Estimating functions and inhomogeneous point processes

Rasmus Waagepetersen
Department of Mathematics
Aalborg University
Denmark

April 17, 2024

Outline

Estimating equations and quasi-likelihood

Estimating functions for inhomogeneous spatial point processes

Composite information criteria for inhomogeneous point processes

Examples of estimating equations

Least squares (non-linear) : suppose Y_{i} has mean $\mu_{i}(\beta)$.
Minimizing

$$
\sum_{i=1}^{n}\left[Y_{i}-\mu_{i}(\beta)\right]^{2}
$$

leads to estimating equation (first derivative)

$$
\begin{equation*}
D^{\top}[Y-\mu(\beta)]=0 \tag{1}
\end{equation*}
$$

where

$$
D=\frac{\mathrm{d} \mu}{\mathrm{~d} \beta^{T}}=\left[\mathrm{d} \mu_{i} / \mathrm{d} \beta_{j}\right]_{i j}
$$

Moment estimation: suppose we know $\mathbb{E}_{\theta} g(Y)$ for some function g.

Then we estimate θ by solving

$$
g(y)=\mathbb{E}_{\theta} g(Y) \Leftrightarrow \mathbb{E}_{\theta} g(Y)-g(y)=0
$$

I.e. choose θ so that empirical value of g matches its expected value.

Example:

$$
\mathbb{E} S S E=\mathbb{E} \sum_{i=1}^{n}\left(Y_{i}-\bar{Y} .\right)^{2}=(n-1) \sigma^{2}
$$

Maximum likelihood estimation: suppose $f(y ; \theta)$ is likelihood of observation y. Then maximum likelihood estimate is

$$
\hat{\theta}=\underset{\theta}{\operatorname{argmax}} f(y ; \theta)=\underset{\theta}{\operatorname{argmax}} \log f(y ; \theta)
$$

Typically we find $\hat{\theta}$ by differentiation and equating to zero:

$$
s(\theta)=\frac{\mathrm{d}}{\mathrm{~d} \theta} \log f(y ; \theta)=0
$$

Exponential family:

$$
f(y ; \theta)=c(\theta) h(y) \exp [t(y) \cdot \theta]
$$

Then score is

$$
s(\theta)=\frac{\mathrm{d}}{\mathrm{~d} \theta} \log f(y ; \theta)=t(y)-\mathbb{E}_{\theta} t(Y)
$$

Thus (moment estimation)

$$
s(\theta)=0 \Leftrightarrow t(y)=\mathbb{E}_{\theta} t(Y)
$$

In general: estimating function e is function of data Y and unknown parameter θ. Estimate $\hat{\theta}$ is given as solution of estimating equation

$$
e(\theta)=0
$$

(typically we suppress data Y from the notation).
Hopefully unique solution!

Optimality (one-dimensional case)

Let θ^{*} denote true value of θ. We want:

1. $e\left(\theta^{*}\right)$ close to zero
2. $e(\theta)$ differs much from zero when θ differs from θ^{*}
3. OK if $e(\theta)$ unbiased estimating function

$$
\mathbb{E}_{\theta^{*}} e\left(\theta^{*}\right)=0
$$

and $\operatorname{Var}_{\theta^{*}} e\left(\theta^{*}\right)$ small.
2. OK if large sensitivity $e^{\prime}\left(\theta^{*}\right)$

This leads to criteria $\left(\mathbb{E}_{\theta^{*}} e^{\prime}\left(\theta^{*}\right)\right)^{2} / \operatorname{Var}_{\theta^{*}} e\left(\theta^{*}\right)$ which should be as big as possible. Equivalently, $\operatorname{Var}_{\theta^{*}} e\left(\theta^{*}\right) /\left(\mathbb{E}_{\theta^{*}} e^{\prime}\left(\theta^{*}\right)\right)^{2}$ should be as small as possible.

In the multidimensional case we consider

$$
I=S\left(\theta^{*}\right)^{\top} \operatorname{Var}_{\theta^{*}} e\left(\theta^{*}\right)^{-1} S\left(\theta^{*}\right)
$$

where S is sensitivity matrix

$$
S(\theta)=-\mathbb{E}\left[\frac{\mathrm{d}}{\mathrm{~d} \theta^{\top}} e(\theta)\right]
$$

We then say that e_{1} is better than e_{2} if

$$
I_{1}-I_{2}
$$

is positive semi-definite.
e is optimal within a class of estimating functions if it is better than any other estimating function in the class.

I is called the Godambe information.

Another view on optimality

By linear approximation (asymptotically) (assuming $S^{-1}\left(\theta^{*}\right)$ exists)

$$
0=e(\hat{\theta}) \approx e\left(\theta^{*}\right)-S\left(\theta^{*}\right)\left(\hat{\theta}-\theta^{*}\right) \Leftrightarrow\left(\hat{\theta}-\theta^{*}\right) \approx S^{-1}\left(\theta^{*}\right) e\left(\theta^{*}\right)
$$

Thus

$$
\operatorname{Var} \hat{\theta} \approx S^{-1}\left(\theta^{*}\right) \Sigma\left(S^{-1}\left(\theta^{*}\right)\right)^{\top}=I^{-1} \quad \Sigma=\mathbb{V a r e}\left(\theta^{*}\right)
$$

Hence we say e_{1} is better than e_{2} if

$$
\mathbb{V a r} \hat{\theta}_{2}-\operatorname{Var} \hat{\theta}_{1}=S_{2}^{-1} \Sigma_{2}\left(S_{2}^{-1}\right)^{\top}-S_{1}^{-1} \Sigma_{1}\left(S_{1}^{-1}\right)^{\top}
$$

is positive definite.
Same as before since

$$
S_{2}^{-1} \Sigma_{2}\left(S_{2}^{-1}\right)^{\top}-S_{1}^{-1} \Sigma_{1}\left(S_{1}^{-1}\right)^{\top}=I_{2}^{-1}-I_{1}^{-1}
$$

which is positive semi-definite if $I_{1}-I_{2}$ is positive semi-definite (see useful matrix result on next slide).

