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Examples of estimating equations

Least squares (non-linear) : suppose Yi has mean µi (β).

Minimizing
n

∑

i=1

[Yi − µi (β)]
2

leads to estimating equation (first derivative)

DT[Y − µ(β)] = 0 (1)

where

D =
dµ

dβT
=

[

dµi/dβj
]

ij
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Moment estimation: suppose we know Eθg(Y ) for some function
g .

Then we estimate θ by solving

g(y) = Eθg(Y ) ⇔ Eθg(Y )− g(y) = 0

I.e. choose θ so that empirical value of g matches its expected
value.

Example:

ESSE = E

n
∑

i=1

(Yi − Ȳ·)
2 = (n − 1)σ2
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Maximum likelihood estimation: suppose f (y ; θ) is likelihood of
observation y . Then maximum likelihood estimate is

θ̂ = argmax
θ

f (y ; θ) = argmax
θ

log f (y ; θ)

Typically we find θ̂ by differentiation and equating to zero:

s(θ) =
d

dθ
log f (y ; θ) = 0

Exponential family:

f (y ; θ) = c(θ)h(y) exp[t(y) · θ]

Then score is

s(θ) =
d

dθ
log f (y ; θ) = t(y)− Eθt(Y )

Thus (moment estimation)

s(θ) = 0 ⇔ t(y) = Eθt(Y )
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In general: estimating function e is function of data Y and
unknown parameter θ. Estimate θ̂ is given as solution of
estimating equation

e(θ) = 0

(typically we suppress data Y from the notation).

Hopefully unique solution !
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Optimality (one-dimensional case)

Let θ∗ denote true value of θ. We want:

1. e(θ∗) close to zero

2. e(θ) differs much from zero when θ differs from θ∗

1. OK if e(θ) unbiased estimating function

Eθ∗e(θ
∗) = 0

and Varθ∗e(θ
∗) small.

2. OK if large sensitivity e ′(θ∗)

This leads to criteria (Eθ∗e
′(θ∗))2 /Varθ∗e(θ

∗) which should be as
big as possible. Equivalently, Varθ∗e(θ

∗)/ (Eθ∗e
′(θ∗))2 should be

as small as possible.
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In the multidimensional case we consider

I = S(θ∗)TVarθ∗e(θ
∗)−1S(θ∗)

where S is sensitivity matrix

S(θ) = −E[
d

dθT
e(θ)]

We then say that e1 is better than e2 if

I1 − I2

is positive semi-definite.

e is optimal within a class of estimating functions if it is better
than any other estimating function in the class.

I is called the Godambe information.
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Another view on optimality
By linear approximation (asymptotically) (assuming S−1(θ∗) exists)

0 = e(θ̂) ≈ e(θ∗)− S(θ∗)(θ̂ − θ∗) ⇔ (θ̂ − θ∗) ≈ S−1(θ∗)e(θ∗)

Thus

Varθ̂ ≈ S−1(θ∗)Σ(S−1(θ∗))T = I−1 Σ = Vare(θ∗)

Hence we say e1 is better than e2 if

Varθ̂2 − Varθ̂1 = S−1
2 Σ2(S

−1
2 )T − S−1

1 Σ1(S
−1
1 )T

is positive definite.

Same as before since

S−1
2 Σ2(S

−1
2 )T − S−1

1 Σ1(S
−1
1 )T = I−1

2 − I−1
1

which is positive semi-definite if I1 − I2 is positive semi-definite
(see useful matrix result on next slide).
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Useful matrix result

Assume A and B invertible.

B−1−A−1 = A−1(A−B)B−1AA−1 = A−1[(A−B)B−1(B+A−B)]A−1

= A−1[A− B + (A− B)B−1(A− B)]A−1

Hence if A− B is positive definite so is B−1 − A−1.
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Case of MLE

For likehood score (under suitable regularity conditions1)

Varθs(θ) = S

so that Godambe information

I = S

is equal to the Fisher information.

