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Variance for binomial distribution

For binomial variables, variance is determined by mean.
Y binomial b(n, p):

EY =np VarY = np(1—p)
Binary case, n = 1:

EY =p VarY = p(1 - p)
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Overdispersion

Binomial default model in case of binary data.

In some applications we see larger variability in the data than
predicted by variance formulas for binomial.

This is called overdispersion and can be due to correlation in the
data, latent factors, biological heterogeneity, genetics,....

Latent factors can be modeled explicity using random effects - i.e.
mixed models for binary and count data.
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Wheezing data

The wheezing (Ohio) data has variables resp (binary indicator of
wheezing status), id, age (of child), smoke (binary, mother smoker
or not). Each child has 4 observations.

Aggregated data: (black=smoke, red=no smoke)

Wheeze proportin
0.10 0.15 0.20
1 1 1
/

0.05
I

0.00
I

-20 -15 -1.0 -0.5 0.0 05 1.0

4/19



Closer look at data

Let Yj; denote wheezing status of ith child at jth age.
Looking at the data | got suspicious.

Consider sum of observations Y;. = Y1 4+ ... Yj4 for each child.
Possible values 0,1,2,3,4.

Distribution of Y;.'s and probabilities for binomial b(4,0.15):

k 0o 1 2 3 4
Proportion equal to kK | 0.66 0.18 0.08 0.04 0.03
b(4,0.15) 0.52 0.37 0.10 0.01 0.00

There appear to be too many Y;. with value 0 or 4!
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Looking at variances
Assuming Yj; is b(pjj, 1) we try logistic regression

logit(pjj) = Bo + Brage; + Basmoke;

Assuming independence between observations from the same child,
and letting Y;. be the sum of observations from ith child,

VarY;.
=Var(Yi1 + Y2 + Yiz + Yis) = VarYj; + VarYjs 4 Var Yz + Var Yy
=pi1(1 — pi1) + pi2(1 — piz) + pi3(1 — pi3) + pia(l — pia)

Note: same variance of Y;. for all children with same value of
smoke.

We can calculate above theoretical variance from fitted model and
compare with empirical variances.
Smoke=0: theoretical: 0.58 empirical: 1.22.

Smoke=1: theoretical: 0.48 empirical: 0.975
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Issue: observations from same child are correlated - if we know
first observation is non-wheeze then very likely three remaining
observations non-wheeze too.

Correlation can be due to genetics or the environment (more or
less polluted) for the child.

Explicit model these effects using random effect:
logit(p;) = Bo + B1rage; + Basmoke; + U;

where U; are N(0,72) and independent among children.

Such a model can be fitted by the R-procedure glmer with syntax
very close related to 1mer and glm
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Logistic regression

> fit=glm(resp~age+smoke,family=binomial,data=ohio)

Coefficients:

Estimate Std. Error z value Pr(>|zl)
(Intercept) -1.88373 0.08384 -22.467 <2e-16 *x*x
age -0.11341 0.05408 -2.097 0.0360 *
smoke 0.27214 0.12347 2.204 0.0275 *

Signif. codes: O ’*%x’ 0.001 ’*x’ 0.01 ’%’ 0.056 ’.’ 0.1~

Residual deviance: 1819.9 on 2145 degrees of freedom

According to above results, age and smoke both significant at the
5% level.

8/19



Mixed model analysis

> fiter=glmer(resp~age+smoke+(1]id) ,family=binomial,data=ol
> summary(fiter)
Random effects:
Groups Name Variance Std.Dev.
id (Intercept) 5.491 2.343
Number of obs: 2148, groups: id, 537

Fixed effects:

Estimate Std. Error z value Pr(>|z])
(Intercept) -3.37396 0.27496 -12.271 <2e-16 *x*x
age -0.17677 0.06797 -2.601 0.0093 *x*
smoke 0.41478 0.28705 1.445 0.1485

Now only age is significant on the 5% level.

Note large variance 5.491 for the U;.
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Interpretation of variance of random effects

Variance 5.491 corresponds to standard deviation 2.343. This
means 95% probability interval (plus/minus two standard
deviations) for U; is [—4.686,4.686].

Large part of the variation explained by the U; relative to the fixed
effects.

Smoke effect: 0.41 (not significant) and age (centered) ranges
between -2 to 1 with coefficient -0.18.
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Interpretation in terms of marginal variance ?

For linear mixed model we can directly interpret variances of
random effects in terms of proportions of variance and intra-class
correlation for the response variable.

