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Course topics

▶ random effects

▶ linear mixed models

▶ statistical inference for linear mixed models (including analysis
of variance)

▶ prediction of random effects

▶ Implementation in R and SPSS
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Outline - first session

▶ examples of data sets

▶ random effects models - motivation and interpretation

Next session : details on implementation in R and SPSS
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Reflectance (colour) measurements for samples of
cardboard (egg trays) (project at Department of
Biotechnology, Chemistry and Environmental Engineering)

Four replications at same
position on each cardboard
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For five cardboards: four
replications at four positions at
each cardboard
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Colour variation between/within cardboards ?
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Orthodontic growth curves (repeated
measurements/longitudinal data)

Distance (related to jaw size) between pituitary gland and the
pterygomaxillary fissure (two distinct points on human skull) for
children of age 8-14

Distance versus age:
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Different intercepts for different children !
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(anatomy of the scull)

Pituitary gland is orange object.
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Whole grain (WG) vs. refined grain (RG)

Outcome: LDL cholesterol in blood

Subjects randomly allocated to two treatment groups. Three
measurements for each subject:

Group 1: baseline WG RG
Group 2: baseline RG WG

Note: possible cross over effect (treatment effect WG-RG may
depend on order of treament (WG first or last)

Outcome may vary a lot between subjects with same treatment.
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Recall: basic aim for statistical analysis of a sample/dataset is to
extract information that can be generalized to the population that
was sampled.

This perspective in mind when deciding on models for the datasets
considered.
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Model for reflectances: one-way anova

Four replications on each
cardboard
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Models:

Yij = µ+ϵij i = 1, . . . , k j = 1, . . . ,m

(k = 34, m = 4) where µ
expectation and ϵij random
independent noise

or

Yij = µ+ αi + ϵij

where αi are fixed unknown
parameters or

Yij = µ+ Ui + ϵij

where Ui are zero-mean random
variables independent of each other
and of ϵij

Which is most relevant ?
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One role of random effects: parsimonious and population
relevant models

With fixed effects αi : many parameters (µ, σ2, α1, . . . , α34).
Parameters α1, . . . , α34 not interesting as they just represent
intercepts for specific card boards which are individually not of
interest.

With random effects: just three parameters (µ, σ2 = Varϵij and
τ2 = VarUi ).

Hence parsimonious model. Variance parameters interesting for
several reasons.
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Second role of random effects: quantify sources of variation

Quantify sources of variation (e.g. quality control): is pulp for
paper production too heterogeneous ?

With random effects model

Yij = µ+ Ui + ϵij (1)

we have decomposition of variance:

VarYij = VarUi + Varϵij = τ2 + σ2

Hence we can quantify variation between (τ2) cardboard pieces
and within (σ2) cardboard.
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Ratio γ = τ2/σ2 is ‘signal to noise’.

Proportion of variance

τ2

σ2 + τ2
=

γ

γ + 1

is called intra-class correlation.

High proportion of between cardboard variance leads to high
correlation (next slide).
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Third role: modeling of covariance and correlation

Covariances:

Cov[Yij ,Ylk ] =


0 i ̸= l

VarUi = τ2 i = l , j ̸= k

VarUi + Varϵij = τ2 + σ2 i = l , j = k

(2)

Correlations:

Corr[Yij ,Ylk ] =


0 i ̸= l

τ2/(σ2 + τ2) i = l , j ̸= k

1 i = l , j = k

(3)

That is, observations for same cardboard are correlated !

Correct modeling of correlation is important for correct evaluation
of uncertainty.
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Fourth role: correct evalution of uncertainty
Suppose we wish to estimate µ = EYij . Due to correlation,
observations on same cardboard to some extent redundant.

Estimate is empirical average µ̂ = Ȳ··. Evaluation of VarȲ··:

Model erroneously ignoring
variation between cardboards

Yij = µ+ ϵij

Varϵij = σ2
total

[
= σ2 + τ2

]
Naive variance expression is

VarȲ·· =
σ2
total

n

[
=

σ2 + τ2

mk

]

Correct model with random
cardboard effects

Yij = µ+ Ui + ϵij ,

VarUi = τ2, Varϵij = σ2

Correct variance expression is

VarȲ·· =
τ2

k
+

σ2

mk
(4)

With first model, variance is underestimated !