Varθ̂ ≈ S−1

1E.g. interchange of differentiation and integration allowed
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Estimating functions and the likelihood score

The following result holds for an unbiased estimating function
(under suitable regularity conditions) (one-dimensional case for
ease of notation):

Es(θ)e(θ) = Cov[s(θ), e(θ)] = S

This implies

Corr[s(θ), e(θ)]2 =
S2

Vars(θ)Vare(θ)
=

I

Vars(θ)

That is the optimal estimating function has maximal correlation
with the likelihood score.

Corollary: the likelihood score is optimal among all estimating
functions.
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Useful condition for optimality

Consider a class E of estimating functions. eo is optimal within E if

Σeeo = Cov[e, eo ] = Se (2)

for all e ∈ E .

The property (2) implies Vare0 = Seo = ST
eo and we obtain

Ieo = Seo Varθ̂o ≈ S−1
eo

as for the likelihood score.
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Proof of if part:

Define standardized estimating function es = ST
e Σ

−1
e e.

Then Σes = Vares = Ie . Thus Ieo − Ie = Vareos − Vares .

Moreover (2) is equivalent to Σeseos
= Σeos es

= Σes . Then

Var[eos − es ] = Σeos
− Σes

which proves the result since the LHS is positive semi-definite.
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Exercises

1. calculate S and Σ and I for the non-linear least squares
estimating function (1). Is the estimating function unbiased ?

2. Show that d

dθ log(c(θ)
−1) = Eθt(Y ) for the exponential

family model on slide 5.

3. show results on slide ‘Estimating functions and the likelihood
score’ (hint: use the rule for differentiation of a product to
show the first result)
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Exercises cntd.

4. (Quasi-likelihood) Suppose Y = (Y1, . . . ,Yn) has mean vector
µ(β) and (known) covariance matrix V .

Consider the class of estimating functions

A[Y − µ(β)]

where A q × n (all linear combinations of residual vector).
Show that the optimal choice is A = DTV−1.

What is the Godambe information matrix ?

5. Check the proof on slide 14.
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Now: inhomogeneous point processes.
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Data example: tropical rain forest trees
Observation window W = [0, 1000]× [0, 500]

Beilschmiedia Ocotea

Elevation Gradient norm (steepness)
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Sources of variation: elevation and gradient covariates and possible
clustering/aggregation due to unobserved covariates and/or seed
dispersal. 18 / 65



Spatial point process

Spatial point process: random
collection of points

(finite number of points in
bounded sets)
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Intensity of a spatial point process

Fundamental characteristic of point process: mean of counts
N(A) = #(X ∩ A).
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Intensity of a spatial point process

Fundamental characteristic of point process: mean of counts
N(A) = #(X ∩ A).

Intensity measure µ:

µ(A) = EN(A), A ⊆ R
2
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Intensity of a spatial point process

Fundamental characteristic of point process: mean of counts
N(A) = #(X ∩ A).

Intensity measure µ:

µ(A) = EN(A), A ⊆ R
2

In practice often given in terms of intensity function

µ(A) =

∫

A

ρ(u)du
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Intensity of a spatial point process

Fundamental characteristic of point process: mean of counts
N(A) = #(X ∩ A).

Intensity measure µ:

µ(A) = EN(A), A ⊆ R
2

In practice often given in terms of intensity function

µ(A) =

∫

A

ρ(u)du

Infinitesimal interpretation: N(A) binary variable (presence or
absence of point in A) when A very small. Hence

ρ(u)|A| ≈ EN(A) ≈ P(X has a point in A)
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Covariance of counts and pair correlation function

Pair correlation function

E

6=
∑

u,v∈X

1[u ∈ A, v ∈ B] =

∫

A

∫

B

ρ(u)ρ(v)g(u, v) du dv

Covariance between counts:

Cov[N(A),N(B)] =

∫

A∩B

ρ(u)du+

∫

A

∫

B

ρ(u)ρ(v)(g(u, v)− 1)dudv

Pair correlation g(u, v) > 1 implies positive correlation.
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Campbell formulae

From definitions of intensity and pair correlation function we
obtain the Campbell formulae:

E

∑

u∈X

h(u) =

∫

h(u)ρ(u)du

E

6=
∑

u,v∈X

h(u, v) =

∫∫

h(u, v)ρ(u)ρ(v)g(u, v)dudv
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The Poisson process

Assume µ locally finite measure on R
2 with density ρ.
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The Poisson process

Assume µ locally finite measure on R
2 with density ρ.