Useful matrix result

Assume A and B invertible.

$$
\begin{gathered}
B^{-1}-A^{-1}=A^{-1}(A-B) B^{-1} A A^{-1}=A^{-1}\left[(A-B) B^{-1}(B+A-B)\right] A^{-1} \\
=A^{-1}\left[A-B+(A-B) B^{-1}(A-B)\right] A^{-1}
\end{gathered}
$$

Hence if $A-B$ is positive definite so is $B^{-1}-A^{-1}$.

Case of MLE

For likehood score (under suitable regularity conditions ${ }^{1}$)

$$
\mathbb{V a r}_{\theta} s(\theta)=S
$$

so that Godambe information

$$
I=S
$$

is equal to the Fisher information.

$$
\operatorname{Var} \hat{\theta} \approx S^{-1}
$$

[^0]
Estimating functions and the likelihood score

The following result holds for an unbiased estimating function (under suitable regularity conditions) (one-dimensional case for ease of notation):

$$
\mathbb{E} s(\theta) e(\theta)=\mathbb{C o v}[s(\theta), e(\theta)]=S
$$

This implies

$$
\mathbb{C o r r}[s(\theta), e(\theta)]^{2}=\frac{S^{2}}{\operatorname{Vars}(\theta) \operatorname{Vare}(\theta)}=\frac{1}{\operatorname{Vars}(\theta)}
$$

That is the optimal estimating function has maximal correlation with the likelihood score.

Corollary: the likelihood score is optimal among all estimating functions.

Useful condition for optimality

Consider a class \mathcal{E} of estimating functions. e^{o} is optimal within \mathcal{E} if

$$
\begin{equation*}
\Sigma_{e e^{o}}=\mathbb{C o v}\left[e, e^{o}\right]=S_{e} \tag{2}
\end{equation*}
$$

for all $e \in \mathcal{E}$.
The property (2) implies $\mathbb{V a r} e^{0}=S_{e^{\circ}}=S_{e^{\circ}}^{\top}$ and we obtain

$$
I_{e^{\circ}}=S_{e^{\circ}} \quad \mathbb{V a r} \hat{\theta}^{\circ} \approx S_{e^{\circ}}^{-1}
$$

as for the likelihood score.

Proof of if part:
Define standardized estimating function $e_{s}=S_{e}^{\top} \Sigma_{e}^{-1} e$.
Then $\Sigma_{e_{s}}=\mathbb{V a r} e_{s}=l_{e}$. Thus $I_{e^{o}}-l_{e}=\mathbb{V a r} e_{s}^{o}-\operatorname{Var} e_{s}$.
Moreover (2) is equivalent to $\Sigma_{e_{s} e_{s}^{o}}=\Sigma_{e_{s}^{o} e_{s}}=\Sigma_{e_{s}}$. Then

$$
\operatorname{Var}\left[e_{s}^{o}-e_{s}\right]=\Sigma_{e_{s}^{o}}-\Sigma_{e_{s}}
$$

which proves the result since the LHS is positive semi-definite.

Exercises

1. calculate S and Σ and I for the non-linear least squares estimating function (1). Is the estimating function unbiased ?
2. Show that $\frac{\mathrm{d}}{\mathrm{d} \theta} \log \left(c(\theta)^{-1}\right)=\mathbb{E}_{\theta} t(Y)$ for the exponential family model on slide 5 .
3. show results on slide 'Estimating functions and the likelihood score' (hint: use the rule for differentiation of a product to show the first result)

Exercises cntd.

4. (Quasi-likelihood) Suppose $Y=\left(Y_{1}, \ldots, Y_{n}\right)$ has mean vector $\mu(\beta)$ and (known) covariance matrix V.

Consider the class of estimating functions

$$
A[Y-\mu(\beta)]
$$

where $A q \times n$ (all linear combinations of residual vector). Show that the optimal choice is $A=D^{\top} V^{-1}$.

What is the Godambe information matrix ?
5. Check the proof on slide 14.

Now: inhomogeneous point processes.

Data example: tropical rain forest trees

Observation window $W=[0,1000] \times[0,500]$

Beilschmiedia

Elevation

Ocotea

Gradient norm (steepness)

Sources of variation: elevation and gradient covariates and possible clustering/aggregation due to unobserved covariates and/or seed dispersal.

Spatial point process

Spatial point process: random collection of points
(finite number of points in bounded sets)

Intensity of a spatial point process

Fundamental characteristic of point process: mean of counts $N(A)=\#(\mathrm{X} \cap A)$.

Intensity of a spatial point process

Fundamental characteristic of point process: mean of counts $N(A)=\#(\mathrm{X} \cap A)$.

Intensity measure μ :

$$
\mu(A)=\mathbb{E} N(A), \quad A \subseteq \mathbb{R}^{2}
$$

Intensity of a spatial point process

Fundamental characteristic of point process: mean of counts $N(A)=\#(\mathrm{X} \cap A)$.

