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Outline

I general form of linear mixed models

I examples of analyses using linear mixed models

I prediction of random effects

I (estimation, including restricted maximum likelihood
estimation))
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One-way ANOVA in matrix-vector form

One observation:
Yij = µ+ Ui + εij

Vector of observations

Y = µ1n + ZU + ε

where Y , U and ε vectors of Yij ’s, Ui ’s and εij ’s. 1n vector of 1’s
and Z n × k matrix with Z(ij)q = 1 if q = i and zero otherwise.
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Linear regression with random effects in matrix-vector form

Consider mixed model:

Yij = β1 + Ui + [β2 + Vi ]xij + εij

May be written in matrix vector form as

Y = Xβ + ZU + ε

where β = (β1, β2)T, U = (U1, . . . ,Uk ,V1, . . . ,Vk)T,
ε = (ε11, ε12, . . . , εkm)T, X is n × 2 and Z is n × 2k .
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Linear mixed model: general form

Consider model
Y = Xβ + ZU + ε

where U ∼ N(0,Ψ) and ε ∼ N(0,Σ) are independent.

All previous models special cases of this.

Then Y has multivariate normal distribution

Y ∼ N(Xβ,ZΨZT + Σ)

General form is basis of linear mixed models software in R and
SPSS.
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Linear mixed models using lmer
General lmer model formulation

y~‘fixed formula’+(‘rand formula_1’|Group_1)+ ...

+(‘rand. formula_n’|Group_n)

translates into linear mixed model with independent sets of random
effects for each grouping variable and e.g.

(z|Group_i)

corresponds to
Uil + Vilz

i.e. model with random intercept and random slope for covariate z
within each level l of grouping factor Group_i.

NB independence between levels of Group_i but intercept and
slope dependent within level.

Only random intercept respectively slope: (1|Group_i) resp.
(-1+z|Group_i)
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Linear mixed models using lmer - cntd.

Procedure lmer is part of the lme4 package.

lmer does not give p-values as default.

If you also load package lmerTest, p-values will be provided.

If you load lmerTest, lme4 is also loaded.

Start by installing lme4 and lmerTest

NB: with lmer noise ε always has covariance matrix Σ = σ2I .
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Linear mixed model for orthodont data - independent
random slope and intercept

> ort6=lmer(distance~age*Sex+(1|Subject)+(-1+age|Subject))

> summary(ort6)

Groups Name Variance Std.Dev.

Subject (Intercept) 2.416451 1.55449

Subject.1 age 0.007748 0.08802

Residual 1.864634 1.36552

Number of obs: 108, groups: Subject, 27

Fixed effects:

Estimate Std. Error df t value Pr(>|t|)

(Intercept) 16.34062 0.94087 67.09150 17.368 < 2e-16 ***

age 0.78438 0.07944 67.09021 9.873 1.06e-14 ***

SexFemale 1.03210 1.47405 67.09150 0.700 0.4862

age:SexFemale -0.30483 0.12446 67.09021 -2.449 0.0169 *
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Linear mixed model for orthodont data - correlated random
slope and intercept

> ort7=lmer(distance~age*Sex+(age|Subject))

> summary(ort7)

Random effects:

Groups Name Variance Std.Dev. Corr

Subject (Intercept) 5.77441 2.4030

age 0.03245 0.1801 -0.67

Residual 1.71661 1.3102

Number of obs: 108, groups: Subject, 27

Fixed effects:

Estimate Std. Error df t value Pr(>|t|)

(Intercept) 16.34063 1.01824 25.00829 16.048 1.12e-14 ***

age 0.78437 0.08598 25.01351 9.123 1.97e-09 ***

SexFemale 1.03210 1.59528 25.00829 0.647 0.5235

age:SexFemale -0.30483 0.13471 25.01351 -2.263 0.0326 *
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Comparison of models for orthodont data

Fixed part: age+Sex+age:sex

Random part:

Model AIC BIC logLik Number of parameters

a 445.8 461.9 -216.9 4+2
bx 448.7 464.8 -218.4 4+2
a + bx , Cov(a, b) = 0 447.2 465.9 -216.6 4+3
a + bx 448.6 470 -216.3 4+4

Larger logLik and smaller AIC or BIC means better model.

The simplest one (just random intercept) seems better.
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AIC and BIC
We can get better fit with more complex model - but we don’t
want too complex models

AIC and BIC are model selection criteria that attempts to find
good compromise between model fit and model complexity
(number of parameters)

In R: use functions AIC() and BIC()

CAUTION When estimation method REML (restricted maximum
likelihood, see last slide) is used (is default), need same mean
structure in the models compared.