X is a Poisson process with intensity measure µ if for any bounded
region B with µ(B) > 0:

1. N(B) ∼ Poisson(µ(B))

2. Given N(B), points in X ∩ B i.i.d. with density ∝ ρ(u), u ∈ B

B = [0, 1]× [0, 0.7]:
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Homogeneous: ρ = 150/0.7 Inhomogeneous: ρ(x , y) ∝ e
−10.6y
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Independence properties of Poisson process

1. if A and B are disjoint then N(A) and N(B) independent

2. - this implies Cov[N(A),N(B)] = 0 if A ∩ B = ∅

3. - which in turn implies g(u, v) = 1 for a Poisson process
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Inhomogeneous Poisson process with covariates

Log linear intensity function

ρβ(u) = exp(z(u)Tβ), z(u) = (1, zelev(u), zgrad(u))
T
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Inhomogeneous Poisson process with covariates

Log linear intensity function

ρβ(u) = exp(z(u)Tβ), z(u) = (1, zelev(u), zgrad(u))
T

Consider indicators Ni = 1[X ∩ Ci 6= ∅] of occurrence of points in
disjoint Ci (W = ∪Ci ) where P(Ni = 1) ≈ ρβ(ui )|Ci |, ui ∈ Ci
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Inhomogeneous Poisson process with covariates

Log linear intensity function

ρβ(u) = exp(z(u)Tβ), z(u) = (1, zelev(u), zgrad(u))
T

Consider indicators Ni = 1[X ∩ Ci 6= ∅] of occurrence of points in
disjoint Ci (W = ∪Ci ) where P(Ni = 1) ≈ ρβ(ui )|Ci |, ui ∈ Ci

Limit (|Ci | → 0) of likelihood ratios

n
∏

i=1

(ρβ(ui )|Ci |)
Ni (1− ρβ(ui )|Ci |)

1−Ni

(1|Ci |)Ni (1− 1|Ci |)1−Ni
≡

n
∏

i=1

ρβ(ui )
Ni (1− ρβ(ui )|Ci |)

1−Ni

(1− 1|Ci |)1−Ni

is

L(β) =
[

∏

u∈X∩W

ρβ(u)
]

exp(|W | −

∫

W

ρβ(u)du)

This is the Poisson likelihood function.
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Maximum likelihood parameter estimate
Score function:

s(β) =
d

dβ
log L(β) =

∑

u∈X∩W

z(u)−

∫

W

z(u)ρβ(u)du

Maximum likelihood estimate β̂ maximizes L(β). I.e. solution of

s(β) = 0.

Note by Campbell s(β) unbiased:

Es(β) = 0.

Observed information (p × p matrix):

I (β) = −
d

dβT
s(β) =

∫

W

z(u)z(u)Tρβ(u)du

Unique maximum/root if I (β) positive definite.
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By Campbell formulae

Vars(β) = I (β)

and according to standard asymptotic results for MLE (β∗ ‘true’
value)

β̂ ≈ N(β∗, I (β∗)−1)

‘n’ (number of observations) tends to infinity ?

Possibilities: increasing observation window or increasing intensity

Problem: Poisson process does not fit rain forest data due to
excess clustering (e.g. seed dispersal) !

Hence variance of β̂ is underestimated by I (β∗)−1 when a Poisson
process is assumed.
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Cluster process: Inhomogeneous Thomas process

Parents stationary Poisson point process
intensity κ

Poisson(α) number of offspring
distributed around parents according to
bivariate Gaussian density with std. dev.
ω

Inhomogeneity: offspring survive
according to probability

p(u) ∝ exp(z(u)Tβ)

depending on covariates (independent
thinning).

