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Model specification
Mixed model = fixed effects + random effects

With lmer:

y~‘fixed formula’+(‘rand formula_1’|Group_1)+ ...

+(‘rand. formula_n’|Group_n)

Fixed effects just like ordinary multiple regression (lm())

Important feature of linear mixed models: using simple building
blocks (independent random effects) we can obtain complex and
more realistic models for the covariance structure of our
observations.

Very wide range of models possible but one should carefully
consider what makes sense for the particular data and research
question considered.

Easy to specify way too complex models !



Example from last time

We may get “strange” output:

> ort7=lmer(distance~age*Sex+(age|Subject))

> summary(ort7)

Random effects:

Groups Name Variance Std.Dev. Corr

Subject (Intercept) 5.77441 2.4030

age 0.03245 0.1801 -0.67

Residual 1.71661 1.3102

Number of obs: 108, groups: Subject, 27

This is model with correlated (estimate -0.67 for ρ) subject specific
intercept and slope.

Child with big intercept has small slope and vice versa

How do results comply with other analyses which say that total variance

VarY a bit more than 5 ?



Why care about theoretical calculations of variance ?

If we understand the basics of variance and covariance calculations
we can understand previous output !

Random coefficient models (exercise for last time):

Y = α+ a+ βx + ϵ VarY = τ2a + σ2

Y = α+ [β + b]x + ϵ VarY = x2τ2b + σ2

Y = α+ a+ [β + b]x + ϵ VarY = τ2a + x2τ2b + 2xCov(a, b) + σ2

NB: for the last two models, VarY is a ‘smiling’ second order
polynomial in the covariate x !



Variance is sum of covariances between random terms:

VarY = Var(α+ a+ βx + bx + ϵ) =

Cov(α+ a+ βx + bx + ϵ, α+ a+ βx + bx + ϵ) =

Cov(a, a) + Cov(a, bx) + Cov(bx , bx) + Cov(bx , a) + Cov(ϵ, ϵ) =
Var(a) + Var(bx) + Varϵ+ 2xCov(a, b) =
τ2a + x2τ2b + σ2 + 2xρτaτb

NB: a and b are assumed to be independent of ϵ so e.g.
Cov(a, ϵ) = 0

NB: we may or may not assume a and b to be independent.

Correlation and covariance:

ρ = Corr(a, b) =
Cov(a, b)√
Vara

√
Varb

⇒ Cov(a, b) = ρτaτb



We have from previous slide:

VarY = τ2a + x2τ2b + 2xCov(a, b) + σ2 Cov(a, b) = ρτaτb

Using output:

Cov(a, b) = 2.40 ∗ 0.18 ∗ (−0.67) = −0.28

Age 8:

VarY = 5.77 + 82 ∗ 0.032 + 2 ∗ 8 ∗ (−0.28) + 1.72 = 5.06

Age 10:

VarY = 5.77 + 102 ∗ 0.032 + 2 ∗ 10 ∗ (−0.28) + 1.72 = 5.09

Age 12:

VarY = 5.77 + 122 ∗ 0.032 + 2 ∗ 12 ∗ (−0.28) + 1.72 = 5.38

Age 14:

VarY = 5.77 + 142 ∗ 0.032 + 2 ∗ 14 ∗ (−0.28) + 1.72 = 5.92

Variances increase with age but in agreement with other analyses
(multiple regression, linear mixed with random intercepts) in terms
of total variance.



Sugar beets example

Outcome: sugar percentage

Two treatments: harvest time and sowing time.

Experimental design: 6 plots organized in 3 blocks. 5 split-plots
within each plot. In total 30 observations.1

1figure reproduced from Halehoh and Højsgaard (2014)



Linear mixed model ?

We can use indices b = 1, 2, 3 for block, h = 1, 2 for harvest time
and s = 1, . . . , 5 for sowing time.

Which linear mixed effects model should we use ?

Which fixed effects - which random effects ?



What about nurse examples (exercise 4 from slides 1) ?



Why you should not add standard deviations

Consider one-way anova with random effects.

Total variance is
VarYij = τ2 + σ2

Total standard deviation is√
VarYij =

√
τ2 + σ2 ̸= τ + σ

For example (Pythagoras)

52 = 32 + 42 but 5 ̸= 3 + 4



Model with subject specific intercepts

> ortss=lm(distance~-1+Subject+age+age:factor(Sex)+factor(Sex))

> summary(ortss)

Coefficients: (1 not defined because of singularities)

Coefficients: (1 not defined because of singularities)

Estimate Std. Error t value Pr(>|t|)

SubjectM16 14.3719 1.0988 13.080 < 2e-16 ***

SubjectM05 14.3719 1.0988 13.080 < 2e-16 ***

SubjectM02 14.7469 1.0988 13.421 < 2e-16 ***

SubjectM11 14.9969 1.0988 13.649 < 2e-16 ***

SubjectM07 15.1219 1.0988 13.763 < 2e-16 ***

SubjectM08 15.2469 1.0988 13.876 < 2e-16 ***

SubjectM03 15.6219 1.0988 14.218 < 2e-16 ***

SubjectM12 15.6219 1.0988 14.218 < 2e-16 ***

...

SubjectF01 16.1000 1.2400 12.984 < 2e-16 ***

SubjectF05 17.3500 1.2400 13.992 < 2e-16 ***

SubjectF07 17.7250 1.2400 14.294 < 2e-16 ***

SubjectF02 17.7250 1.2400 14.294 < 2e-16 ***

SubjectF08 18.1000 1.2400 14.597 < 2e-16 ***

SubjectF03 18.4750 1.2400 14.899 < 2e-16 ***

SubjectF04 19.6000 1.2400 15.806 < 2e-16 ***

SubjectF11 21.1000 1.2400 17.016 < 2e-16 ***

age 0.7844 0.0775 10.121 6.44e-16 ***

factor(Sex)Female NA NA NA NA

age:factor(Sex)Female -0.3048 0.1214 -2.511 0.0141 *

NB: omitted common intercept (-1 in model formula)



For each subject an estimate of deviation between the subject’s
intercept and the first subject’s intercept.

In total 27 (!) subject specific estimates.

Each estimate pretty poor (only 4 observations for each subject).

Can not estimate female effect !

Model with subject specific effects may be more correct but is it
useful ?



Overparametrization for orthodont data
Model with subject specific intercepts:

Yij = µ+ αi + δsex(i) + βageij + βsex(i)ageij + ϵij

Why can’t we estimate δsex(i) ?

sex(i) is 1 if individual i is a girl and 0 otherwise.

Note for any constant c we have

αi + δsex(i) = (αi + c) + (δsex(i) − c)

In words: if we increase all girl intercepts by c and decrease the sex
effect by c the expected value of Yij is unchanged.

Thus we can not identify a unique best fitting value of δ1

We do not have this problem if αi is substituted by random effect
Ui which is not used to model the expected value of an
observation.