This is not possible for logistic mixed models.
For logistic mixed regression model, the variance is
VarY; = Ep;(1 — p;) + Varp;
where the expectation and variance is with respect to U; in

_expla+ Bz + U))
1+ expla + 2 + Uj)

i
There is no simple formula for the above variance.
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Interpretation in terms of odds
The odds are

P

0= 1—pi

= exp(a + Bz + U;)

and the odds ratio between individuals i and j is

5’: =exp(B(zi — z) + Ui = U))
J

where U; — U; ~ N(0,272).

Larsen et al. (2000) suggested to consider the median summary

MOR = exp[B(zi—z;))+MED(|Ui—U;|)] = exp[B(zi—2z))] exp[V2720.6744)

between individuals / and j.

Here factor exp[v'2720.6744)] is median odds ratio between the
individual (i or j) with highest random effect and the individual
with lowest random effect (note we consider absolute value

Ui = Ujl).
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95% intervals for probabilities or odds

U; is between —1.967 and 1.967 with 95% probability.

Hence odds O; in interval

[exp(a + Bzj — 1.967); exp(a + Sz + 1.967)]
with probability 95%.
For probability p; the interval is

exp(a + fz; —1.967)  exp(a+ Bz + 1.967)
1+ exp(a + Bz — 1.967)" 1 + exp(a + Sz + 1.967)
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Wheezing data
With 7 = 2.343 we get MOR=9.34.

That is, keeping all fixed factors equal (z; = z;), for two randomly
picked children, the median odds ratio between the child with
highest random effect and the child with lowest random effect is
9.34.

For child of centered age 0 and with smoking mother the 95%
interval for probability of wheezing is

exp(—3.37 +0.41 — 1.06 % 2.34)  exp(—3.37 + 0.41 + 1.96 * 2.34)
1+ exp(—3.37 +0.41 — 1.96 % 2.34)" 1 + exp(—3.37 4 0.41 + 1.96 x 2.34)
— [0.00;0.84]

Mean probability (by Monte Carlo) is 0.16.

Emphasizes the large individual specific effects.
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Computation

Due to non-linear relation between mean of observations and
random effects, computation of likelihood is not straightforward.

Huge statistical literature on how to compute good approximations
of the likelihood.

glmer uses numerical integration (adaptive Gaussian quadrature)
and the accuracy is controlled using the argument nAGQ (default is

nAGQ=1).

SPSS use so-called penalized quasi-likelihood based on (very
crude) approximation of likelihood.

For the wheeze data set R and SPSS estimates differ but we get
qualitatively similar results regarding significance of fixed effects.
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Wheeze results with different values of nAGQ

5 quadrature points:

> fiterb=glmer(resp~age+smoke+(1|id),family=binomial,
data=ohio,nAGQ=5)
Groups Name Variance Std.Dev.
id (Intercept) 4.198 2.049
Number of obs: 2148, groups: id, 537

Fixed effects:

Estimate Std. Error z value Pr(>|zl)
(Intercept) -3.02398 0.20353 -14.857 < 2e-16 *x*x
age -0.17319 0.06718 -2.578 0.00994 x*x
smoke 0.394438 0.26305 1.500 0.13371
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10 quadrature points:

> fiter10=glmer (resp~age+smoke+(1]|id),family=binomial
,data=ohio,nAGQ=10)

Random effects:
Groups Name Variance Std.Dev.
id (Intercept) 4.614 2.148
Number of obs: 2148, groups: id, 537

Fixed effects:

Estimate Std. Error z value Pr(>|zl)
(Intercept) -3.08959 0.21557 -14.332 < 2e-16 *x*x
age -0.17533 0.06762 -2.593 0.00952 *x
smoke 0.39799 0.27167 1.465 0.14293

Some sensivity regarding variance estimate. Fixed effects results
quite stable.

Results with 20 quadrature points very similar to those with 10
quadrature points.
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Summary

> logistic regression very useful for binary data where linear
normal models not appropriate.

» in some applications there is evidence of overdispersion (extra
variance)

» easy to add random effects to model sources of overdispersion
and thereby correctly model correlation between observations
e.g. for same subject.

» thereby we get more trustworthy standard deviations for fixed
effects estimates.

» disadvantage: not easy to interpret random effects variances in
terms of variances and correlations of the response variable Y;.
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Exercises

1. An experiment was designed to assess the effect of different
stocks on the robustness of cherry flowers to frost. For 20
cherry trees of 5 different stock varieties, three branches were
sampled and on each branch the status of 5 buds (dead=1 or
alive=0) were recorded. The data are available as
cherries_red.txt.

1.1 Fit a logistic model with systematic STOCK and BRANCHNR
effects and with random BRANCHID and TREEID effects. Is
there scope for simplification of the random part of the model ?

1.2 What can you conclude about the STOCK effects ?

1.3 Is there a BRANCHNR effect ? Does this make sense 7
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