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Topics of the day

I Logistic regression

I Overdispersion

I Logistic regression with random effects
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O-ring failure data
Number of O-rings (out of 6) with evidence of damage and
temperature was recorded for 23 missions previous to Challenger
space shuttle disaster.

Fractions of damaged O-rings
versus temperature and least
squares fit:
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Problems with least squares fit:

I predicts proportions outside
[0, 1].

I assumes variance
homogeneity (same precision
for all observations).

I proportions not normally
distributed.
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Binomial model for o-ring data

Yi number of failures and ti temperature for ith mission.

Yi ∼ b(6, pi ) where pi probability of failure for ith mission.

Variance heterogeneity:

VarYi = nipi (1− pi )

How do we model dependence of pi on ti ?

Linear model:
pi = α + βti

Problem: pi not restricted to [0, 1] !
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Logistic regression

Consider logit transformation:

η = logit(p) = log(
p

1− p
)

Note: logit injective function from ]0, 1[ to R. Hence we may apply
linear model to η and transform back:

η = α + βt ⇔ p =
exp(α + βt)

exp(α + βt) + 1

Note: p guaranteed to be in ]0, 1[
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Plots of logit, inverse logit, and probit
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Probit transformation: pi = Φ(ηi ) where Φ cumulative distribution
function of standard normal variable (Φ(u) = P(U ≤ u).)

Regression parameter for logistic roughly 1.8 times regression
parameter for probit since Φ more steep than inverse logit.
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Logistic regression and odds

Odds for a failure in ith mission is

oi =
pi

1− pi
= exp(ηi )

and odds ratio is

oi
oj

= exp(ηi − ηj) = exp(β(ti − tj))

Example: to double odds we need

2 = exp(β(ti − tj))⇔ ti − tj = log(2)/β
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Estimation

Likelihood function for simple logistic regression
logit(pi ) = α + βxi :

L(α, β) =
∏
i

pyii (1− pi )
ni−yi

where

pi =
exp(α + βxi )

1 + exp(α + βxi )

MLE (α̂, β̂) found by iterative maximization (Newton-Raphson)

More generally we may have multiple explanatory variables:

logit(pi ) = β1x1i + . . .+ βpxpi
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Deviance
Predicted observation for current model:

ŷi = ni p̂i logitp̂i = β̂1x1i + . . .+ β̂pxpi

Saturated model: no restrictions on pi so p̂sati = yi/ni and
ŷ sati = yi (perfect fit).

Residual deviance D is -2 times the log of the ratio between
L(β̂1, . . . , β̂p) and likelihood Lsat for the saturated model.

D = 2
m∑
i=1

[yi log(yi/ŷi ) + (ni − yi ) log((ni − yi )/(ni − ŷi ))]

If ni not too small D ≈ χ2(m − p) where m number of
observations and p number of parameters for current model. If this
is the case, D may be used for goodness-of-fit assessment.

Null deviance is log ratio between maximum likelihood for model
with only intercept and Lsat.
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Pearson’s X 2:

X 2 =
m∑
i=1

(yi − ni p̂i )
2

ni p̂i (1− p̂i )

is asymptotically equivalent alternative to D.
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Logistic regression in R

> out=glm(cbind(damage,6-damage)~temp,family=binomial(logit))

> summary(out)

...

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 11.66299 3.29626 3.538 0.000403 ***

temp -0.21623 0.05318 -4.066 4.78e-05 ***

...

Null deviance: 38.898 on 22 degrees of freedom

Residual deviance: 16.912 on 21 degrees of freedom

...

ni = 6 so residual deviance approximately χ2(21)

Residual deviance not large compared with numbers of degrees of
freedom.
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Generalized linear models

Suppose Z is random variable with expectation EZ = µ ∈ M
where M ⊂ R. Idea: use invertible link function g : M → R and
apply linear modelling to η = g(µ).

Binomial data: Z = Y /n, Y ∼ b(n, p). µ = p ∈ M =]0, 1[. g(·)
e.g. logistic or probit.

Poisson data: Z ∼ pois(λ). µ = λ > 0. g e.g. log.