Intensity measure μ :

$$
\mu(A)=\mathbb{E} N(A), \quad A \subseteq \mathbb{R}^{2}
$$

In practice often given in terms of intensity function

$$
\mu(A)=\int_{A} \rho(u) \mathrm{d} u
$$

Intensity of a spatial point process

Fundamental characteristic of point process: mean of counts $N(A)=\#(\mathrm{X} \cap A)$.

Intensity measure μ :

$$
\mu(A)=\mathbb{E} N(A), \quad A \subseteq \mathbb{R}^{2}
$$

In practice often given in terms of intensity function

$$
\mu(A)=\int_{A} \rho(u) \mathrm{d} u
$$

Infinitesimal interpretation: $N(A)$ binary variable (presence or absence of point in A) when A very small. Hence

$$
\rho(u)|A| \approx \mathbb{E} N(A) \approx P(\mathrm{X} \text { has a point in } \mathrm{A})
$$

Covariance of counts and pair correlation function

Pair correlation function

$$
\mathbb{E} \sum_{u, v \in \mathrm{X}}^{\neq} 1[u \in A, v \in B]=\int_{A} \int_{B} \rho(u) \rho(v) g(u, v) \mathrm{d} u \mathrm{~d} v
$$

Covariance between counts:
$\operatorname{Cov}[N(A), N(B)]=\int_{A \cap B} \rho(u) \mathrm{d} u+\int_{A} \int_{B} \rho(u) \rho(v)(g(u, v)-1) \mathrm{d} u \mathrm{~d} v$

Pair correlation $g(u, v)>1$ implies positive correlation.

Campbell formulae

From definitions of intensity and pair correlation function we obtain the Campbell formulae:

$$
\begin{gathered}
\mathbb{E} \sum_{u \in \mathrm{X}} h(u)=\int h(u) \rho(u) \mathrm{d} u \\
\mathbb{E} \sum_{u, v \in \mathrm{X}}^{\neq} h(u, v)=\iint h(u, v) \rho(u) \rho(v) g(u, v) \mathrm{d} u \mathrm{~d} v
\end{gathered}
$$

The Poisson process

Assume μ locally finite measure on \mathbb{R}^{2} with density ρ.

The Poisson process

Assume μ locally finite measure on \mathbb{R}^{2} with density ρ.
X is a Poisson process with intensity measure μ if for any bounded region B with $\mu(B)>0$:

1. $N(B) \sim \operatorname{Poisson}(\mu(B))$
2. Given $N(B)$, points in $\mathrm{X} \cap B$ i.i.d. with density $\propto \rho(u), u \in B$

$$
B=[0,1] \times[0,0.7]:
$$

Homogeneous: $\rho=150 / 0.7$ Inhomogeneous: $\rho(x, y) \propto \mathrm{e}^{-10.6 y}$

Independence properties of Poisson process

1. if A and B are disjoint then $N(A)$ and $N(B)$ independent
2. - this implies $\operatorname{Cov}[N(A), N(B)]=0$ if $A \cap B=\emptyset$
3. - which in turn implies $g(u, v)=1$ for a Poisson process

Inhomogeneous Poisson process with covariates

Log linear intensity function

$$
\rho_{\beta}(u)=\exp \left(z(u)^{\top} \beta\right), \quad z(u)=\left(1, z_{\mathrm{elev}}(u), z_{\mathrm{grad}}(u)\right)^{\top}
$$

Inhomogeneous Poisson process with covariates

Log linear intensity function

$$
\rho_{\beta}(u)=\exp \left(z(u)^{\top} \beta\right), \quad z(u)=\left(1, z_{\mathrm{elev}}(u), z_{\mathrm{grad}}(u)\right)^{\top}
$$

Consider indicators $N_{i}=1\left[\mathrm{X} \cap C_{i} \neq \emptyset\right]$ of occurrence of points in disjoint $C_{i}\left(W=\cup C_{i}\right)$ where $P\left(N_{i}=1\right) \approx \rho_{\beta}\left(u_{i}\right)\left|C_{i}\right|, u_{i} \in C_{i}$

Inhomogeneous Poisson process with covariates

Log linear intensity function

$$
\rho_{\beta}(u)=\exp \left(z(u)^{\top} \beta\right), \quad z(u)=\left(1, z_{\mathrm{elev}}(u), z_{\mathrm{grad}}(u)\right)^{\top}
$$

Consider indicators $N_{i}=1\left[\mathrm{X} \cap C_{i} \neq \emptyset\right]$ of occurrence of points in disjoint $C_{i}\left(W=\cup C_{i}\right)$ where $P\left(N_{i}=1\right) \approx \rho_{\beta}\left(u_{i}\right)\left|C_{i}\right|, u_{i} \in C_{i}$ Limit $\left(\left|C_{i}\right| \rightarrow 0\right)$ of likelihood ratios
$\prod_{i=1}^{n} \frac{\left(\rho_{\beta}\left(u_{i}\right)\left|C_{i}\right|\right)^{N_{i}}\left(1-\rho_{\beta}\left(u_{i}\right)\left|C_{i}\right|\right)^{1-N_{i}}}{\left(1\left|C_{i}\right|\right)^{N_{i}}\left(1-1\left|C_{i}\right|\right)^{1-N_{i}}} \equiv \prod_{i=1}^{n} \frac{\rho_{\beta}\left(u_{i}\right)^{N_{i}}\left(1-\rho_{\beta}\left(u_{i}\right)\left|C_{i}\right|\right)^{1-N_{i}}}{\left(1-1\left|C_{i}\right|\right)^{1-N_{i}}}$
is

$$
L(\beta)=\left[\prod_{u \in \mathrm{X} \cap W} \rho_{\beta}(u)\right] \exp \left(|W|-\int_{W} \rho_{\beta}(u) \mathrm{d} u\right)
$$

This is the Poisson likelihood function.

