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Generalized linear mixed effects models

Consider stochastic vector Y = (Y1,..., Y,) and vector of random
effects U = (Us,..., Un).

Two step formulation of GLMM:
> U~ N(0,X).
» Given realization u of U, Y; independent and each follows

density fi(y;|u) with mean p; = g~1(7;) and linear predictor
n=Xp+ Zu.

I.e. conditional on U, Y; follows a generalized linear model.
NB: GLMM specified in terms of marginal density of U and

conditional density of Y given U. But the likelihood is the
marginal density f(y) which can be hard to evaluate !
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We already saw one example: logistic regression with random
effects.

Another common example: Poisson-log normal. Here

Y;|U = u ~ Pois(exp(n;))

where n; = x;5 + zju
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Likelihood for generalized linear mixed model

Likelihood for a generalized linear mixed model given by integral:

)= [ fyudu= [ fylu)(u)a
Difficult since f(y|u)f(u) is a very complex function.
Huge statistical literature on how to compute good approximations

of the likelihood: Laplace approximation, numerical quadrature,
Monte Carlo, Markov chain Monte Carlo, ...
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Example: logistic regression with random intercepts

Ui~ NO,7), j=1,...,m
Yi|U; = uj ~ binomial(nj, p;)
log(pj/(1 = pj)) =mnj =B+ U;
pj = exp(n;)/(1 + exp(n;))

Conditional density:

— ”J = exp(ﬂ + uj)yj
-11# Hareemrwy
Likelihood function (u = (u1,...,Um))
_ exp 5 + uJ)yJ exp(—uj2/(27'2)) .
/R Fylu )i T*)du = H/ (14 exp(8 + u;))" 2772 )

Integrals can not be evaluated in closed form.
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Hierarchical model with independent random effects

Suppose U = (Uy, ..., Uy,) with the the U; independent.

Moreover Y = (Yj)jj, i =1,...,mand j =1,...,n; where the
conditional distribution of the Y; = (Yj;); only depends on U;.

Then we can factorize likelihood as
f) =11 [ filu)f(edu
i=1

That is, product of one-dimensional integrals.

Consider in the following computation of one-dimensional integral.
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One-dimensional case

Compute
L6 = [ (vl )7 (ui )

Some possibilities:
» Laplace approximation.

» Numerical integration/quadrature (e.g. Gaussian quadrature
as in glmer PROC NLMIXED (SAS) or GLLAM (STATA)) (one
level of random effects, dimensions one or two).
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Laplace approximation

Let g(u) = log(f(y|u)f(u)) and choose & so g’(d) =0
(i = argmaxg(u)).

Taylor expansion around i:

l.e. exp(g(u)) proportional to normal density N(u.p,07p),
pp =0 ofp = —1/g"(0).
1(6) = [ exple(w)du~ [ exp(g(u))du

R

R

~ exp(g(@) [ e (- 507 (0 nep)?) o = exa(g(0)y 270t
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Laplace approximation also works for for higher dimensions
(multivariate Taylor expansion).

NB:

f(uly) = f(ylu)f(u)/f(y) oc exp(g(u)) =~ const exp (_201513 (u—pep)?)

where i p = 0 02p =, —1/g"(0).

Hence
UlY =y~ N(ucp,oip)

Note: 1y p is mode of conditional distribution - used for prediction
of random effects in glmer (ranef ()).
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Gaussian quadrature
Gauss-Hermite quadrature (numerical integration) is

/ f(x)o(x)dx ~ Z w;f(x;)
R i=1

where ¢ is the standard normal density and (x;, w;),i =1,...,n are
certain arguments and weights which can be looked up in a table.

We can replace ~ with = whenever f is a polynomial of degree
2n — 1 or less.

In other words (x;,w;), i =1,...,nis the solution of the system of
2n equations

/ xKp(x)dx = Z wixX, k=0,...,2n—1
R i=1
where

/xkgb(x)dx = 1[k even J(k—1)!l = 1]k even |(k—1)(k=1—-2)(k=1=4)..
R
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Adaptive Gauss-Hermite quadrature
Naive application of Gauss-Hermite (U ~ N(0, 72):

/ F(y|u)F(u)du = / F(y|mx)d(x)dx

Now GH is applicable.

Adaptive GH:
/f( u)du —/ Cb(”;MLPaU%P)dU =
¢ u; MLP;ULP
oLpx + f(oppx +
/ (vlowp #;F(’))()( LP ”LP)aquﬁ(x)dx

(change of variable: x = (v — purp)/oLp)

In my experience, adaptive GH is way more accurate than naive
GH.
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Advantage

Flylu)f(u) _ fylorpx + pip)f(oLpx + pip)
o(u; pLp,oip) o(x)

close to constant (f(y)) — hence adaptive G-H quadrature very
accurate.

x = (u—pLp)/oLp

GH scheme with n = b5:

x | 2.020 0.959 0.0000000 -0.959 -2.020
w | 0.011 0.222 0.533 0.222 0.011
(x's are roots of Hermite polynomial computed using ghq in library

glmmML).