Otherwise use estimation method MLE (maximum likelihood) if
AIC or BIC used for model comparison:

ort7=lmer(distance~age*Sex+(age|Subject),REML=FALSE)
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SPSS

Choose Analyze →Mixed models → Linear.

Need to specify ‘Subject’ variables - these correspond to the
grouping variables for lmer.

With SPSS one can choose to model correlation in residuals
(Σ 6= σ2I ) - then one also need to specify a ‘Repeated’ variable
(e.g. residuals for each subject may be correlated in time).

Specify fixed part of model using item ‘fixed’ and random part
using item ‘random’ in menu.

Under random: several sets of random effects can be specified
(corresponding to several (|) in R).
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SPSS - continued

Under random: various options for covariance matrix of random
effects within subject. Use covariance structure ’Variance
Components’ to get independent random effects or ’unstructured’
to get dependent random effects.

Remember to include intercept.

Output: Type III F-tests for fixed effects.

See also power-point slides regarding SPSS.

13 / 41



Tests for fixed effects

SPSS produces Type III F-tests for fixed effects by default.

With lmer you NEED TO load lmerTest.

Then anova produces table with type III F-tests for fixed effects

If you don’t use lmerTest, anova will produce INCORRECT
F -tests when applied to output of lmer
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Example: test of fixed effects

> library(lmerTest)

> ort4=lmer(distance~age*Sex+(1|Subject))

> anova(ort4)

Type III Analysis of Variance Table with Satterthwaite’s method

Sum Sq Mean Sq NumDF DenDF F value Pr(>F)

age 208.266 208.266 1 79.00 108.3559 <2e-16 ***

Sex 0.866 0.866 1 103.99 0.4507 0.5035

age:Sex 12.114 12.114 1 79.00 6.3027 0.0141 *

Sex specific slope (age:Sex) now significant at 5% level.

Sex specific intercepts (Sex) not significant.

CAUTION: in presence of age:Sex, interpretation of age coefficient
depends on choice of reference category (boy or girl). Also interpretation
of Sex coefficient depends on possible centering of age. Advisable not to
pursue test for age or Sex in presence of age:Sex.
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Nested two-way analysis of variance

For five cardboards we have 4 replications at 4 positions.

Hierarchical model (nested random effects)

Yipj = µ+ Ui + Uip + εipj

VarYipj = τ2 + ω2 + σ2
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Covariance structure for nested random effects model

Yipj = µ+ Ui + Uip + εipj

Cov(Yipj ,Ylqk) =


0 i 6= l

τ2 i = l , p 6= q same card

τ2 + ω2 i = l , p = q same card and pos.

τ2 + ω2 + σ2 i = 1, p = q, k = j (VarYipj)
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Nested two-way analysis of variance

> out2=lmer(Reflektans~(1|Pap.nr.)+(1|Pap.nr.*Sted))

> summary(out2)

Random effects:

Groups Name Variance Std.Dev.

Pap.nr. (Intercept) 1.6560e-02 0.1286843

Pap.nr. * Sted (Intercept) 9.4539e-04 0.0307472

Residual 6.3494e-05 0.0079683

Number of obs: 80, groups: Pap.nr. * Sted, 20; Pap.nr., 5

Largest part of variance is between cardboard variance !
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Explanation of Reflektans~(1|Pap.nr.)+(1|Pap.nr.*Sted):

I no fixed formula: intercept always included as default

I (1|Pap.nr.) random intercepts for groups identified by
variable Pap.nr. (card board effects)

I (1|Pap.nr.*Sted) random intercepts for groups identified
by cross of variables Pap.nr. and Sted (positions within
cardboard)

I random effects specified by different terms independent.
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A more complicated example: gene-expression
Gene (DNA string) composed of substrings (exons) which may be
more or less expressed according to treatment.

Expression measured as intensities on micro-array (chip). One chip
pr. patient-treatment.

Factors: E (exon 8 levels), P (patient, 10 levels), T (treatment, 2
levels)

Y : vector of intensities (how much is exon expressed).

Model:
yept = µ+ αe + βt + γet + Up + Upt + εept

Upt and Up random chip and patient effects.