Maximum likelihood parameter estimate

Score function:

$$
s(\beta)=\frac{\mathrm{d}}{\mathrm{~d} \beta} \log L(\beta)=\sum_{u \in \mathrm{X} \cap W} z(u)-\int_{W} z(u) \rho_{\beta}(u) \mathrm{d} u
$$

Maximum likelihood estimate $\hat{\beta}$ maximizes $L(\beta)$. I.e. solution of

$$
s(\beta)=0 .
$$

Note by Campbell $\boldsymbol{s}(\beta)$ unbiased:

$$
\mathbb{E} s(\beta)=0
$$

Observed information ($p \times p$ matrix):

$$
I(\beta)=-\frac{\mathrm{d}}{\mathrm{~d} \beta^{\top}} s(\beta)=\int_{W} z(u) z(u)^{\top} \rho_{\beta}(u) \mathrm{d} u
$$

Unique maximum/root if $I(\beta)$ positive definite

By Campbell formulae

$$
\operatorname{Vars}(\beta)=I(\beta)
$$

and according to standard asymptotic results for MLE (β^{*} 'true' value)

$$
\hat{\beta} \approx N\left(\beta^{*}, I\left(\beta^{*}\right)^{-1}\right)
$$

' n ' (number of observations) tends to infinity ?
Possibilities: increasing observation window or increasing intensity

Problem: Poisson process does not fit rain forest data due to excess clustering (e.g. seed dispersal) !

Hence variance of $\hat{\beta}$ is underestimated by $I\left(\beta^{*}\right)^{-1}$ when a Poisson process is assumed.

Cluster process: Inhomogeneous Thomas process

> Parents stationary Poisson point process intensity κ

Poisson (α) number of offspring distributed around parents according to bivariate Gaussian density with std. dev.
ω

Inhomogeneity: offspring survive according to probability

$$
p(u) \propto \exp \left(z(u)^{\top} \beta\right)
$$

depending on covariates (independent thinning).

Intensity and pair correlation function for Thomas

We can write Thomas process X as

$$
X=\cup_{c \in C} X_{c}
$$

where C stationary Poisson process of intensity κ and given C, the X_{c} are independent Poisson processes with intensity functions $p(u) \alpha k(u-c)$ where $k(\cdot)$ density of $N_{2}\left(0, \omega^{2} I\right)$.

With $p(u)=\exp \left(z(u)^{\top} \beta\right) / M$ the intensity becomes

$$
\rho(u)=\alpha \kappa \exp \left[z(u)^{\top} \beta\right] / M=\exp \left[\beta_{0}+z(u)^{\top} \beta\right]
$$

where $\exp \left(\beta_{0}\right)=\alpha \kappa / M$.
The pair correlation function becomes (for Thomas process in \mathbb{R}^{d})

$$
g(u, v)=1+\left(4 \pi \omega^{2}\right)^{-d / 2} \exp \left[-\{r /(2 \omega)\}^{2}\right] / \kappa \quad r=\|v-u\|
$$

Note $g(u, v)>1$!

Parameter estimation: regression parameters

Likelihood function for inhomogeneous Thomas process is complicated.

Can instead use Poisson score $s(\beta)$ as an estimating function (Poisson likelihood now composite likelihood).
I.e. estimate $\hat{\beta}$ again solution of

$$
s(\beta)=0
$$

But now larger variance of $s(\beta)$ due to positive correlation!

Exercises

1. Show that $s(\beta)$ is an unbiased estimating function (both in the Poisson case and for the inhom. Thomas).
2. For a Poisson process, show that

$$
\operatorname{Vars}(\beta)=\operatorname{Var} \sum_{u \in \mathrm{X} \cap W} z(u)=I(\beta)
$$

3. Compute the inverse Godambe information for the estimating function $s(\beta)$ when X is a general point process with pair correlation function $g \neq 1$ (hint: use second-order Campbell formula). Compare with the case of a Poisson process $(g=1)$.
4. Verify the expressions for the intensity and pair correlation function of a Thomas process (slide 35).

Quasi-likelihood for spatial point processes

Quasi-likelihood based on data vector Y was optimal linear transformation

$$
D^{\top} V^{-1} R
$$

of residual vector

$$
R=Y-\mu(\beta)
$$

Can we adapt quasi-likelihood to spatial point processes ?

What is residual in this case?

Residual measure

For point process X and $A \subset \mathbb{R}^{2}$ residual measure is

$$
R(A)=N(A)-\mathbb{E} N(A)=\sum_{u \in \mathrm{X}} 1[u \in A]-\int 1[u \in A] \rho(u ; \beta) \mathrm{d} u
$$

$(N(A)$ number of points in $A)$.

Residual measure

For point process X and $A \subset \mathbb{R}^{2}$ residual measure is

$$
R(A)=N(A)-\mathbb{E} N(A)=\sum_{u \in \mathrm{X}} 1[u \in A]-\int 1[u \in A] \rho(u ; \beta) \mathrm{d} u
$$

$(N(A)$ number of points in $A)$.
In analogy with quasi-likelihood look for optimal linear transformation of the residual measure

$$
e_{f}(\beta)=\int f(u ; \beta) R(\mathrm{~d} u)=\sum_{u \in \mathrm{X}} f(u ; \beta)-\int f(u ; \beta) \rho(u ; \beta) \mathrm{d} u
$$

where $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{p}$ real vector-valued "weight" function.
Estimate $\hat{\beta}_{f}$ solves estimating equation

$$
e_{f}(\beta)=0
$$

Remember: ϕ is optimal if

$$
\begin{equation*}
\operatorname{Cov}\left[e_{\phi}, e_{f}\right]=S_{f} \tag{3}
\end{equation*}
$$

for all f.