Many other possibilities (McCullagh and Nelder, Faraway, Dobson)
e.g. gamma distribution and inverse Gaussian for positive
continuous data.

For binomial and Poisson, VarZ = V (µ) determined by µ:
V (µ) = µ(1− µ)/n and V (µ) = µ, respectively.
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Overdispersion

In some applications we see larger variability in the data than
predicted by variance formulas for binomial.

This is also sometimes revealed by large residual deviance or X 2

relative to degrees of freedom.

Reason may either systematic defiency of model (misspecified
mean structure) or overdispersion, i.e. variance of observations
larger than model predicts.

Overdispersion may be caused e.g. by genetic variation between
subjects, variation between batches in laboratory experiments, or
variation in environment in agricultural trials.

There are various ways to handle overdispersion - we will focus on
a model based approach: generalized linear mixed models.
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Wheezing data
The wheezing (Ohio) data has variables resp (binary indicator of
wheezing status), id, age (of child), smoke (binary, mother smoker
or not).

Aggregated data: (black=smoke, red=no smoke)
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Let Yij denote wheezing status of ith child at jth age. Assuming
Yij is b(1, pij) we try logistic regression

logit(pij) = β0 + β1ageij + β2smokeij

Assuming independence between observations from the same child,
and letting Yi · be the sum of observations from ith child,

VarYi ·

=Var(Yi1 + Yi2 + Yi3 + Yi4) = VarYi1 + VarYi2 + VarYi3 + VarYi4

=pi1(1− pi1) + pi2(1− pi2) + pi3(1− pi3) + pi4(1− pi4)

Note: same variance of Yi · for all children with same value of
smoke.

We can calculate above theoretical variance from fitted model and
compare with empirical variances.

Smoke=0: theoretical: 0.58 empirical: 1.22.

Smoke=1: theoretical: 0.48 empirical: 0.975
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Issue: observations from same child are correlated1 we know first
observation is non-wheeze then very likely three remaining
observations non-wheeze too.

Correlation can be due to genetics or the environment (more or
less polluted) for the child.

Explicit model these effects using random effect:

logit(pij) = β0 + β1ageij + β2smokeij + Ui

where Ui are N(0, τ2) and independent among children.

Such a model can be fitted by the R-procedure glmer with syntax
very close related to lmer and glm

1Var(
∑m

i=1 Yi ) =
∑m

i=1 Var(Yi ) + 2
∑

i<j Cov(Yi ,Yj)
16 / 27



Logistic regression

> fit=glm(resp~age+smoke,family=binomial,data=ohio)

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -1.88373 0.08384 -22.467 <2e-16 ***

age -0.11341 0.05408 -2.097 0.0360 *

smoke 0.27214 0.12347 2.204 0.0275 *

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Null deviance: 1829.1 on 2147 degrees of freedom

Residual deviance: 1819.9 on 2145 degrees of freedom

According to above results, age and smoke both significant at the
5% level.
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χ2 distribution of deviance residual not trustworthy here since
ni = 1.

We can increase ni by aggregrating over 8 categories for age ×
smoke but then variability between children hidden.
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Mixed model analysis

> fiter=glmer(resp~age+smoke+(1|id),family=binomial,data=ohio)

> summary(fiter)

Random effects:

Groups Name Variance Std.Dev.

id (Intercept) 5.491 2.343

Number of obs: 2148, groups: id, 537

Fixed effects:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -3.37396 0.27496 -12.271 <2e-16 ***

age -0.17677 0.06797 -2.601 0.0093 **

smoke 0.41478 0.28705 1.445 0.1485

Now only age is significant on the 5% level.

Note large variance 5.491 for the Ui .

19 / 27



Interpretation of variance of random effects

Variance 5.491 corresponds to standard deviation 2.343. This
means 95% probability interval for Ui is [−4.686, 4.686].

Large part of the variation explained by the Ui relative to the fixed
effects.

20 / 27



Interpretation in terms of marginal variance ?

For logistic regression with random effects, the variance of an
observation Yij is2

VarYij = Epij(1− pij) + Varpij (1)

where the expectation and variance is with respect to Ui in

pij =
exp(α + βTzij + Ui )

1 + exp(α + βTzij + Ui )

There is no simple formula for this variance.

