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Binary and count data

Linear mixed models very flexible and useful model for continuous
response variables that can be well approximated by a normal
distribution.

If the response variable is binary a normal distribution is clearly
inappropriate.

For count response variables normal distribution may be OK
approximation if counts are not too small. However this not so for
small counts.

Also often problems with variance heterogeneity.

This lecture: focus on regression models for binary and binomial
data.



Example: o-ring failure data
Number of damaged O-rings (out of 6) and temperature was
recorded for 23 missions previous to Challenger space shuttle
disaster.

Proportions of damaged O-rings
versus temperature and least
squares fit:
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Problems with least squares fit:

I predicts proportions outside
[0, 1].

I assumes variance
homogeneity (same precision
for all observations).

I proportions not normally
distributed.



Modeling of o-ring data

Number of damaged o-rings is a count
variable but restricted to be between 0
and 6 for each mission. Hence Poisson
distribution not applicable (a Poisson
distributed variable can take any value
0, 1, 2, . . .).

40 50 60 70 80

0
.0

0
.2

0
.4

0
.6

0
.8

temperature

F
ra

c
ti
o

n
 d

a
m

a
g

e
d

To jth ring for ith mission we may associate binary variable Iij
which is one if ring defect and zero otherwise.

We assume the Iij independent with pi = P(Iij = 1) depending on
temperature.

Then count of defect rings, Yi = Ii1 + Ii2 + · · ·+ Ii6 follows a
binomial b(6, pi ) distribution



Binomial model for o-ring data

Yi number of failures and ti temperature for ith mission.

Yi ∼ b(6, pi ) where pi probability of failure for ith mission.

Model for variance heterogeneity:

VarYi = nipi (1− pi )

How do we model dependence of pi on ti ?

Linear model:
pi = α + βti

Problem: pi not restricted to [0, 1] !



Logistic regression

Consider logit transformation:

η = logit(p) = log(
p

1− p
)

where
p

1− p

is the odds of an event happening with probality p.

Note: logit injective function from ]0, 1[ to R. Hence we may apply
linear model to η and transform back:

η = α + βt ⇔ p =
exp(α + βt)

exp(α + βt) + 1

Note: p now guaranteed to be in ]0, 1[



Plots of logit and inverse logit functions
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Logistic regression and odds

Odds for a failure in ith mission is

oi =
pi

1− pi
= exp(ηi ) = exp(βti )

and odds ratio is

oi
oj

= exp(ηi − ηj) = exp(β(ti − tj))

Example: to double odds we need

2 = exp(β(ti − tj))⇔ ti − tj = log(2)/β

Example: exp(β) is increase in odds ratio due to unit increase in t.



Logistic regression in R

> out=glm(cbind(damage,6-damage)~temp,family=binomial(logit))

> summary(out)

...

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 11.66299 3.29626 3.538 0.000403 ***

temp -0.21623 0.05318 -4.066 4.78e-05 ***

...

Null deviance: 38.898 on 22 degrees of freedom

Residual deviance: 16.912 on 21 degrees of freedom

...

Note response is a matrix with first rows numbers of damaged and
second row number of undamaged rings.

If we had the separate binary variables Iij in a vector y, say, this
could be used as response instead: y~temp.



Generalized linear models

Logistic regression special case of wide class of models called
generalized linear models that can all be analyzed using the
glm-procedure.

We need to specify distribution family and link function.

In practice Binomial/logistic and Poisson/log regression are the
most commonly used examples of generalized linear models.

SPSS: Analyze → Generalized linear models → etc.



Overdispersion
For a binomial variabl Y ∼ bin(n, p), EY = np and
VarY = np(1− p).

For Poisson (details omitted) EY = VarY .

Overdispersion happens when actual variance of Y is bigger than
predicted by the model. For example VarY > np(1− p).

Overdispersion may be due e.g. to unobserved explanatory
variables like e.g. genetic variation between subjects, variation
between batches in laboratory experiments, or variation in
environment in agricultural trials.

Overdispersion can also be due to correlation between trials Iij
forming a count variable Yi = Ii1 + . . .+ Iini .

There are various ways to handle overdispersion - we will focus on
a model based approach: generalized linear mixed models.



Exercises

1. Suppose the probability that the race horse Flash wins is 10%.
What are the odds that Flash wins ?

2. Suppose that the logit of the probability p is 0, logit(p) = 0.
What is then the value of p ?

3. Consider a logistic regression model with P(X = 1) = p and
logit(p) = 3 + 2z . What are the odds for the event X = 1
when z = 0.5 ? What is the increase in odds if z is increased
by one ?

4. Show that the mean and variance of a binomial variable
Y ∼ b(n, p) are np and np(1− p), respectively.

Hint: use that Y = I1 + I2 + . . . , In where the Ii are
independent binary random variables with P(Ii = 1) = p.



5. Consider the wheezing data (available as data set ohio in the
faraway package or ohio.sav at the course web page).

The variables in the data set are resp (an indicator of wheeze
status, 1=yes, 0=no), id (a numeric vector for subject id), age
(a numeric vector of age, 0 is 9 years old), smoke (an
indicator of maternal smoking at the first year of the study).

Fit a logistic regression model for the binary resp variable with
age and smoke as factors. Check the significance of age and
smoke. Compare with a model with age as a covariate (i.e. a
single slope parameter for age).