Remember: ϕ is optimal if

$$
\begin{equation*}
\operatorname{Cov}\left[e_{\phi}, e_{f}\right]=S_{f} \tag{3}
\end{equation*}
$$

for all f.

Using the Campbell formulae one can show that this is satisfied if ϕ solves following integral equation:

$$
\begin{equation*}
\phi(u ; \beta)+\int_{W} t(u, v) \phi(v ; \beta) \mathrm{d} v=\frac{\mathrm{d}}{\mathrm{~d} \beta} \log \rho(u ; \beta) \quad u \in W \tag{4}
\end{equation*}
$$

where integral operator kernel is

$$
t(u, v)=\rho(v ; \beta)[g(u, v)-1]
$$

Poisson process case

Poisson process case: $g(u, v)=1$ so integral equation simplifies:

$$
\begin{array}{r}
\phi(u)+\int_{W} \rho(v ; \beta)[g(u, v)-1] \phi(v) \mathrm{d} v=\frac{\mathrm{d}}{\mathrm{~d} \beta} \log \rho(u ; \beta) \Rightarrow \\
\phi(u)=\frac{\mathrm{d}}{\mathrm{~d} \beta} \log \rho(u ; \beta)=\frac{\rho^{\prime}(u ; \beta)}{\rho(u ; \beta)}
\end{array}
$$

Hence resulting estimating function is

$$
\sum_{u \in \mathrm{X} \cap W} \frac{\rho^{\prime}(u ; \beta)}{\rho(u ; \beta)}-\int_{W} \rho^{\prime}(u ; \beta) \mathrm{d} u
$$

which coincides with score of Poisson process log likelihood.

Details about Nyström method

Use Riemann sum dividing W into cells C_{i} with representative points $u_{i}, i=1, \ldots, n$. Then we obtain linear equations

$$
\begin{equation*}
\phi\left(u_{i} ; \beta\right)+\sum_{j=1}^{n} t\left(u_{i}, u_{j}\right)\left|C_{j}\right| \phi\left(u_{j} ; \beta\right)=\frac{\mathrm{d}}{\mathrm{~d} \beta} \log \rho\left(u_{i} ; \beta\right) \quad i=1, \ldots, n \tag{5}
\end{equation*}
$$

which in matrix form become

$$
(I+T) \bar{\phi}=\left[\frac{\mathrm{d}}{\mathrm{~d} \beta} \log \rho\left(u_{i} ; \beta\right)\right]_{i}
$$

where $\bar{\phi}=\left(\phi\left(u_{i}\right)\right)_{i}$ and $T_{i j}=t\left(u_{i}, u_{j}\right)\left|C_{j}\right|$.
Defining $\mu_{i}=\rho\left(u_{i} ; \beta\right)\left|C_{i}\right|, M=\operatorname{diag}\left(\mu_{1}, \ldots, \mu_{n}\right)$, and $G=\left[G_{i j}\right]_{i j}$ with $G_{i j}=\mu_{i} \mu_{j}\left[g\left(u_{i}, v_{j}\right)-1\right]$, this is equivalent to

$$
(M+G) \bar{\phi}=M\left[\frac{\mathrm{~d}}{\mathrm{~d} \beta} \log \rho\left(u_{i} ; \beta\right)\right]_{i}=D
$$

where D is matrix of partial derivatives $\mathrm{d} \mu_{i} / \mathrm{d} \beta_{j}$.

Quasi-likelihood

Using solution

$$
\bar{\phi}=(M+G)^{-1}=V^{-1} D
$$

with $V=M+G$ the resulting approximated optimal estimating function becomes the quasi-likelihood score

$$
D^{\top} V^{-1}[Y-\mu]
$$

where

$$
Y=\left(Y_{1}, \ldots, Y_{m}\right)^{\top}, \quad Y_{i}=1\left[\mathrm{X} \text { has point in } C_{i}\right] .
$$

μ mean of Y :

$$
\mu_{i}=\mathbb{E} Y_{i}=\rho\left(u_{i} ; \beta\right)\left|C_{i}\right| \text { and } D=\left[\mathrm{d} \mu\left(u_{i}\right) / \mathrm{d} \beta_{j}\right]_{i j}
$$

V covariance of Y

$$
V_{i j}=\mathbb{C o v}\left[Y_{i}, Y_{j}\right]=\mu_{i} 1[i=j]+\mu_{i} \mu_{j}\left[g\left(u_{i}, u_{j}\right)-1\right]
$$

Exercise

1. Show that (5) implies (3).

Hint: start by evaluating (3) using the Campbell formulae

All models are wrong...

"All models are wrong but some are useful"

If any model we propose/select/estimate is wrong how can we talk of a 'true' parameter value, true model, optimal estimation method... ?

