
N(A) = #(XN A).

Intensity measure

uw(A) = EN(A), ACR2
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Intensity of a spatial point process

Fundamental characteristic of point process: mean of counts
N(A) = #(XN A).

Intensity measure
u(A) = EN(A), ACR

In practice often given in terms of intensity function

u(4) = [ ol
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Intensity of a spatial point process

Fundamental characteristic of point process: mean of counts
N(A) = #(XN A).

Intensity measure
u(A) = EN(A), ACE?
In practice often given in terms of intensity function

u(4) = [ ol

Infinitesimal interpretation: N(A) binary variable (presence or
absence of point in A) when A very small. Hence

p(u)|Al = EN(A) =~ P(X has a point in A)

23/65



Covariance of counts and pair correlation function

Pair correlation function

#
E Z llue A,veB]= /A/Bp(u)p(v) dudv

u,veX

Covariance between counts:

Cov[N(A), N(B)] = /A e /A /B p)p(v) )dudv

Pair correlation g(u, v) > 1 implies positive correlation.
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Campbell formulae

From definitions of intensity and pair correlation function we
obtain the Campbell formulae:

EY  h(u) = /h(u)p(u)du

ueX

”
E Z h(u,v) = // h(u, v)p(u)p(v)g(u, v)dudv

u,veX
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The Poisson process

Assume 1 locally finite measure on R? with density p.
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The Poisson process

Assume 1 locally finite measure on R? with density p.

X is a Poisson process with intensity measure p if for any bounded
region B with u(B) > 0:

1. N(B) ~ Poisson(u(B))
2. Given N(B), points in XN B i.i.d. with density & p(u), u € B

B =[0,1] x [0,0.7]:

Homogeneous: p = 150/0.7 Inhomogeneous: p(x,y) o e~10-6¥
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Independence properties of Poisson process

1. if A and B are disjoint then N(A) and N(B) independent
2. - this implies Cov[N(A), N(B)] = 0 if AN B = 0

3. - which in turn implies g(u, v) = 1 for a Poisson process
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Inhomogeneous Poisson process with covariates

Log linear intensity function

pp(u) = exp(z(u)'B),  2(u) = (1, zeteu (1), Zgraa (1))
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Inhomogeneous Poisson process with covariates

Log linear intensity function

pp(u) = exp(z(u)'B),  2(u) = (1, zeteu (1), Zgraa (1))

Consider indicators N; = 1[X N C; # 0] of occurrence of points in
disjoint C; (W = UC,') where P(N,' = 1) ~ pfg(u,')’C,", ui € G
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Inhomogeneous Poisson process with covariates

Log linear intensity function

pp(u) = exp(z(u)'B),  2(u) = (1, zeteu (1), Zgraa (1))

Consider indicators N; = 1[X N C; # 0] of occurrence of points in
disjoint C; (W = UC,') where P(N,' = 1) ~ pfg(u,')’C,", ui € G

Limit (|Gj| — 0) of likelihood ratios

f[ (ps(un)|GNNi(L — ps(u)| G _ ﬁ ps(u)i(1 — pg(ui)| Gi)* N

AGDN(1 = 1| G)-Ni - (1-1G|)-N

i=1 i=1

1B =[ TI eolw)]exo(W| - /W ps(u)du)

ueXNw
This is the Poisson likelihood function.
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Maximum likelihood parameter estimate

Score function:

d log L(B) = Z z(u)—/Wz(u)pg(u)du

d'B ueXnw

s(8)

Maximum likelihood estimate 3 maximizes L(3). l.e. solution of

s(B) = 0.
Note by Campbell s(/3) unbiased:
Es(B) = 0.

Observed information (p x p matrix):

108) = —dgTs(ﬁ) - /W 2(u)2(u)  pp(u)du

Unique maximum/root if /() positive definite.
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By Campbell formulae

Vars(3) = 1(5)

and according to standard asymptotic results for MLE (5* ‘true’
value)

A -1
B~ N(B, (8
‘n' (number of observations) tends to infinity ?
Possibilities: increasing observation window or increasing intensity

Problem: Poisson process does not fit rain forest data due to
excess clustering (e.g. seed dispersal) !

Hence variance of 3 is underestimated by /(3*)~! when a Poisson
process is assumed.
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Cluster process: Inhomogeneous Thomas process
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Inhomogeneity: offspring survive
according to probability

p(u) o< exp(z(u)" )

depending on covariates (independent

thinning).

