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Generalized linear mixed effects models

Consider stochastic vector Y = (Y1, . . . ,Yn) and vector of random
effects U = (U1, . . . ,Um).

Two step formulation of GLMM:

I U ∼ N(0,Σ).

I Given realization u of U, Yi independent and each follows
density fi (yi |u) with mean µi = g−1(ηi ) and linear predictor
η = Xβ + Zu.

I.e. conditional on U, Yi follows a generalized linear model.

NB: GLMM specified in terms of marginal density of U and
conditional density of Y given U. But the likelihood is the
marginal density f (y) which can be hard to evaluate !
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We already saw one example: logistic regression with random
effects.

Another common example: Poisson-log normal. Here

U ∼ N(0,Σ)

Yi |U = u ∼ Pois(exp(ηi ))

where ηi = xiβ + ziu
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Likelihood for generalized linear mixed model

Likelihood for a generalized linear mixed model given by integral:

f (y) =

∫
Rm

f (y,u)du =

∫
Rm

f (y|u)f (u)du

Difficult since f (y|u)f (u) is a very complex function.

Huge statistical literature on how to compute good approximations
of the likelihood: Laplace approximation, numerical quadrature,
Monte Carlo, Markov chain Monte Carlo,...
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Example: logistic regression with random intercepts

Uj ∼ N(0, τ2), j = 1, . . . ,m

Yj |Uj = uj ∼ binomial(nj , pj)

log(pj/(1− pj)) = ηj = β + Uj

pj = exp(ηj)/(1 + exp(ηj))

Conditional density:

f (y |u;β) =
∏
j

p
yj
j (1− pj)

nj−yj =
∏
j

exp(β + uj)
yj

(1 + exp(β + uj))nj

Likelihood function (u = (u1, . . . , um))∫
Rm

f (y |u;β)f (u; τ2)du =
∏
j

∫
R

exp(β + uj)
yj

(1 + exp(β + uj))nj

exp(−u2j /(2τ2))
√

2πτ2
duj

Integrals can not be evaluated in closed form.
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Hierarchical model with independent random effects

Suppose U = (U1, . . . ,Um) with the the Ui independent.

Moreover Y = (Yij)ij , i = 1, . . . ,m and j = 1, . . . , ni where the
conditional distribution of the Yi = (Yij)j only depends on Ui .

Then we can factorize likelihood as

f (y) =
m∏
i=1

∫
R
f (yi |ui )f (ui )dui

That is, product of one-dimensional integrals.

Consider in the following computation of one-dimensional integral.
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One-dimensional case

Compute

L(θ) =

∫
R
f (y |u;β)f (u; τ2)du

Some possibilities:

I Laplace approximation.

I Numerical integration/quadrature (e.g. Gaussian quadrature
as in glmer PROC NLMIXED (SAS) or GLLAM (STATA)) (one
level of random effects, dimensions one or two).
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Laplace approximation

Let g(u) = log(f (y |u)f (u)) and choose û so g ′(û) = 0
(û = arg max g(u)).

Taylor expansion around û:

g(u) ≈ g̃(u) =

g(û)+(u−û)g ′(û)+
1

2
(u−û)2g ′′(û) = g(û)−1

2
(u−û)2

(
−g ′′(û)

)
I.e. exp(g̃(u)) proportional to normal density N

(
µLP , σ

2
LP

)
,

µLP = û σ2LP = −1/g ′′(û).

L(θ) =

∫
R

exp(g(u))du ≈
∫
R

exp(g̃(u))du

= exp(g(û))

∫
R

exp
(
− 1

2σ2LP
(u − µLP)2

)
du = exp(g(û))

√
2πσ2LP
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Laplace approximation also works for for higher dimensions
(multivariate Taylor expansion).

NB:

f (u|y) = f (y |u)f (u)/f (y) ∝ exp(g(u)) ≈ const exp
(
− 1

2σ2LP
(u−µLP)2

)
where µLP = û σ2LP =,−1/g ′′(û).