Main question: are exons differentially expressed - i.e. are γet 6= 0
or not ?
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Classical anova table:

> fit1=lm(intensity~treat*factor(exon)+factor(patient)+

factor(patient):treat,data=gene1)

> anova(fit1)

Analysis of Variance Table

Df Sum Sq Mean Sq F value Pr(>F)

treat 1 3.242 3.242 14.4796 0.0002199 ***

factor(exon) 7 254.343 36.335 162.2852 < 2.2e-16 ***

factor(patient) 9 15.405 1.712 7.6449 6.703e-09 ***

treat:factor(exon) 7 2.238 0.320 1.4278 0.1998234

treat:factor(patient) 9 8.190 0.910 4.0643 0.0001345 ***

Residuals 126 28.211 0.224

We can estimate variances of εept , Upt and Up as follows:

σ̂2 = 0.224
σ̂2P×T = (0.91− 0.224)/8 = 0.08575
σ̂2P = (1.712− 0.91)/16 = 0.050125
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F-test for no treatment-exon interaction: 1.4278 with p-value
0.1998.

I.e. interaction not significant - no evidence of differential exon
usage.

Classical ANOVA:

I not straightforward to obtain estimates of variances from
table of sums of squares (I will not go into detail with this).

I in the presence of random effects not straightforward to
compute F-tests for fixed effects (which sums of squares
should be used ?) - e.g. F -test for Treat is 3.563=3.242/0.910

I exact F-tests only available in balanced case (equal number of
observations for each combination of factor levels)
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Using lmer:

> fit1=lmer(intensity~treatment*factor(exon)+(1|patient)

+(1|factor(patient):treatment),data=gene1)

> summary(fit1)

Random effects:

Groups Name Variance Std.Dev.

factor(patient):treatment (Intercept) 0.08577 0.2929

patient (Intercept) 0.05011 0.2239

Residual 0.22389 0.4732

Number of obs: 160, groups: factor(patient):treatment, 20; patient, 10

We directly obtain estimates of variance components.
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Tests of fixed effects

Test for no treatment-exon interaction:

> library(lmerTest)

> fit1=lmer(intensity~treatment*factor(exon)+

(1|patient)+(1|factor(patient):treatment),data=gene1)

> anova(fit1)

Type III Analysis of Variance Table with Satterthwaite’s method

Sum Sq Mean Sq NumDF DenDF F value Pr(>F)

treatment 0.798 0.798 1 9 3.5625 0.09171 .

factor(exon) 254.343 36.335 7 126 162.2869 < 2e-16 ***

treat:factor(exon) 2.238 0.320 7 126 1.4278 0.19982

Treatment-exon interaction not significant !

CAUTION: tests for main effects exon and treatment should ONLY be

considered when interaction treatment:exon is NOT significant !
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Tests for main effects

Interaction removed

> fit2=lmer(intensity~treatment+factor(exon)+(1|patient)+

(1|factor(patient):treatment),data=gene1)

> anova(fit2)

Type III Analysis of Variance Table with Satterthwaite’s method

Sum Sq Mean Sq NumDF DenDF F value Pr(>F)

treatment 0.816 0.816 1 9 3.5626 0.09171 .

factor(exon) 254.343 36.335 7 133 158.7120 < 2e-16 ***

Exon significant, treatment not !

Whether tests change after removal of interaction depends on specific

model structure
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With 12.5% missing data

20 of out 160 missing at random.

Random effects:

Groups Name Variance Std.Dev.

factor(patient):treatment (Intercept) 0.10465 0.3235

patient (Intercept) 0.02221 0.1490

Residual 0.22896 0.4785

Number of obs: 140, groups: factor(patient):treatment, 20; patient, 10
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Adjusted F-test

> anova(fit1)

Type III Analysis of Variance Table with Satterthwaite’s method

Sum Sq Mean Sq NumDF DenDF F value Pr(>F)

treat 0.753 0.7529 1 9.04 3.2881 0.1030

factor(exon) 219.277 31.3253 7 107.41 136.8134 <2e-16 ***

treat:factor(exon) 1.770 0.2528 7 107.41 1.1041 0.3659

Note: denominator degrees of freedom (DenDF) are not integers - this is

due to adjustment in case of unbalanced data.
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Classical ANOVA with random effects as linear mixed
model

I classical ANOVA approach requires deep insight in order to
calculate variance estimates and F -tests from classical
ANOVA table.

I classical ANOVA requires balanced data.

I with general linear mixed models framework (lmer) everything
is automatic.

I with general linear mixed models framework (lmer)
adjustment of F -statistics in case of unbalanced data
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Predictions/Residuals

The random effects U in a linear mixed model can be predicted
using ‘best linear unbiased prediction’ (BLUP) - useful if we want
to look at subject specific characteristics.

In the context of linear mixed models, BLUP Û is the conditional
mean of the random effects given the data:

Û = E[U|Y = y ]

Typically we assume εij independent and N(0, σ2). To check this
we can consider residuals:

ε̂ = Y − X β̂ − ZÛ

and perform the usual residual diagnostics.
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With lmer: use ranef, fitted and residuals to extract
BLUPS, fitted values and residuals.