Here pij(1− pij) is the conditional variance of Yij given Ui - but
this can not be evaluated since Ui is unobserved.

2VarY = EVar[Y |X ] + VarE[Y |X ]
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Interpretation in terms of odds
The odds are

Oij =
pij

1− pij
= exp(α + βTzij + Ui )

and the odds ratio between observations ij and kl is

Oij

Okl
= exp(βT(zij − zkl) + Ui − Uk)

where Ui − Uk ∼ N(0, 2τ2).

Larsen et al. (2000) suggested to consider the median odds ratio
between the individual with highest random effect and the
individual with lowest random effect.

In other words: MOR is

exp[βT(zij−zkl)+MED(|Ui−Uk |)] = exp[βT(zij−zkl)] exp[
√

2τ0.6744)]

(note |Ui − Uk | is Ui − Uk if Ui > Uk and vice versa).
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95% intervals for probabilities or odds

Ui is between −1.96τ and 1.96τ with 95% probability.

Hence odds Oij in interval

[exp(α + βTzij − 1.96τ); exp(α + βTzij + 1.96τ)]

with probability 95%.

For probability pij the interval is[
exp(α + βTzij − 1.96τ)

1 + exp(α + βTzij − 1.96τ)
;

exp(α + βTzij + 1.96τ)

1 + exp(α + βTzij + 1.96τ)

]
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Wheezing data

E.g. with τ = 2.343 we get MOR=9.34.

That is, keeping all fixed factors equal, for two randomly picked
children, the median odds ratio between the child with highest
random effect and the child with lowest random effect is 9.34.

For child of centered age 0 and with smoking mother the 95%
interval for wheezing is[

exp(−3.37 + 0.41− 1.96 ∗ 2.34)

1 + exp(−3.37 + 0.41− 1.96 ∗ 2.34)
;

exp(−3.37 + 0.41 + 1.96 ∗ 2.34)

1 + exp(−3.37 + 0.41 + 1.96 ∗ 2.34)

]
= [0.00; 0.84]

Mean probability (by Monte Carlo) is 0.16.

Emphasizes the large individual specific effects.
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Summary

I logistic regression very useful for binary data

I in some applications there is evidence of overdispersion (extra
variance)

I easy to add random effects to model sources of overdispersion
and thereby correctly model correlation between observations
e.g. for same subject.

I thereby we get more trustworthy standard deviations for fixed
effects estimates.

I disadvantage: not easy to interpret random effects variances in
terms of variances and correlations of the response variable Yi .

I likelihood function very complicated

Next time: computation of the likelihood (how does glmer work ?)
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Exercises

1. (Threshold model) Show that the probit model for binary data
may be viewed as a latent variable model where
Y = 1[U < a + bx ] for a latent standard normal variable U.
The latent variable could e.g. correspond to susceptibility to
an insecticide if Y represents dead/alive for an insect
subjected to an insecticide dose x .

2. The wheezing data may be aggregated according to the
groups given by age and smoke (the aggregated data set is
available at the web-page). Compare logistic regression
analyses for the original and aggregated data.

3. The variance of a (standard) logistic distribution is π2/3.
Argue why this implies that a logistic regression with
parameter β roughly corresponds to a probit regression with

parameter β
√
3

π ≈ β/1.8
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4. An experiment was designed to assess the effect of different
stocks on the robustness of cherry flowers to frost. For 20
cherry trees of 5 different stock varieties, three branches were
sampled and on each branch the status of 5 buds (dead=1 or
alive=0) were recorded. The data are available as
cherries_red.txt.

4.1 Fit a logistic model with systematic STOCK and BRANCHNR
effects and with random BRANCHID and TREEID effects. Is
there scope for simplification of the random part of the model ?

4.2 What can you conclude about the STOCK effects ?
4.3 Is there a BRANCHNR effect ? Does this make sense ?

5. Verify the variance expression (1).

6. Suppose that X1 and X2 are independent N(0, τ2). Show that
the median of |X1 − X2| is

√
2τ0.6744.

Hint: consider first median of (X1 − X2)2 which has a
well-known distribution.
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