Hence
U|Y = y ≈ N

(
µLP , σ

2
LP

)
Note: µLP is mode of conditional distribution - used for prediction
of random effects in glmer (ranef()).
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Gaussian quadrature
Gauss-Hermite quadrature (numerical integration) is∫

R
f (x)φ(x)dx ≈

n∑
i=1

wi f (xi )

where φ is the standard normal density and (xi ,wi ),i = 1, . . . , n are
certain arguments and weights which can be looked up in a table.

We can replace ≈ with = whenever f is a polynomial of degree
2n − 1 or less.

In other words (xi ,wi ), i = 1, . . . , n is the solution of the system of
2n equations∫

R
xkφ(x)dx =

n∑
i=1

wix
k
i , k = 0, . . . , 2n − 1

where∫
R
xkφ(x)dx = 1[k even ](k−1)!! = 1[k even ](k−1)(k−1−2)(k−1−4)...
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Adaptive Gauss-Hermite quadrature
Naive application of Gauss-Hermite (U ∼ N(0, τ2):∫

f (y |u)f (u)du =

∫
f (y |τx)φ(x)dx

Now GH is applicable.

Adaptive GH:∫
f (y |u)f (u)du =

∫
f (y |u)f (u)

φ(u;µLP , σ
2
LP)

φ(u;µLP , σ
2
LP)du =∫

f (y |σLPx + µLP)f (σLPx + µLP)

φ(x)
σLPφ(x)dx

(change of variable: x = (u − µLP)/σLP)

In my experience, adaptive GH is way more accurate than naive
GH.
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Advantage

f (y |u)f (u)

φ(u;µLP , σ
2
LP)

=
f (y |σLPx + µLP)f (σLPx + µLP)

φ(x)
x = (u−µLP)/σLP

close to constant (f (y)) – hence adaptive G-H quadrature very
accurate.

GH scheme with n = 5:

x 2.020 0.959 0.0000000 -0.959 -2.020
w 0.011 0.222 0.533 0.222 0.011

(x ’s are roots of Hermite polynomial computed using ghq in library
glmmML).

(GH schemes for n = 5 and n = 10 available on web page)
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Prediction of random effects for GLMM

Conditional mean

E[U|Y = y ] =

∫
uf (u|y)du

is minimum mean square error predictor, i.e.

E(U − Û)2

is minimal with Û = H(Y ) where H(y) = E[U|Y = y ]

Difficult to analytically evaluate

E[U|Y = y ] =

∫
uf (y |u)f (u)/f (y)du
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Computation of conditional expectations (prediction)

E[U|Y = y ] =

∫
u
f (y |u)f (u)

f (y)
du =

1

f (y)

∫
(σLPx +µLP)

f (y |σLPx + µLP)f (σLPx + µLP)

φ(x)
σLPφ(x)dx

Note:

(σLPx + µLP)
f (y |σLPx + µLP)f (σLPx + µLP)

φ(x)
σLP

behaves like a first order polynomial in x - hence GH still accurate.
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Score function and Fisher information
Let

Vθ(y , u) =
d

dθ
log f (y , u|θ)

Then score and observed information are

u(θ) =
d

dθ
log L(θ) = Eθ[Vθ(y ,U)|Y = y ] (1)

and

j(θ) = − d2

dθTdθ
log L(θ)

= −
(
Eθ[dVθ(y ,U)/dθT|Y = y ] + Varθ[Vθ(y ,U)|Y = y ]

)
(2)

Again the above expectations and variances can be evaluated using
Laplace or adaptive GH.

Newton-Raphson iterations:

θl+1 = θl + j(θl)
−1u(θl)
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Difficult cases for numerical integration - dimension m > 1

I correlated random effects: multivariate density of U does not
factorize

I crossed random effects: Ui and Vj independent i = 1, . . . ,m
j = 1, . . . , n but Yij depends on both Ui and Vj .