Parents stationary Poisson point process
intensity

Poisson(a)) number of offspring
distributed around parents according to
bivariate Gaussian density with std. dev.
w
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Intensity and pair correlation function for Thomas
We can write Thomas process X as

X = UcECXC

where C stationary Poisson process of intensity x and given C, the
Xc are independent Poisson processes with intensity functions
p(u)ak(u — c) where k(-) density of No(0,w?/).

With p(u) = exp(z(u)T8)/M the intensity becomes
p(u) = arexplz(u)B]/M = exp[fo + z(u)" ]
where exp(5o) = ak/M.

The pair correlation function becomes (for Thomas process in RY)
g(u,v) = 14 (4nw?) " exp[—{r/(20)*)/r r=v—ul

Note g(u,v) > 1!
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Parameter estimation: regression parameters

Likelihood function for inhomogeneous Thomas process is
complicated.

Can instead use Poisson score s(/3) as an estimating function
(Poisson likelihood now composite likelihood).

l.e. estimate /3 again solution of
s(8)=0

But now larger variance of s(3) due to positive correlation !
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Exercises

1. Show that s(/3) is an unbiased estimating function (both in
the Poisson case and for the inhom. Thomas).

2. For a Poisson process, show that
Vars(B8) = Var _,exqw z(u) = 1(8).

3. Compute the inverse Godambe information for the estimating
function s(3) when X is a general point process with pair
correlation function g # 1 (hint: use second-order Campbell
formula). Compare with the case of a Poisson process
(g=1).

4. Verify the expressions for the intensity and pair correlation
function of a Thomas process (slide 35).
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Quasi-likelihood for spatial point processes

Quasi-likelihood based on data vector Y was optimal linear

transformation
DTV7IR

of residual vector
R=Y —u(p)

Can we adapt quasi-likelihood to spatial point processes ?

What is residual in this case ?
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Residual measure
For point process X and A C R? residual measure is

R(A) = N(A) —EN(A) = > 1uc Al - /1[u e Alp(u; B)du

ueX

(N(A) number of points in A).
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Residual measure
For point process X and A C R? residual measure is

R(A) = N(A) —EN(A) = > 1uc Al - /1[u e Alp(u; B)du

ueX

(N(A) number of points in A).

In analogy with quasi-likelihood look for optimal linear
transformation of the residual measure

er(9) = [ Flus OIR(u) = 3 F(wi )~ [ Flui Yol B)du

ueX

where f : R? — RP real vector-valued “weight” function.

Estimate Bf solves estimating equation

er(8) =0
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Remember: ¢ is optimal if
Covley, er] = S¢ (3)

for all f.
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Remember: ¢ is optimal if
Covley, er] = S¢ (3)
for all f.

Using the Campbell formulae one can show that this is satisfied if
¢ solves following integral equation:

¢(U;5)+/ t(U>V)¢(V:ﬁ)dv:(fﬁlogp(u;ﬁ) uew (4)

w

where integral operator kernel is

t(u,v) = p(v; B)lg(u, v) — 1]
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Poisson process case

Poisson process case: g(u,v) = 1 so integral equation simplifies:

o)+ [ ovi Bl v) = oy = 3 log plui 5) =
/()
o) =35 % tog p(us B) = OE)

Hence resulting estimating function is

. i U,B /Wp’(U:B)du

uGXﬂW

which coincides with score of Poisson process log likelihood.
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Details about Nystrom method

Use Riemann sum dividing W into cells C; with representative
points u;, i = 1,...,n. Then we obtain linear equations

d

o(uj; B +Z ui, 1)) CGilp(uj; B) = dBlogp(u,,B) i=1,...,n
j=1

(5)

which in matrix form become

(I+T)o [ |0gp(u,':f3)]i

where ¢ = (¢(u;)); and T;; = t(u,-, uj)|Gl.

Defining p; = p(uj; 8)|Ci|, M = diag(pa, ..., pn), and G =[Gl
with Gjj = pipj[g(ui, vj) — 1], this is equivalent to

(M4 G)p = M[ddﬁ log p(uj; B)]i = D

where D is matrix of partial derivatives dy;/df;.
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Quasi-likelihood
Using solution
p=M+G)t=v"lD

with V = M 4 G the resulting approximated optimal estimating
function becomes the quasi-likelihood score

DTVY -y
where

Y =(Y1,...,Ym)", Yi=1[X has point in Cj].