For VarȲ·· → 0 is it enough that mk → ∞ ?
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Whole grain (WG) vs. refined grain (RG) - model

For ith subject three measurements Yit , t = 1, 2, 3

Standard approach: regression using baseline Y1t as covariate (to
correct for person-specific effects):

Yit = µit + αYi1 + ϵit , t = 2, 3

µit : mean depends on Group (1, 2) and Treatment (WG, RG)

Problem: we need to skip all observations for i if baseline is
missing !

Alternative: mixed model with subject specific random effect

Yit = µit + Ui + ϵit , t = 1, 2, 3
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Classical balanced one-way ANOVA (analysis of variance)
Decomposition of empirical variance/sums of squares (i = 1, . . . , k ,
j = 1, . . . ,m):

SST =
∑
ij

(Yij−Ȳ··)
2 =

∑
ij

(Yij−Ȳi ·)
2+m

∑
i

(Ȳi ·−Ȳ··)
2 = SSE+SSB

Expected sums of squares:

ESSE = k(m − 1)σ2

ESSB = m(k − 1)τ2 + (k − 1)σ2

Moment-based estimates:

σ̂2 =
SSE

k(m − 1)
τ̂2 =

SSB/(k − 1)− σ̂2

m

More complicated formulae in the unbalanced case.
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Hypothesis tests
Fixed effects: H0: α1 = α2 = · · · = αk = 0

F =
SSB/(k − 1)

SSE/(k(m − 1))

Random effects: H0: τ
2 = 0 Same test-statistic

F =
SSB/(k − 1)

SSE/(k(m − 1))

Idea: if τ2=0 then ESSB/(k − 1) = ESSE/(k(m − 1)) = σ2.
Hence under H0, F should be close to 1.

If τ2 > 0 then
ESSB/(k − 1) = mτ2 + σ2 > ESSE/(k(m − 1)) = σ2. Thus big
values of F critical for H0.
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Classical implementation in R

For cardboard/reflectance data, k = 34 and m = 4. anova()
procedure produces table of sums of squares.

> anova(lm(Reflektans~factor(Pap.nr.)))

Analysis of Variance Table

Response: Reflektans

Df Sum Sq Mean Sq F value

factor(Pap.nr) 33 0.9009 0.0273 470.7 #SSB

Residuals 102 0.0059 0.00006 #SSE

---

Hence σ̂2 = 0.00006, τ̂2 = (0.0273− 0.00006)/4 = 0.00681.

Biggest part of variation is between cardboard.
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Orthodontic data: classical multiple linear regression in R

#fit model with sex specific intercepts and slopes

> ort1=lm(distance~age+age:factor(Sex)+factor(Sex))

> summary(ort1)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 16.3406 1.4162 11.538 < 2e-16 ***

age 0.7844 0.1262 6.217 1.07e-08 ***

factor(Sex)Female 1.0321 2.2188 0.465 0.643

age:factor(Sex)Female -0.3048 0.1977 -1.542 0.126

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 2.257 on 104 degrees of freedom

Multiple R-squared: 0.4227,Adjusted R-squared: 0.4061

F-statistic: 25.39 on 3 and 104 DF, p-value: 2.108e-12

Sex and age:Sex not significant !

22 / 42



Multiple linear regression continued - without interaction

> ort2=lm(distance~age+factor(Sex))

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 17.70671 1.11221 15.920 < 2e-16 ***

age 0.66019 0.09776 6.753 8.25e-10 ***

factor(Sex)Female -2.32102 0.44489 -5.217 9.20e-07 ***

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 2.272 on 105 degrees of freedom

Multiple R-squared: 0.4095,Adjusted R-squared: 0.3983

F-statistic: 36.41 on 2 and 105 DF, p-value: 9.726e-13

both age and sex significant
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Multiple linear regression in R III

#plot data and two regression lines

col=rep("blue",length(Sex))

col[Sex=="Female"]="red"

plot(distance~age,col=col)

abline(parm[1:2],col="blue")

abline(c(parm[1]+parm[3],parm[2]),col="red")
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Multiple linear regression in R IV

res=residuals(ort2)

hist(res)

Histogram of res
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fittedval=fitted(ort2)

plot(res~fittedval)
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Multiple linear regression in R V

> library(lattice)

> xyplot(res~Subject,groups=Subject)
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Oups - residuals not independent
and identically distributed !
Hence computed F -tests not
valid.