(GH schemes for n =5 and n = 10 available on web page)
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Prediction of random effects for GLMM

Conditional mean
E[U]Y =y] = / uf (uly)du
is minimum mean square error predictor, i.e.
E(U — 0)?
is minimal with U = H(Y) where H(y) = E[U]Y = y]

Difficult to analytically evaluate

E[U]Y = y] = / uf (yu)F(u)/F(y)d
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Computation of conditional expectations (prediction)

E[UlY =y] = /uf(y|fL(l})/§(u)du:

f(ly) /(apr + pLp) flylovex H;’Z));(ULPX *hep) orpd(x)dx

Note:

f(ylorpx + prp)f(orpx + prp)
oLp

(ULPX + ,ULP) ¢(X)

behaves like a first order polynomial in x - hence GH still accurate.
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Score function and Fisher information
Let

d
VQ(yv U) = @ |Og f(ya LI|0)

Then score and observed information are

o(0) = < log L(9) = EqlVily, U)]Y = ] 1)
and
2
J(0) =~ log L(0)
= —(Bo[dVa(y, U)/d0T|Y = y] + Varg[Vy(y, U)| Y = y])
)

Again the above expectations and variances can be evaluated using
Laplace or adaptive GH.

Newton-Raphson iterations:

041 =0, +j(0))  u(0))
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Difficult cases for numerical integration - dimension m > 1

» correlated random effects: multivariate density of U does not
factorize

» crossed random effects: U; and Vj independent i =1,..., m
J=1,...,n but Yj depends on both U; and V.

Not possible to factorize likelihood into low-dimensional integrals
Number of quadrature points =~ k™ where k is number of
quadrature points for 1D and m number of random effects — hence

numerical quadrature may not be feasible.

Alternatives: Laplace-approximation or Monte Carlo computation.
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Wheeze results with different values of nAGQ

Default nAGQ=1 means Laplace approximation:

> fiter=glmer(resp~age+smoke+(1]id) ,family=binomial,data=ol
> summary(fiter)
Random effects:
Groups Name Variance Std.Dev.
id (Intercept) 5.491 2.343
Number of obs: 2148, groups: id, 537

Fixed effects:

Estimate Std. Error z value Pr(>|zl)
(Intercept) -3.37396 0.27496 -12.271 <2e-16 *x*x
age -0.17677 0.06797 -2.601 0.0093 *x
smoke 0.41478 0.28705 1.445 0.1485
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5 quadrature points:

> fiterb=glmer(resp~age+smoke+(1|id),family=binomial,
data=ohio,nAGQ=5)
Groups Name Variance Std.Dev.
id (Intercept) 4.198 2.049
Number of obs: 2148, groups: id, 537

Fixed effects:

Estimate Std. Error z value Pr(>|zl)
(Intercept) -3.02398 0.20353 -14.857 < 2e-16 *x*x
age -0.17319 0.06718 -2.578 0.00994 x*x
smoke 0.394438 0.26305 1.500 0.13371
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10 quadrature points:

> fiter10=glmer (resp~age+smoke+(1]|id),family=binomial
,data=ohio,nAGQ=10)

Random effects:
Groups Name Variance Std.Dev.
id (Intercept) 4.614 2.148
Number of obs: 2148, groups: id, 537

Fixed effects:

Estimate Std. Error z value Pr(>|zl)
(Intercept) -3.08959 0.21557 -14.332 < 2e-16 *x*x
age -0.17533 0.06762 -2.593 0.00952 *x
smoke 0.39799 0.27167 1.465 0.14293

Some sensivity regarding variance estimate. Fixed effects results
quite stable.

Results with 20 quadrature points very similar to those with 10
quadrature points.
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Laplace - mathematical details in one-dimension
(one dimension to avoid technicalities of multivariate Taylor)

Let
Iy = /R exp(nh(x))g(x)dx

where h(x) is three times differentiable and assume there exists X
so that
1. H=—h"(X) >0and H'(X) =0
2. for any A > 0 there exists an € > 0 so that h(X) — h(x) > ¢
for [x — X| > A
3. there exists a § > 0 so that |h®)(x)| < K and |g(x)| < C for
|x —X| <§
4. a) [zle(x)|dx < oo or b) [ exp(h(x))|g(x)|dx < co
Then
In
exp(nh(X))g(R)V2rn—1H-1

—1 (3)

as n — 0.
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Relative error of approximation
Absolute error of approximation is

E, = I, — exp(nh(X))g(X)V2rn—1H-1

Previous result says that relative error

En
Zﬁo

Strong result in case I, is a small quantity (may not be enough
that absolute error is “small”)

We can say more:

In
exp(nh(X))g(X)V2rn—1H-1

That is, the relative error is of order n— 1.

=1+0(nt).
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Exercises

1.

How does Laplace approximation look in the multivariate case
2

. Show that adaptive GH with one quadrature point is

equivalent to Laplace approximation.
Show the identities (1) and (2) (assuming differentiation and
integration can be interchanged as needed).

. Write down the likelihood in case of crossed random effects.

What is the problem ?

Solve exercises on exercises_lp_gh.pdf

Carefully check the proof for Laplace approximation in
Section 1 in note available on course webpage. If you like
Taylor expansions you may also want to check Sections 2-3.
Consider the case of one Normal random effect U ~ N(0,72?)
and observations Yi,..., Y, that are iid given U. Can you
apply the formal result for the Laplace approximation to show
convergence of the approximation of the likelihood 7 Which
problems do you face ?
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