Approach:

- consider 'least false' model - i.e. model among a set of candidate models which is closest to the unknown true model
- consider 'least false' parameter value - i.e. parameter value that makes a given model closest to unknown true model

Kullback-Leibler divergence

Consider two densities f and g with same support and $X \sim f$. Then Kullback-Leibler divergence of g from f is

$$
D_{K L}(f, g)=\int f(x) \log \frac{f(x)}{g(x)} \mathrm{d} x=-\mathbb{E} \log \frac{g(X)}{f(X)}=-\mathbb{E}[\log g(X)-\log f(X)]
$$

By Jensen's inequality or just $\log (x) \leq x-1$,

$$
\begin{equation*}
D_{K L}(f, g) \geq 0 \tag{6}
\end{equation*}
$$

and " $=$ " only if $f=g$-almost surely (Gibbs' inequality).
Suppose f represents true distribution of data and g_{1}, \ldots, g_{K} are candidate models.

We may then declare g_{I} to be the least false model if

$$
I=\underset{k=1, \ldots, K}{\operatorname{argmin}} D_{K L}\left(f, g_{k}\right)
$$

Similar, if the g_{k} are parametrized by some unknown parameter $\theta_{k} \in \Theta_{k}$ we may declare θ_{k}^{*} to be the least false parameter value for g_{k} if

$$
\theta_{k}^{*}=\underset{\theta_{k} \in \Theta_{k}}{\operatorname{argmin}} D_{K L}\left(f, g\left(\cdot ; \theta_{k}\right)\right)
$$

Case of composite likelihood for point process

Suppose X is a point process with true intensity function λ and ρ is some other intensity function.

Also let $I(\cdot ; \lambda)$ and $I(\cdot ; \rho)$ denote corresponding Poisson log density functions (first order composite likelihood functions)

Then we may define composite Kullback-Leibler divergence as

$$
C D_{K L}(\lambda, \rho)=-\mathbb{E}[I(X ; \rho)-I(X ; \lambda)]
$$

Again

$$
\begin{equation*}
C D_{K L}(\lambda, \rho) \geq 0 \tag{7}
\end{equation*}
$$

and " $=$ " only if $\lambda=\rho$ almost surely with respect to distribution of X (exercise).

Least false intensity function among $\rho_{1}, \ldots, \rho_{K}$ minimizes $C D_{K L}\left(\lambda, \rho_{l}\right)$.

For parametric model $\rho_{k}\left(\cdot ; \theta_{k}\right)$, least false θ_{k} is

$$
\theta_{k}^{*}=\underset{\theta_{k} \in \Theta_{k}}{\operatorname{argmin}} C D_{K L}\left(\lambda, \rho\left(\cdot ; \theta_{k}\right)\right)
$$

Regression model for the intensity function

X spatial point process observed in window $W \subset \mathbb{R}^{d}$.
Popular log-linear model for the intensity function:

$$
\rho(u ; \beta)=\exp \left[z(u)^{\top} \beta\right]
$$

where $z(u)=\left(z_{1}(u), \ldots, z_{p}(u)\right)^{\top}$ covariate vector associated to spatial location u.

Model selection problem: which subset of covariates should be used ?

One approach is to use information criteria (AIC, BIC,....)
How to do this in case of a spatial point process ?
I got this question back in 2008 while I was in Spar Nord Bank :)

Notation: I index for collection of models $M_{/}$characterized by varying subsets $z_{l}(u)$ of covariates and with parameter vectors β_{l}. I.e. $z_{l}(u)=\left(z_{j}(u)\right)_{u \in I_{l}}, l_{I} \subseteq\{1, \ldots, p\}$.

The log-likelihood for model M_{I} in case of a Poisson process is

$$
I\left(\beta_{l} ; \mathrm{X}\right)=\sum_{u \in \mathrm{X}} \mathrm{z}_{l}(u)^{\mathrm{T}} \beta_{l}-\int_{W} \rho\left(u ; \beta_{l}\right) \mathrm{d} u
$$

AIC:

$$
-2 I(\hat{\beta} ; X)+2 p_{l}
$$

Is this theoretically justified for a Poisson process ?
Moreover, we often use $I\left(\beta_{I} ; X\right)$ as a kind of composite likelihood in case X is not a Poisson process.

Can we still use AIC or do we need to consider composite information criterion (CIC) ?

Bayesian information criterion

What about BIC:

$$
-2 l\left(\hat{\beta}_{l} ; X\right)+\log (n) p_{l}
$$

What is n ? ("number of observations") ?

- 1 ?
- Number N of points in $X \cap W$?
- Size of observation window $|W|$?
- Number of points used in quadrature scheme for approximation of likelihood? (analogy to logistic regression)

Asymptotic results for misspecified model

'Least false β_{l} ', β_{l}^{*}, minimizes Kullback-Leibler distance:

$$
\beta_{l}^{*}=\underset{\beta^{\prime}}{\operatorname{argmin}} C D_{K L}\left(\rho\left(\cdot ; \beta_{l}\right), \lambda\right)=\underset{\beta}{\operatorname{argmin}} \mathbb{E}\left[-I\left(\beta_{l} ; X\right)\right]
$$

Given (wrong) model M_{l} we can under reasonable conditions show that

$$
\hat{\beta}_{I}-\beta_{l}^{*} \approx N(0, V)
$$

That is, composite likelihood estimate will asympotically make the fitted model M_{l} least false.

The covariance matrix has the following expression:

$$
S_{l}\left(\beta_{l}^{*}\right)^{-1} \Sigma_{l} S_{l}\left(\beta_{l}^{*}\right)^{-1}
$$

where unfortunately $\Sigma_{\text {l }}$ is not known...

Under reasonable conditions, $S_{l}\left(\beta_{l}^{*}\right)^{-1} \Sigma_{l} S_{l}\left(\beta_{l}^{*}\right)^{-1}$ is of the order $|W|^{-1}$!

