Mixed models with correlated measurement errors

Rasmus Waagepetersen

October 9, 2024

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Example from Department of Health Technology

25 subjects where exposed to electric pulses of 11 different durations using two different electrodes (pin or patch).

Dependent variable: electric perception

The durations were applied in random order.

In total 550 measurements of response to pulse exposure.

Fixed effects in the model: electrode, Pulseform (duration), order of 22 measurements for each subject.

Order: to take into account habituation effect

Random effects: one random effect for each subject-electrode combination (50 random effects).

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Mixed model with random intercepts

Model:

$$y_{ijk} = \mu_{ij} + U_{ij} + \epsilon_{ijk}$$

where i = 1, ..., 25 (subject), j = pin,patch (electrode), and k = 1, ..., 11 measurement within subject-electrode combination.

 U_{ij} 's and ϵ_{ijk} 's independent random variables.

 μ_{ij} fixed effect part of the model depending on electrode, Pulseform and order of measurement. In R-code:

y~electrode*Pulseform+electrode*Order

Note electrode, Pulseform categorical, Order nominal (numerical)

Using lmer

Random effects:GroupsNameVariance Std.Dev.electrsubId (Intercept)0.034790.1865Residual0.013170.1148Number of obs:550, groups:electrsubId, 50

Large subject-electrode variance 0.03479. Noise variance 0.01317

Effect of Pulseform (duration)

Blue: pin electrode. Black: patch electrode.

しゃ 《聞を 《聞を 《聞を 《日 ろんの

Serial correlation in measurement error ?

Maybe error ϵ_{ijk} not independent of previous error $\epsilon_{ij(k-1)}$ since measurements carried out in a sequence for each subject ?

For each subject-electrode combination ij plot residual r_{ijk} (resid(fit)) against previous residual $r_{ij(k-1)}$ for k = 2, ..., 11.

(日)

Correlation

```
cor.test(resi1,resi2)
```

Pearson's product-moment correlation

```
data: resi1 and resi2
t = 8.5284, df = 498, p-value < 2.2e-16
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
    0.2779966 0.4311777
sample estimates:
        cor
0.3569848
```

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Mixed model with correlated errors

Analysis of residuals r_{ijk} (which are estimates of errors ϵ_{ijk}) suggests that ϵ_{ijk} are correlated (not independent).

Recall general mixed model formulation:

$$Y = X\beta + ZU + \epsilon$$

where ϵ normal with mean zero and covariance Σ .

So far $\Sigma=\sigma^2 I$ meaning noise terms uncorrelated and all with same variance σ^2

Extension: Σ not diagonal meaning $\mathbb{C}ov[\epsilon_i, \epsilon_{i'}] \neq 0$.

Many possibilities for Σ - we will focus on autoregressive covariance structure that is useful for serially correlated error terms.

Basic model for serial correlation: autoregressive

Consider sequence of noise terms: $\epsilon_{ij1}, \epsilon_{ij2}, \ldots, \epsilon_{ij11}$.

Model for variance/covariance:

$$\mathbb{C}\mathrm{ov}(\epsilon_{ijk},\epsilon_{ijk'})=\sigma^2
ho^{|k-k'|}\quad\mathbb{C}\mathrm{orr}(\epsilon_{ijk},\epsilon_{ijk'})=
ho^{|k-k'|}\quad|
ho|<1$$

Thus

$$\operatorname{Var}\epsilon_i = \sigma^2$$

and ρ is correlation between two consecutive noise terms,

$$\rho = \mathbb{C}\operatorname{orr}(\epsilon_{ijk}, \epsilon_{ij(k+1)})$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Interpretation of autoregressive model

Covariance structure arises from following autoregressive model:

$$\epsilon_{ij(k+1)} = \rho \epsilon_{ijk} + \nu_{ij(k+1)} \tag{1}$$

1-1

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

where $\epsilon_{ij1} \sim N(0, \sigma^2)$, and

$$u_{ijl} \sim N(0,\omega) \quad \omega = \sigma^2(1-
ho^2) \quad l = 2,\ldots,11$$

 $\epsilon_{ij1}, \nu_{ij2}, \ldots, \nu_{ij11}$ assumed to be independent.

Yet another example of building correlation using independent building blocks !

Not possible in lmer :(

However lme (from package nlme) can do the trick:

lme predecessor of lmer - both have pros and cons - but here lme
has the upper hand.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

SPSS: specification using Repeated. Here we can select

- repeated variable: order of observations within subject
- subject variable: noise terms for different "subjects" assumed to independent
- covariance structure for noise terms within subject

E.g. for perception data we may have 11 serially correlated errors for each subject-electrode combination but errors are uncorrelated between different subject-electrode combinations.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Repeated in SPSS

OrderFixed: from 1-11 within each electrode-subject combination

Covariance structure: AR(1)

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Estimates of variance parameters

With uncorrelated errors: $\tau^2 = 0.035 \ \sigma^2 = 0.013 \ \text{BIC}$ -511

With autoregressive errors: $\tau^2 = 0.030~\sigma^2 = 0.018~{\rm BIC}$ -646 $\rho = 0.626$

Variance parameters not so different but quite big estimated correlation for errors. BIC clearly favors model with autoregressive errors.

Quite similar (with/without autoregressive errors) fixed effects estimates.

No clear pattern regarding sizes of standard errors of parameter estimates.

Model assessment - residuals

Much larger residual variance for pin electrode than for patch electrode.

Still room for improvement of model !

Can add weights=varIdent(form=~1|factor(electrode) in lme. Seems not available in SPSS or lmer.

Separate analyses for two electrodes ?

Software summary:

	F-test	correlated residuals	variance heterogeneity
lmer	yes	no	no
lme	no	yes	yes
SPSS	yes	yes	no

NB: package lmerTest adds fixed effects standard errors for lmer

Much larger residual variance for pin electrode than for patch electrode.

Fit model with variance heterogeneity:

fithetcorr=lme(transfPT~electrode*Pulseform+electrode*Order random=~1|electrsubId,data=perception, weights=varIdent(form=~1|electrode),correlation=corAR1())

```
Random effects:
Formula: ~1 | electrsubId #correlation within electrode-su
(Intercept) Residual
StdDev: 0.1732323 0.1691177
```

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Correlation Structure: AR(1) Formula: ~1 | electrsubId

```
Parameter estimate(s):
Phi
0.578185
```

Variance function: Structure: Different standard deviations per stratum Formula: ~1 | electrode Parameter estimates: pin patch 1.0000000 0.4122666

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

BIC -814

Subject variance $0.1732^2 = 0.029$ Variance for pin electrode: $0.1691^2 = 0.028$ Variance for patch electrode: $0.1691^2 \cdot 0.4122^2 = 0.0049$

Exercises

1. Fit model with autoregressive errors to the Orthodont dataset.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

2. Given the model (1) verify that $\epsilon_{ij(k+1)} \sim N(0, \sigma^2)$ and $\mathbb{C}orr(\epsilon_{ijk}, \epsilon_{ij(k+1)}) = \rho$.