0
1

2
3
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Intensity and pair correlation function for Thomas
We can write Thomas process X as

X = ∪c∈CXc

where C stationary Poisson process of intensity κ and given C , the
Xc are independent Poisson processes with intensity functions
p(u)αk(u − c) where k(·) density of N2(0, ω

2I ).

With p(u) = exp(z(u)Tβ)/M the intensity becomes

ρ(u) = ακ exp[z(u)Tβ]/M = exp[β0 + z(u)Tβ]

where exp(β0) = ακ/M.

The pair correlation function becomes (for Thomas process in R
d)

g(u, v) = 1 + (4πω2)−d/2 exp[−{r/(2ω)}2]/κ r = ‖v − u‖

Note g(u, v) > 1 !
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Parameter estimation: regression parameters

Likelihood function for inhomogeneous Thomas process is
complicated.

Can instead use Poisson score s(β) as an estimating function

(Poisson likelihood now composite likelihood).

I.e. estimate β̂ again solution of

s(β) = 0

But now larger variance of s(β) due to positive correlation !
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Exercises

1. Show that s(β) is an unbiased estimating function (both in
the Poisson case and for the inhom. Thomas).

2. For a Poisson process, show that
Vars(β) = Var

∑

u∈X∩W z(u) = I (β).

3. Compute the inverse Godambe information for the estimating
function s(β) when X is a general point process with pair
correlation function g 6= 1 (hint: use second-order Campbell
formula). Compare with the case of a Poisson process
(g = 1).

4. Verify the expressions for the intensity and pair correlation
function of a Thomas process (slide 35).
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Quasi-likelihood for spatial point processes

Quasi-likelihood based on data vector Y was optimal linear
transformation

DTV−1R

of residual vector
R = Y − µ(β)

Can we adapt quasi-likelihood to spatial point processes ?

What is residual in this case ?
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Residual measure
For point process X and A ⊂ R

2 residual measure is

R(A) = N(A)− EN(A) =
∑

u∈X

1[u ∈ A]−

∫

1[u ∈ A]ρ(u;β)du

(N(A) number of points in A).
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Residual measure
For point process X and A ⊂ R

2 residual measure is

R(A) = N(A)− EN(A) =
∑

u∈X

1[u ∈ A]−

∫

1[u ∈ A]ρ(u;β)du

(N(A) number of points in A).

In analogy with quasi-likelihood look for optimal linear
transformation of the residual measure

ef (β) =

∫

f (u;β)R(du) =
∑

u∈X

f (u;β)−

∫

f (u;β)ρ(u;β)du

where f : R2 → R
p real vector-valued “weight” function.

Estimate β̂f solves estimating equation

ef (β) = 0
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Remember: φ is optimal if

Cov[eφ, ef ] = Sf (3)

for all f .
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Remember: φ is optimal if

Cov[eφ, ef ] = Sf (3)

for all f .

Using the Campbell formulae one can show that this is satisfied if
φ solves following integral equation:

φ(u;β) +

∫

W

t(u, v)φ(v ;β)dv =
d

dβ
log ρ(u;β) u ∈ W (4)

where integral operator kernel is

t(u, v) = ρ(v ;β)[g(u, v)− 1]
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Poisson process case

Poisson process case: g(u, v) = 1 so integral equation simplifies:

φ(u) +

∫

W

ρ(v ;β)[g(u, v)− 1]φ(v)dv =
d

dβ
log ρ(u;β) ⇒

φ(u) =
d

dβ
log ρ(u;β) =

ρ′(u;β)

ρ(u;β)

Hence resulting estimating function is

∑

u∈X∩W

ρ′(u;β)

ρ(u;β)
−

∫

W

ρ′(u;β)du

which coincides with score of Poisson process log likelihood.
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Details about Nyström method
Use Riemann sum dividing W into cells Ci with representative
points ui , i = 1, . . . , n. Then we obtain linear equations

φ(ui ;β) +
n

∑

j=1

t(ui , uj)|Cj |φ(uj ;β) =
d

dβ
log ρ(ui ;β) i = 1, . . . , n

(5)
which in matrix form become

(I + T )φ̄ = [
d

dβ
log ρ(ui ;β)]i

where φ̄ = (φ(ui ))i and Tij = t(ui , uj)|Cj |.