Model selection

Choose model so that

$$
C\left(\rho\left(\cdot ; \beta_{l}^{*}\right)\right)=\mathbb{E}\left[-l\left(\beta_{l}^{*} ; \mathrm{X}\right)\right]
$$

is minimal.

Issue: β_{l}^{*} unknown in practice since it depends on unknown $\lambda(\cdot)$.
Suggestion: given data X and resulting estimates $\hat{\beta}_{l}$, minimize

$$
\mathbb{E} C\left(\rho\left(\cdot ; \hat{\beta}_{l}\right)\right)
$$

over models M_{l}.
Note: $\mathbb{E} C\left(\rho\left(\cdot ; \hat{\beta}_{l}\right)\right)=\mathbb{E} \mathbb{E}\left[-l\left(\hat{\beta}_{l} ; \tilde{\mathrm{X}}\right) \mid \mathrm{X}\right]$
Problem: both expectations unknown.

Estimation of $\mathbb{E} C\left(\rho\left(\cdot ; \hat{\beta}_{I}\right)\right)$

Suppose we have two independent copies of the point process X and \tilde{X} and we obtain $\hat{\beta}_{l}$ from X.

Then

$$
-I\left(\hat{\beta}_{l}, \tilde{\mathrm{X}}\right)=-\sum_{u \in \tilde{\mathrm{X}}} \mathrm{z}_{l}(u)^{\mathrm{\top}} \hat{\beta}_{l}+\int_{W} \rho\left(u ; \hat{\beta}_{l}\right) \mathrm{d} u
$$

would be an unbiased estimate of

$$
\mathbb{E} C\left(\rho\left(\cdot ; \hat{\beta}_{I}\right)\right)=\mathbb{E} \mathbb{E}[-I(\hat{\beta} ; \tilde{\mathrm{X}}) \mid \mathrm{X}]
$$

(similar to cross validation)
However, we only have the single realization X .

The observed likelihood

$$
-\sum_{u \in \mathrm{X}} \mathrm{z}_{l}(u)^{\top} \hat{\beta}_{I}+\int_{W} \rho\left(u ; \hat{\beta}_{l}\right) \mathrm{d} u
$$

is a biased (too small) estimate due to overfitting.

Estimation of bias

We can approximate log likelihood using second-order Taylor expansion:
$\left.I\left(\hat{\beta}_{l} ; \tilde{\mathrm{X}}\right) \approx I\left(\beta_{l}^{*} ; \tilde{\mathrm{X}}\right)+\nabla I\left(\beta_{l}^{*} ; \tilde{\mathrm{X}}\right)^{\top}\left(\hat{\beta}_{l}-\beta_{l}^{*}\right)-\frac{1}{2}\left(\hat{\beta}_{I}-\beta_{l}^{*}\right)^{\top} S\left(\beta_{l}^{*}\right)\left(\hat{\beta}_{I}-\beta_{l}^{*}\right)\right)$
and (observed likelihood)
$I\left(\hat{\beta}_{I} ; X\right) \approx I\left(\beta_{l}^{*} ; X\right)+\nabla I\left(\beta_{l}^{*} ; X\right)^{\top}\left(\hat{\beta}_{I}-\beta_{l}^{*}\right)-\frac{1}{2}\left(\hat{\beta}_{I}-\beta_{l}^{*}\right)^{\top} S\left(\beta_{l}^{*}\right)\left(\hat{\beta}_{I}-\beta_{l}^{*}\right)$
Here $S(\beta)$ is sensitivity

$$
S(\beta)=\int_{W} z_{l}(u)^{\top} z_{l}(u) \rho\left(u ; \beta_{l}\right) \mathrm{d} u
$$

Bias (recall first Bartlett identity $\left.\mathbb{E} \nabla I\left(\beta_{l}^{*} ; \tilde{\mathrm{X}}\right)^{\top}=0\right)$:

$$
\mathbb{E} I\left(\hat{\beta}_{l} ; \tilde{\mathrm{X}}\right)-\mathbb{E} I\left(\hat{\beta}_{l} ; \mathrm{X}\right)=-\mathbb{E} \nabla I\left(\beta_{l}^{*} ; \mathrm{X}\right)^{\top}\left(\hat{\beta}_{l}-\beta_{l}^{*}\right)+\mathbb{E}\left[o_{P}(1)\right]
$$

Using first order Taylor

$$
\nabla I\left(\beta_{l}^{*} ; X\right) \approx S\left(\hat{\beta}_{I}\right)\left(\hat{\beta}_{I}-\beta_{l}^{*}\right) \Rightarrow\left(\hat{\beta}_{I}-\beta_{I}^{*}\right) \approx S\left(\beta_{l}^{*}\right)^{-1} \nabla I\left(\beta_{I}^{*} ; X\right)
$$

we get

$$
\mathbb{E} \nabla I\left(\beta_{l}^{*} ; \mathrm{X}\right)^{\top}\left(\hat{\beta}_{I}-\beta_{l}^{*}\right)=\mathbb{E} \nabla I\left(\beta_{l}^{*} ; \mathrm{X}\right)^{\top} S\left(\beta_{l}^{*}\right)^{-1} \nabla I\left(\beta_{l}^{*} ; \mathrm{X}\right)+\mathbb{E} o_{P}(1)
$$

$$
=\operatorname{trace}\left[S\left(\beta_{l}^{*}\right)^{-1} \Sigma_{l}\right]+\mathbb{E} o_{P}(1)
$$

where

$$
\Sigma_{I}=\operatorname{Var} \nabla I\left(\beta_{l}^{*} ; X\right)
$$

The previous expansions work when we have

$$
\hat{\beta}_{I}-\beta_{I}^{*}=O_{P}\left(|W|^{-1 / 2}\right)
$$

'consistency wrt least false parameter value under M_{l} '
As mentioned before we can obtain this consistency for wide class of point processes (including Cox and Cluster)

To obtain $\mathbb{E}_{o_{P}}(1)=o(1)$ we need technical condition of uniform integrability. Often ignored in literature.