Not possible to factorize likelihood into low-dimensional integrals

Number of quadrature points ≈ km where k is number of
quadrature points for 1D and m number of random effects – hence
numerical quadrature may not be feasible.

Alternatives: Laplace-approximation or Monte Carlo computation.
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Wheeze results with different values of nAGQ

Default nAGQ=1 means Laplace approximation:

> fiter=glmer(resp~age+smoke+(1|id),family=binomial,data=ohio)

> summary(fiter)

Random effects:

Groups Name Variance Std.Dev.

id (Intercept) 5.491 2.343

Number of obs: 2148, groups: id, 537

Fixed effects:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -3.37396 0.27496 -12.271 <2e-16 ***

age -0.17677 0.06797 -2.601 0.0093 **

smoke 0.41478 0.28705 1.445 0.1485
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5 quadrature points:

> fiter5=glmer(resp~age+smoke+(1|id),family=binomial,

data=ohio,nAGQ=5)

Groups Name Variance Std.Dev.

id (Intercept) 4.198 2.049

Number of obs: 2148, groups: id, 537

Fixed effects:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -3.02398 0.20353 -14.857 < 2e-16 ***

age -0.17319 0.06718 -2.578 0.00994 **

smoke 0.39448 0.26305 1.500 0.13371
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10 quadrature points:

> fiter10=glmer(resp~age+smoke+(1|id),family=binomial

,data=ohio,nAGQ=10)

Random effects:

Groups Name Variance Std.Dev.

id (Intercept) 4.614 2.148

Number of obs: 2148, groups: id, 537

Fixed effects:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -3.08959 0.21557 -14.332 < 2e-16 ***

age -0.17533 0.06762 -2.593 0.00952 **

smoke 0.39799 0.27167 1.465 0.14293

Some sensivity regarding variance estimate. Fixed effects results
quite stable.

Results with 20 quadrature points very similar to those with 10
quadrature points.
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Laplace - mathematical details in one-dimension
(one dimension to avoid technicalities of multivariate Taylor)

Let

In =

∫
R

exp(nh(x))g(x)dx

where h(x) is three times differentiable and assume there exists x̂
so that

1. H = −h′′(x̂) > 0 and h′(x̂) = 0

2. for any ∆ > 0 there exists an ε > 0 so that h(x̂)− h(x) > ε
for |x − x̂ | > ∆

3. there exists a δ > 0 so that |h(3)(x)| < K and |g(x)| < C for
|x − x̂ | ≤ δ

4. a)
∫
R |g(x)|dx <∞ or b)

∫
R exp(h(x))|g(x)|dx <∞

Then
In

exp(nh(x̂))g(x̂)
√

2πn−1H−1
→ 1 (3)

as n→∞.

Proof: see note on webpage.
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Relative error of approximation
Absolute error of approximation is

En = In − exp(nh(x̂))g(x̂)
√

2πn−1H−1

Previous result says that relative error

En

In
→ 0

Strong result in case In is a small quantity (may not be enough
that absolute error is “small”)

We can say more:

In

exp(nh(x̂))g(x̂)
√

2πn−1H−1
= 1 + O(n−1).

That is, the relative error is of order n−1.
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Exercises
1. How does Laplace approximation look in the multivariate case

?
2. Show that adaptive GH with one quadrature point is

equivalent to Laplace approximation.
3. Show the identities (1) and (2) (assuming differentiation and

integration can be interchanged as needed).
4. Write down the likelihood in case of crossed random effects.

What is the problem ?
5. Solve exercises on exercises_lp_gh.pdf

6. Carefully check the proof for Laplace approximation in
Section 1 in note available on course webpage. If you like
Taylor expansions you may also want to check Sections 2-3.

7. Consider the case of one Normal random effect U ∼ N(0, τ2)
and observations Y1, . . . ,Yn that are iid given U. Can you
apply the formal result for the Laplace approximation to show
convergence of the approximation of the likelihood ? Which
problems do you face ?

22 / 22