Defining µi = ρ(ui ;β)|Ci |, M = diag(µ1, . . . , µn), and G = [Gij ]ij
with Gij = µiµj [g(ui , vj)− 1], this is equivalent to

(M + G )φ̄ = M[
d

dβ
log ρ(ui ;β)]i = D

where D is matrix of partial derivatives dµi/dβj .
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Quasi-likelihood
Using solution

φ̄ = (M + G )−1 = V−1D

with V = M + G the resulting approximated optimal estimating
function becomes the quasi-likelihood score

DTV−1[Y − µ]

where

Y = (Y1, . . . ,Ym)
T, Yi = 1[X has point in Ci ].

µ mean of Y :

µi = EYi = ρ(ui ;β)|Ci | and D =
[

dµ(ui )/dβj
]

ij

V covariance of Y

Vij = Cov[Yi ,Yj ] = µi1[i = j ] + µiµj [g(ui , uj)− 1]
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Exercise

1. Show that (5) implies (3).

Hint: start by evaluating (3) using the Campbell formulae
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All models are wrong...

“All models are wrong but some are useful”

If any model we propose/select/estimate is wrong how can we talk
of a ‘true’ parameter value, true model, optimal estimation
method... ?

Approach:

◮ consider ‘least false’ model - i.e. model among a set of
candidate models which is closest to the unknown true model

◮ consider ‘least false’ parameter value - i.e. parameter value
that makes a given model closest to unknown true model
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Kullback-Leibler divergence
Consider two densities f and g with same support and X ∼ f .
Then Kullback-Leibler divergence of g from f is

DKL(f , g) =

∫

f (x) log
f (x)

g(x)
dx = −E log

g(X )

f (X )
= −E[log g(X )−log f (X )]

By Jensen’s inequality or just log(x) ≤ x − 1,

DKL(f , g) ≥ 0 (6)

and “=” only if f = g f -almost surely (Gibbs’ inequality).

Suppose f represents true distribution of data and g1, . . . , gK are
candidate models.

We may then declare gl to be the least false model if

l = argmin
k=1,...,K

DKL(f , gk)
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Similar, if the gk are parametrized by some unknown parameter
θk ∈ Θk we may declare θ∗k to be the least false parameter value
for gk if

θ∗k = argmin
θk∈Θk

DKL(f , g(·; θk))
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Case of composite likelihood for point process
Suppose X is a point process with true intensity function λ and ρ
is some other intensity function.

Also let l(·;λ) and l(·; ρ) denote corresponding Poisson log density
functions (first order composite likelihood functions)

Then we may define composite Kullback-Leibler divergence as

CDKL(λ, ρ) = −E[l(X; ρ)− l(X;λ)]

Again
CDKL(λ, ρ) ≥ 0 (7)

and “=” only if λ = ρ almost surely with respect to distribution of
X (exercise).

Least false intensity function among ρ1, . . . , ρK minimizes
CDKL(λ, ρl).
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For parametric model ρk(·; θk), least false θk is

θ∗k = argmin
θk∈Θk

CDKL(λ, ρ(·; θk))
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Regression model for the intensity function

X spatial point process observed in window W ⊂ R
d .

Popular log-linear model for the intensity function:

ρ(u;β) = exp[z(u)Tβ]

where z(u) = (z1(u), . . . , zp(u))
T covariate vector associated to

spatial location u.

Model selection problem: which subset of covariates should be
used ?

One approach is to use information criteria (AIC, BIC,....)