What about AIC ?

Suppose X is a Poisson process and M_{l} is the true model. Then by standard Bartlett identity

$$
\Sigma_{I}=S_{n}\left(\beta_{l}^{*}\right)
$$

and

$$
\operatorname{trace} \Sigma_{l} S_{n}\left(\beta_{l}^{*}\right)^{-1}=\operatorname{trace} I_{p_{l}}=p_{l}=\text { length } \beta_{l}
$$

This gives AIC criterion for model M_{l} !
In general we need to estimate (Takeuchi) bias correction

$$
\operatorname{trace} S\left(\beta_{l}^{*}\right)^{-1} \Sigma_{l}
$$

Suggestion so far: estimate $S\left(\beta_{l}^{*}\right)$ by $S\left(\hat{\beta}_{I}\right)$

Regarding Σ_{l} :

$$
\begin{aligned}
& \Sigma_{l}=\mathbb{V a r} \nabla I\left(\beta_{l}^{*}\right) \\
= & \int_{W} z_{l}(u)^{\top} z_{l}(u) \lambda(u) \mathrm{d} u+\int_{W^{2}} z_{l}(u)^{\top} z_{l}(v) \lambda(u) \lambda(v)[g(u, v)-1] \mathrm{d} u \mathrm{~d} v
\end{aligned}
$$

We approximate $\lambda(u) \approx \rho\left(u ; \hat{\beta}_{I}\right)$ and obtain

$$
\operatorname{trace} \Sigma_{l} S\left(\beta_{l}^{*}\right)^{-1} \approx p_{l}+\operatorname{trace}\left[T\left(\hat{\beta}_{l}\right) S\left(\beta_{l}^{*}\right)^{-1}\right]
$$

where

$$
T\left(\hat{\beta}_{l}\right)=\int_{W^{2}} z_{l}(u)^{\top} z_{l}(v) \rho\left(u ; \hat{\beta}_{l}\right) \rho\left(v ; \hat{\beta}_{l}\right)[\hat{g}(u-v)-1] \mathrm{d} u \mathrm{~d} v
$$

These quantities and estimate \hat{g} can be obtained from output of spatstat procedure kppm.

Bayesian information Criterion

Very different type of reasoning compared to AIC.
Impose prior $P\left(M=M_{l}\right)$ for model M and prior $p\left(\beta_{l} \mid M_{l}\right)$ for β_{l} given $M=M_{l}$.

Given M_{I} and β_{l} assume X Poisson process with density $f\left(\mathrm{x} \mid \beta_{l}, M_{l}\right)$.

Suppose uniform prior on models M_{l}. Then posterior of M is

$$
\begin{aligned}
& P\left(M=M_{l} \mid \mathrm{X}\right) \propto P\left(\mathrm{X} \mid M_{l}\right) P\left(M_{l}\right) \propto P\left(\mathrm{X} \mid M_{l}\right) \\
= & \int_{\mathbb{R}^{p_{l}}} f\left(\mathrm{X} \mid \beta_{l}, M_{l}\right) p\left(\beta_{l} \mid M_{l}\right) \mathrm{d} \beta_{l}
\end{aligned}
$$

Using a Laplace approximation of the integral one obtains

$$
\log P\left(\mathrm{X} \mid M_{l}\right)=I\left(\hat{\beta}_{l} ; \mathrm{X}\right)-\frac{p_{l}}{2} \log (\mu)+O(1)
$$

where μ is marginal mean of number of points in X.

Neglecting $O(1)$ terms and estimating $\mu \approx N$ where N is number of points in X we obtain

$$
\operatorname{BIC}\left(M_{l}\right)=-2 l\left(\hat{\beta}_{l} ; \mathrm{X}\right)+\log (N) p_{l}
$$

I.e. 'number of observations' is number of points !

Comparison with AIC/CIC:

- In Bayesian setting, we by assumption use the true model. No mention of 'least false parameter value'.
- $\hat{\beta}_{\text {I }}$ convenient starting point for second order Taylor expansion underlying Laplace approximation.
- For technical reasons need almost sure convergence of $\hat{\beta}_{\text {I }}$ to fixed value β_{l}^{*}
- Asymptotics underlying Laplace approximation deterministic since conditioning on X .

Simulation studies

BIC: use of window size $|W|$ or number of points in quadrature approximation of likelihood useless.

AIC vs BIC (Poisson process): AIC tends to choose too complex models

CIC (cluster process): for cluster point processes CIC works better than AIC and BIC that both choose too complex models

Exercises

1. show (6) and (7).
2. Show that if sensitivity $S\left(\beta_{l}\right)$ is positive definite then least false parameter value β_{l}^{*} is well-defined (exists and is unique)
3. Show $\mathbb{E} \nabla I\left(\beta_{l}^{*} ; \mathrm{X}\right)^{\top} S\left(\beta_{l}^{*}\right)^{-1} \nabla I\left(\beta_{l}^{*} ; \mathrm{X}\right)=\operatorname{trace}\left[S\left(\beta_{l}^{*}\right)^{-1} \Sigma_{I}\right]$

[^0]: ${ }^{1}$ E.g. interchange of differentiation and integration allowed