4 mean of Y:
pi = BY; = p(uj; B)| Cj| and D = [dp(u;)/dB;];
V covariance of Y

Vij = CovlY;, Yj] = pil[i = j] + pipss] —1]
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Exercise

1. Show that (5) implies (3).

Hint: start by evaluating (3) using the Campbell formulae
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All models are wrong...

“All models are wrong but some are useful”

If any model we propose/select/estimate is wrong how can we talk
of a ‘true’ parameter value, true model, optimal estimation
method... ?

Approach:

» consider ‘least false’ model - i.e. model among a set of
candidate models which is closest to the unknown true model

» consider ‘least false' parameter value - i.e. parameter value
that makes a given model closest to unknown true model
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Kullback-Leibler divergence

Consider two densities f and g with same support and X ~ f.
Then Kullback-Leibler divergence of g from f is

Dk.(f, g) :/f(x) log f(X)dx = —Elog @ = —E[log g(X)—log f(X)]

g(x) F(X)
By Jensen's inequality or just log(x) < x —1,
DKL(f’g) >0 (6)

and “=" only if f = g f-almost surely (Gibbs' inequality).

Suppose f represents true distribution of data and g1,..., gk are
candidate models.

We may then declare g; to be the least false model if

I = argmin Dy (f, gk)
k=1,...K

3ty
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Similar, if the g are parametrized by some unknown parameter
Ok € Ok we may declare 05 to be the least false parameter value
for gy if

6y = argmin Dy (f, g(+; 0k))
0,0
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Case of composite likelihood for point process

Suppose X is a point process with true intensity function A and p
is some other intensity function.

Also let /(-; ) and /(+; p) denote corresponding Poisson log density
functions (first order composite likelihood functions)

Then we may define composite Kullback-Leibler divergence as

CDk(A; p) = —E[I(X; p) — I(X; A)]

Again

CDki(A, p) =2 0 (7)
and “=" only if A\ = p almost surely with respect to distribution of
X (exercise).
Least false intensity function among p1, ..., px minimizes

CDki(N, pi).
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For parametric model pi(-; 6x), least false 6y is

0% = argmin CDy (N, p(+; 0k))
0,0,
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Regression model for the intensity function

X spatial point process observed in window W C RY.

Popular log-linear model for the intensity function:

p(u; B) = explz(u) " B]

where z(u) = (z1(v), . .., zp(u))T covariate vector associated to
spatial location u.

Model selection problem: which subset of covariates should be
used ?

One approach is to use information criteria (AIC, BIC,....)

How to do this in case of a spatial point process ?
| got this question back in 2008 while | was in Spar Nord Bank :)
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Notation: / index for collection of models M, characterized by

varying subsets z;(u) of covariates and with parameter vectors 3.

le. z)(u) = (zj(u))ues, I €{1,...,p}.

The log-likelihood for model M, in case of a Poisson process is
18 X) = z/(u) B, —/ p(u; Br)du
ueX w

AlC:
_2/(6;X) +2p

Is this theoretically justified for a Poisson process ?

Moreover, we often use /(3; X) as a kind of composite likelihood
in case X is not a Poisson process.

Can we still use AIC or do we need to consider composite
information criterion (CIC) ?
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Bayesian information criterion

What about BIC:
—2/(B1; X) + log(n)py
?

What is n ? (“number of observations”)

> 17
» Number N of pointsin XN W 7
» Size of observation window |W/| ?

» Number of points used in quadrature scheme for
approximation of likelihood ? (analogy to logistic regression)
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Asymptotic results for misspecified model
‘Least false 8", 8}, minimizes Kullback-Leibler distance:

B = argﬁmin CDki(p(+ B1), ) = argﬁmin E[—1(81; X)]

Given (wrong) model M; we can under reasonable conditions show
that

Br— B; =~ N(O, V)
That is, composite likelihood estimate will asympotically make the
fitted model M, least false.

The covariance matrix has the following expression:
SBN) T ESIB)

where unfortunately X, is not known...

Under reasonable conditions, S;(3;)1%,S/(87) ! is of the order
Wit
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Model selection

Choose model so that

C(p(+: 8r)) = E[-1(8/: X)]

is minimal.
Issue: B unknown in practice since it depends on unknown A(-).

Suggestion: given data X and resulting estimates B, minimize

~

EC(p(-; 1))

over models M,.
Note: EC(p(-; 3)) = EE[—/(8;; X)|X]

Problem: both expectations unknown.
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Estimation of EC(p(; B/))

Suppose we have two independent copies of the point process X
and X and we obtain 5, from X.