How to do this in case of a spatial point process ?

I got this question back in 2008 while I was in Spar Nord Bank :)
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Notation: l index for collection of models Ml characterized by
varying subsets zl(u) of covariates and with parameter vectors βl .
I.e. zl(u) = (zj(u))u∈Il , Il ⊆ {1, . . . , p}.

The log-likelihood for model Ml in case of a Poisson process is

l(βl ; X) =
∑

u∈X

zl(u)
Tβl −

∫

W

ρ(u;βl)du

AIC:
−2l(β̂;X) + 2pl

Is this theoretically justified for a Poisson process ?

Moreover, we often use l(βl ; X) as a kind of composite likelihood
in case X is not a Poisson process.

Can we still use AIC or do we need to consider composite
information criterion (CIC) ?
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Bayesian information criterion

What about BIC:
−2l(β̂l ; X) + log(n)pl

What is n ? (“number of observations”) ?

◮ 1 ?

◮ Number N of points in X ∩W ?

◮ Size of observation window |W | ?

◮ Number of points used in quadrature scheme for
approximation of likelihood ? (analogy to logistic regression)
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Asymptotic results for misspecified model
‘Least false βl ’, β

∗
l , minimizes Kullback-Leibler distance:

β∗
l = argmin

βl

CDKL(ρ(·;βl), λ) = argmin
βl

E[−l(βl ; X)]

Given (wrong) model Ml we can under reasonable conditions show
that

β̂l − β∗
l ≈ N(0,V )

That is, composite likelihood estimate will asympotically make the
fitted model Ml least false.

The covariance matrix has the following expression:

Sl(β
∗
l )

−1ΣlSl(β
∗
l )

−1

where unfortunately Σl is not known...

Under reasonable conditions, Sl(β
∗
l )

−1ΣlSl(β
∗
l )

−1 is of the order
|W |−1 !
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Model selection

Choose model so that

C (ρ(·;β∗
l )) = E[−l(β∗

l ; X)]

is minimal.

Issue: β∗
l unknown in practice since it depends on unknown λ(·).

Suggestion: given data X and resulting estimates β̂l , minimize

EC (ρ(·; β̂l))

over models Ml .

Note: EC (ρ(·; β̂l)) = EE[−l(β̂l ; X̃)|X]

Problem: both expectations unknown.
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Estimation of EC (ρ(·; β̂l))
Suppose we have two independent copies of the point process X
and X̃ and we obtain β̂l from X.

Then

−l(β̂l , X̃) = −
∑

u∈X̃

zl(u)
Tβ̂l +

∫

W

ρ(u; β̂l)du

would be an unbiased estimate of

EC (ρ(·; β̂l)) = EE[−l(β̂; X̃)|X]

(similar to cross validation)

However, we only have the single realization X.

The observed likelihood

−
∑

u∈X

zl(u)
Tβ̂l +

∫

W

ρ(u; β̂l)du

is a biased (too small) estimate due to overfitting.
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Estimation of bias
We can approximate log likelihood using second-order Taylor
expansion:

l(β̂l ; X̃) ≈ l(β∗
l ; X̃)+∇l(β∗

l ; X̃)
T(β̂l−β∗

l )−
1

2
(β̂l−β∗

l )
TS(β∗

l )(β̂l−β∗
l ))

and (observed likelihood)

l(β̂l ; X) ≈ l(β∗
l ; X)+∇l(β∗

l ; X)
T(β̂l−β∗

l )−
1

2
(β̂l−β∗

l )
TS(β∗

l )(β̂l−β∗
l )

Here S(β) is sensitivity

S(β) =

∫

W

zl(u)
Tzl(u)ρ(u;βl)du

Bias (recall first Bartlett identity E∇l(β∗
l ; X̃)

T = 0):

El(β̂l ; X̃)− El(β̂l ; X) = −E∇l(β∗
l ; X)

T(β̂l − β∗
l ) + E[oP(1)]
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Using first order Taylor