Problem: subject specific
intercepts (and possibly subject
specific slopes too)
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Model with subject specific intercepts

> ortss=lm(distance~-1+Subject+age+age:factor(Sex)+factor(Sex))

> summary(ortss)

Coefficients: (1 not defined because of singularities)

Coefficients: (1 not defined because of singularities)

Estimate Std. Error t value Pr(>|t|)

SubjectM16 14.3719 1.0988 13.080 < 2e-16 ***

SubjectM05 14.3719 1.0988 13.080 < 2e-16 ***

SubjectM02 14.7469 1.0988 13.421 < 2e-16 ***

SubjectM11 14.9969 1.0988 13.649 < 2e-16 ***

SubjectM07 15.1219 1.0988 13.763 < 2e-16 ***

SubjectM08 15.2469 1.0988 13.876 < 2e-16 ***

SubjectM03 15.6219 1.0988 14.218 < 2e-16 ***

SubjectM12 15.6219 1.0988 14.218 < 2e-16 ***

...

SubjectF01 16.1000 1.2400 12.984 < 2e-16 ***

SubjectF05 17.3500 1.2400 13.992 < 2e-16 ***

SubjectF07 17.7250 1.2400 14.294 < 2e-16 ***

SubjectF02 17.7250 1.2400 14.294 < 2e-16 ***

SubjectF08 18.1000 1.2400 14.597 < 2e-16 ***

SubjectF03 18.4750 1.2400 14.899 < 2e-16 ***

SubjectF04 19.6000 1.2400 15.806 < 2e-16 ***

SubjectF11 21.1000 1.2400 17.016 < 2e-16 ***

age 0.7844 0.0775 10.121 6.44e-16 ***

factor(Sex)Female NA NA NA NA

age:factor(Sex)Female -0.3048 0.1214 -2.511 0.0141 *

NB: omitted common intercept (-1 in model formula)
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For each subject an estimate of deviation between the subject’s
intercept and the first subject’s intercept.

In total 27 (!) subject specific estimates.

Each estimate pretty poor (only 4 observations for each subject).

Can not estimate female effect !

Model with subject specific effects may be more correct but is it
useful ?
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Distribution of estimates of subject specific effects
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Mixed model for growth data

Yij = α+ δsex(i) + βxij + ai + bixij + ϵij , i : child, j : time

Models for coefficients:

▶ If interest lies in mean intercept and slope (α, β) and sex
difference δs but not individual subjects then wasteful to
include subject specific fixed effects ai and bi (want
parsimonious models).

▶ Using random effects ai and bi with variances τ2a and τ2b
allows quantification of population heterogeneity. And only
unknown parameters α, β, δs , τ

2
a , τ

2
b and σ2 (do not need to

estimate ai and bi )

Back to first role of random effects: parsimonious and meaningful
modeling of heterogeneous data.

Mixed model: both systematic and random effects.
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Marginal and conditional means of observations

Suppose ai ∼ N(0, τ2a ) and bi ∼ N(0, τ2b )

Unconditional (marginal) mean of observation:

E[Yij ] = α+ δsex(i) + βageij

- i.e. one regression line for each sex (population mean of subject
specific lines).

Conditional on ai and bi :

E[Yij |ai , bi ] = [α+ ai ] + δsex(i) + [β + bi ]ageij

i.e. subject specific lines vary randomly around population mean.
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Mixed model analysis of orthodont data

> ort4=lmer(distance~age+Sex+(1|Subject))

> summary(ort4)

Random effects:

Groups Name Variance Std.Dev.

Subject (Intercept) 3.2668 1.8074

Residual 2.0495 1.4316

Number of obs: 108, groups: Subject, 27

Fixed effects:

Estimate Std. Error df t value Pr(>|t|)

(Intercept) 17.70671 0.83392 99.35237 21.233 < 2e-16 ***

age 0.66019 0.06161 80.00000 10.716 < 2e-16 ***

SexFemale -2.32102 0.76142 25.00000 -3.048 0.00538 **

Both age and Sex significant. Estimates coincide with those for
linear regression but larger standard error for Sex.
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Comparison of variances

Between subject variance: 3.27, Noise variance: 2.05.

Total variance: 3.27+2.05=5.32

Similar to estimated residual variance for multiple linear regression
model: 5.26 = 2.2722.
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Looking at interaction in mixed model framework

Formula: distance ~ age * Sex + (1 | Subject)

Random effects:

Groups Name Variance Std.Dev.

Subject (Intercept) 3.299 1.816

Residual 1.922 1.386

Number of obs: 108, groups: Subject, 27

Fixed effects:

Estimate Std. Error df t value Pr(>|t|)

(Intercept) 16.3406 0.9813 103.9864 16.652 < 2e-16 ***

age 0.7844 0.0775 79.0000 10.121 6.44e-16 ***

SexFemale 1.0321 1.5374 103.9864 0.671 0.5035

age:SexFemale -0.3048 0.1214 79.0000 -2.511 0.0141 *

Now interaction significant !