Then
(B ) = =S 2i() B + /W p(u; Br)du

u€)~(
would be an unbiased estimate of

EC(p(-: 1)) = EE[-/(3; X)[X]

(similar to cross validation)
However, we only have the single realization X.

The observed likelihood
> z(w)" B +/ p(u; B)du
ueX w

is a biased (too small) estimate due to overfitting. o



Estimation of bias

We can approximate log likelihood using second-order Taylor
expansion:

1B X) = (87 X)+V (B X)T(B/—ﬁf)—%(B/—BT)TS(BT)(B/—@*))
and (observed likelihood)
(51 X) = (B X)+ V(5] X)T(B/—ﬁf)—%(B/—B}*)TS(/?,*)(B/—M‘)
Here S() is sensitivity
5(5) = | aitw)Ta(upu; 6)du
w
Bias (recall first Bartlett identity EV/(5;; X)T = 0):

EI(51; X) = EI(B1; X) = —EVI(5{; X) " (51 = 51) + Elop(1)]
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Using first order Taylor

VIBFX) = S(B) (B = 87) = (81 = B ) = S(B]) VI X)
we get

EVI(51;X)T (81— 87) = EVI(B]: X)TS(8)'VI(5] X) + Eop(1)
=trace [S(8;) '¥/] + Eop(1)

where
Y, = VarVI(5]; X)

The previous expansions work when we have

A -1/2

B — B = Op(IW| )
‘consistency wrt least false parameter value under M,

As mentioned before we can obtain this consistency for wide class
of point processes (including Cox and Cluster)

To obtain Eop(1) = o(1) we need technical condition of uniform
integrability. Often ignored in literature. 59,65



What about AIC 7

Suppose X is a Poisson process and M, is the true model. Then by
standard Bartlett identity

2= 5a(51)

and
traceX;Sp(B;) ! = tracel, = p; = lengthp3,

This gives AIC criterion for model M, !

In general we need to estimate (Takeuchi) bias correction

traceS(3;) 1Y,
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Suggestion so far: estimate S(3;) by S(f/)
Regarding % ;:
Y, =VarVI(5])
= /W z)(u) "z () N(u)du + /W2 z)(u) T z) (V)M u)A(v)[g(u, v) — 1]dudv
We approximate A(u) ~ p(u; 3;) and obtain
traceX;S(87) ™! ~ py + trace[ T(3))S(8;) 1]
where

T(E) = [ 2 a()ntus A)olvi Bltu — v) - dud

These quantities and estimate g can be obtained from output of
spatstat procedure kppm.
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Bayesian information Criterion
Very different type of reasoning compared to AlC.

Impose prior P(M = M;) for model M and prior p(3;|M,) for j3
given M = M.

Given M, and 3, assume X Poisson process with density
f(X’ﬁ/, M/)

Suppose uniform prior on models M;. Then posterior of M is
P(M = M;[X) oc P(X|M;)P(M;) oc P(X|M;)
= [ (X151 MYp(5 M)
RPI

Using a Laplace approximation of the integral one obtains
log P(XIMy) = 1(3;X) — 2 log (1) + 0(1)

where 1 is marginal mean of number of points'in X 62/65



Neglecting O(1) terms and estimating p =~ N where N is number
of points in X we obtain

BIC(M;) = —2/(B; X) + log(N)p;

l.e. ‘number of observations’ is number of points !

Comparison with AIC/CIC:

» In Bayesian setting, we by assumption use the true model. No
mention of ‘least false parameter value'.

> /3 convenient starting point for second order Taylor expansion
underlying Laplace approximation.

» For technical reasons need almost sure convergence of ﬁA, to
fixed value 3/

> Asymptotics underlying Laplace approximation deterministic
since conditioning on X.
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Simulation studies

BIC: use of window size |W/| or number of points in quadrature
approximation of likelihood useless.

AIC vs BIC (Poisson process): AIC tends to choose too complex
models

CIC (cluster process): for cluster point processes CIC works better
than AIC and BIC that both choose too complex models
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Exercises

1. show (6) and (7).

2. Show that if sensitivity S(3/) is positive definite then least
false parameter value 3} is well-defined (exists and is unique)

3. Show EVI(85; X)TS(8;)"1VI(55; X) = trace [S(57)1%)]
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