∇l(β∗
l ; X) ≈ S(β̂l)(β̂l − β∗

l ) ⇒ (β̂l − β∗
l ) ≈ S(β∗

l )
−1∇l(β∗

l ; X)

we get

E∇l(β∗
l ; X)

T(β̂l − β∗
l ) = E∇l(β∗

l ; X)
TS(β∗

l )
−1∇l(β∗

l ; X) + EoP(1)

=trace
[

S(β∗
l )

−1Σl

]

+ EoP(1)

where
Σl = Var∇l(β∗

l ; X)

The previous expansions work when we have

β̂l − β∗
l = OP(|W |−1/2)

‘consistency wrt least false parameter value under Ml ’

As mentioned before we can obtain this consistency for wide class
of point processes (including Cox and Cluster)

To obtain EoP(1) = o(1) we need technical condition of uniform
integrability. Often ignored in literature. 59 / 65



What about AIC ?

Suppose X is a Poisson process and Ml is the true model. Then by
standard Bartlett identity

Σl = Sn(β
∗
l )

and
traceΣlSn(β

∗
l )

−1 = traceIpl = pl = lengthβl

This gives AIC criterion for model Ml !

In general we need to estimate (Takeuchi) bias correction

traceS(β∗
l )

−1Σl
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Suggestion so far: estimate S(β∗
l ) by S(β̂l)

Regarding Σl :

Σl = Var∇l(β∗
l )

=

∫

W

zl(u)
Tzl(u)λ(u)du +

∫

W 2

zl(u)
Tzl(v)λ(u)λ(v)[g(u, v)− 1]dudv

We approximate λ(u) ≈ ρ(u; β̂l) and obtain

traceΣlS(β
∗
l )

−1 ≈ pl + trace[T (β̂l)S(β
∗
l )

−1]

where

T (β̂l) =

∫

W 2

zl(u)
Tzl(v)ρ(u; β̂l)ρ(v ; β̂l)[ĝ(u − v)− 1]dudv

These quantities and estimate ĝ can be obtained from output of
spatstat procedure kppm.
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Bayesian information Criterion
Very different type of reasoning compared to AIC.

Impose prior P(M = Ml) for model M and prior p(βl |Ml) for βl
given M = Ml .

Given Ml and βl assume X Poisson process with density
f (x|βl ,Ml).

Suppose uniform prior on models Ml . Then posterior of M is

P(M = Ml |X) ∝ P(X|Ml)P(Ml) ∝ P(X|Ml)

=

∫

R
pl

f (X|βl ,Ml)p(βl |Ml)dβl

Using a Laplace approximation of the integral one obtains

logP(X|Ml) = l(β̂l ; X)−
pl

2
log (µ) + O(1)

where µ is marginal mean of number of points in X.
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Neglecting O(1) terms and estimating µ ≈ N where N is number
of points in X we obtain

BIC(Ml) = −2l(β̂l ; X) + log(N)pl

I.e. ‘number of observations’ is number of points !

Comparison with AIC/CIC:

◮ In Bayesian setting, we by assumption use the true model. No
mention of ‘least false parameter value’.

◮ β̂l convenient starting point for second order Taylor expansion
underlying Laplace approximation.

◮ For technical reasons need almost sure convergence of β̂l to
fixed value β∗

l

◮ Asymptotics underlying Laplace approximation deterministic
since conditioning on X.
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Simulation studies

BIC: use of window size |W | or number of points in quadrature
approximation of likelihood useless.

AIC vs BIC (Poisson process): AIC tends to choose too complex
models

CIC (cluster process): for cluster point processes CIC works better
than AIC and BIC that both choose too complex models
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Exercises

1. show (6) and (7).

2. Show that if sensitivity S(βl) is positive definite then least
false parameter value β∗

l is well-defined (exists and is unique)

3. Show E∇l(β∗
l ; X)

TS(β∗
l )

−1∇l(β∗
l ; X) = trace

[

S(β∗
l )

−1Σl

]
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