What is interpretation of interaction ? Does it make sense ?
34 / 42



Note: corresponding model without random effects has much
inflated residual variance 5.09 = 2.2572 vs. 1.922 for mixed model.

Interaction ‘drowns’ in large random noise.
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Summary - role of random effects

Models with random effects (mixed models) are useful for:

▶ quantifying different sources of variation

▶ appropriate modeling of variance structure and correlation

▶ correct evalution of uncertainty of parameter estimates

▶ estimation of population variation instead of subject specific
characteristics

▶ more parsimonious models (one variance parameter vs. many
subject specific fixed effects parameters)
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Exercises
For exercises 1 and 3 recall:

Cov(X1 + X2 + · · ·+ Xn,Y1 + Y2 + · · ·+ Ym)

=Cov(X1,Y1) + Cov(X1,Y2) + · · ·+ Cov(Xn,Ym)

Also recall if either Xi or Yj is non-random or Xi and Xj

independent then Cov(Xi ,Yj) = 0.

1. Show results regarding covariances and correlations in
equations (2) and (3) for the Yij in one-way ANOVA (i.e. the
model in equation (1)).

2. Analyze the pulp data (brightness of paper pulp in groups
given by different operators; from the faraway package) using
a one-way anova with random operator effects. Estimate
variance components and the intra-class correlation (you may
also use output on next slide).
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One-way anova for pulp data (4 operators, 5 observations for each
operator):

> anova(lm(bright~operator,data=pulp))

Analysis of Variance Table

Response: bright

Df Sum Sq Mean Sq F value Pr(>F)

operator 3 1.34 0.44667 4.2039 0.02261 * #SSB

Residuals 16 1.70 0.10625 #SSE

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
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More exercises
3. In this exercise α and β are non-random parameters. Also xij

is considered non-random (the linear regressions are models
for Yij conditional on xij).
3.1 Compute variance of observations from the linear model with

random intercepts:

Yij = α+ ai + βxij + ϵij

where ϵij ∼ N(0, σ2) and ai ∼ N(0, τ 2a ) and the ϵij and ai are
independent.

3.2 Consider the model fitted on slide ‘Mixed model analysis of
orthodont data’. What is the proportion of variance due to the
error (residual) term ?

3.3 Compute variances, covariances and correlations of
observations from the linear model with random slopes:

Yij = α+ βxij + bixij + ϵij

where ϵij ∼ N(0, σ2) and bi ∼ N(0, τ 2b ) and the ϵij and bi are
independent.
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3. 3.4 Consider following output. What is the proportion of variance
for an observation Yij explained by the random slopes for
different values 8, 10, 12, and 14 of age ?

> ort5=lmer(distance~age+Sex+(-1+age|Subject))

> summary(ort5)

Random effects:

Groups Name Variance Std.Dev.

Subject age 0.026374 0.1624

Residual 2.080401 1.4424

Number of obs: 108, groups: Subject, 27

Fixed effects:

Estimate Std. Error t value

(Intercept) 17.43042 0.75066 23.220

age 0.66019 0.06949 9.500

SexFemale -1.64286 0.68579 -2.396
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4. Consider the following examples. Is there scope for using
random effects - and if so, how ?
4.1 In an agricultural experiment 2 different varieties of barley and

two types A and B of fertilizer are tried out on 10 fields. Each
variety is applied to 5 fields where the allocation of varieties to
fields is random. Each field is further split into two plots where
one part receives fertilizer A and the other fertilizer B. The
dependent variable is barley yield within plots.

4.2 10 nurses treat 40 patients where 20 patients receive
treatment A and 20 receive treatment B (both against high
blood pressure). Each nurse takes care of four patients where
two gets treatment A and two gets treatment B. Dependent
variable is blood pressure measured once a week over 5 weeks.

4.3 The experiment in previous question is changed so that only 2
nurses are involved. One nurse treats 20 patients with A and
one nurse treats 20 patients with B. Again blood pressure is
measured 5 times for each patient (extra question: is this a
good design ?)

4.4 What is the implication for estimation of variances if there is
just one blood pressure measurement for each patient ? Do
you prefer to include 10 or 2 nurses ?
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5. compute VarȲ·· for one way ANOVA (equation (4)).
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