SPSS: save predicted values and residuals under ‘Predicted values
and residuals’
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Example: orthodont data

Extract BLUPS, fitted values and residuals

> childeffects=ranef(ort4)$Subject

> qqnorm(childeffects[[1]])

> qqline(childeffects[[1]])

> res=resid(ort4)

> hist(res)

> qqnorm(res)

> qqline(res)

> fitted=fitted(ort4)

> plot(fitted,res)

> boxplot(res~Subject)
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Plots
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Summary

I Linear mixed models flexible class of models for continuous
observations.

I incorporates classical ANOVA models and random coefficients
models

I Useful for modeling of correlated observations, for
decomposition of variance and for estimation of population
variances.

I Userfriendly software available
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Exercises

1. Use lmer or Mixed models in SPSS to fit a one-way ANOVA
model with random operator effects for the pulp data.
Compare with results from previous exercise (classical anova
for pulp data).

2. Install the R-package faraway which contains the data set
penicillin. The response variable is yield of penicillin for
four different production processes (the ‘treatment’). The raw
material for the production comes in batches (‘blends’). The
four production processes were applied to each of the 5
blends. Use lmer to fit anova models with production process
as a fixed factor and blend as random factor. Compute an
F-test for the effect of production process.
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3. The rats data has variables (1) obs: observation number (2)
treat: treament group (’con’: control; ’hig’: high dose; ’low’:
low dose) 3) rat: rat identification number (4) age: age of the
rat at the moment the observation is made (5) respons: the
response measured (height of skull) (6) logage:
log-transformed age.

The treatment is a drug that inhibits production of
testosterone. The scientific question is whether/how the drug
affects the growth rate of the rats.

3.1 take a look at data by plotting response against age and
logage (with separate curves for each rat).

3.2 fit a linear regression model for the response with logage as the
independent variable and an interaction between logage and
treatment. Is the interaction between logage and treatment
significant ? Is treatment significant ?
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3. (continued) fit a linear mixed model by extending the previous
models with random rat specific intercepts.

3.3 what is the proportion of variance explained by the random
intercepts ?

3.4 What are the conclusions regarding interaction and treatment
effects based on this model ? Compare with the previous
model.

3.5 Check the fitted linear mixed model using residuals and
predicted random effects.
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4. Write out X and Z matrix for model on slide ‘Linear
regression with random effects in matrix-vector form’.
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Estimation - technical background
For linear mixed model two sets of parameters: β (fixed effects)
and ψ (random effects variances).

Maximum likelihood estimation: parameter estimates are those
parameter values that make data most likely under the given
model:

(β̂, ψ̂) = argmax
β,ψ

f (y ;β, ψ)

where f (y ;β, ψ) is the normal probability density of the data y .

Given ψ, β̂ is the generalized least squares estimate:

β̂(ψ) = (XTV (ψ)−1X )−1XTV (ψ)−1y

which minimizes the generalized sum of squares

(y − Xβ)TV (ψ)−1(y − Xβ).
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In general ψ needs to be obtained by iterative maximization of

L(ψ) = f (y ; β̂(ψ), ψ)

One issue: MLE of ψ in general biased.
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MLE’s of variances biased
Consider simple normal sample Yi ∼ N(µ, σ2).

MLE’s:

µ̂ = Ȳ· σ̂2 =
1

n

n∑
i=1

(Yi − Ȳ·)
2

Bias of σ̂2:
Eσ̂2 = σ2(n − 1)/n

Bias arise from estimation of µ (
∑

i (Yi − µ)2 vs
∑n

i=1(Yi − Ȳ·)
2).

Often we use instead unbiased estimate

s2 =
1

n − 1

∑
i

(Yi − Ȳ·)
2

Similarly: maximum likelihood estimate of between subject
variance in one-way anova is biased due to estimation of mean.
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REML (restricted/residual maximum likelihood)
Idea: use linear transform of data which eliminates mean. Suppose
design matrix X : n × p and let A : n × (n − p) have columns
spanning the orthogonal complement L⊥ of L = spanX . Then
ATX = 0.

Transformed data ((n − p)× 1)

Ỹ = ATY = ATZU + ATε

has mean 0 and covariance matrix ATV (ψ)A where
V = ZΨZT + Σ covariance matrix of Y and ψ covariance
parameters. Then proceed as for MLE.

Default choice for estimation of variance parameters in both lmer

and Mixed model in SPSS.

s2 is one example of REML. Classical ANOVA variance estimates
also REML.
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