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Causation and association

For a person let Y denote amount of icecream bought a given day,
A be an indicator of whether the person wore shorts (1) or not (0),
and let W denote outdoor temperature.

We might expect to see a correlation/association between A and
Y but this may not reflect a causal relation.

We could estimate E[Y|A = 1] — E[Y|A = 0] but this can not in
general be viewed as a causal effect due to confounding by W.

Basic question: how do we define causal effects ?

Essentially two approaches:
» Interventions in structural causal models

» Counterfactuals
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Structural causal models (e.g. Pearl et al.: Causal

inference in statistics)
Represent relation between variables using equations (structural
causal model, SCM):

W = f(Uw)
A=1f(W,Ua)
Y = f(A W, Uy)
Here | sloppily use f as a generic notation for a function evaluated
on one or more random variables. The variables Uy, Ua, Uy are

independent random variables that generate the stochasticity in
the model.

The model gives rise to a joint density p(y, a, w) (again | use p as
generic notation for a density) which can naturally be factorised as

ply,a,w) = p(y|a, w)p(a|w)p(w)
and the model can be visualised in terms of a directed graph
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Intervention

We can now formulate causal effects in terms of interventions
which in the simplest form means fixing a variable on a given
variable. E.g. fixing A= 1. Then A is non-random and the
previous SCM reduces to

(Uw)

W=f
A=1
Y=fF

(1, W, Uy)

This gives rise to a new joint distribution of Y and W (recall A is
now fixed):

Pdo(a=1)(¥> W) = p(y|1, w)p(w)

(“do(A =1)" is Pearl’s notation for intervening on a variable. Not
the same as conditioning on A = 1)
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Intervention

The SCM after fixing A =1 corresponds to a “world” where A is

always 1 but the generating mechanisms for all other variables are
left unchanged.

This differs from conditioning on A = 1 since unless variables are
independent, conditioning on one variable will alter the
distributions of the other variables.
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The mean of Y under the modified distribution is
BaoiaylY] = [ BIYIA= LW = wlp(w)dw
which in general differs from
E[YIA=1] = /E[YA =1, W = w]p(w|l)dw
where p(w|1) is conditional density of W given A = 1.
When are the two expectations equal ?

Causal effect of changing A from 0 to 1 is now defined as

Edo(a=1)[Y] = Edo(a=0)[ Y]

Formula (1) goes under various names: backdoor formula,

g-formula, standardization,...
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Estimation

In practice we may use plug-in estimate (g-computation)
1 n
Ego(a=n)[Y] = — ;E[HA =1, W = w]
1=

or inverse probability weighting (IPW)

R 1~ 1fai = 1]y,
Edo(A:l)[Y] = n Z W
i=1 !
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Counterfactuals (Donald Rubin)

Let Y(0) and Y(1) represent counterfactual outcomes in
hypothetical worlds where A is either 0 or 1. In reality we observe
Y which is either Y(0) or Y(1). Average causal effect (ATE):

EY(1) - EY/(0)

Identifying assumptions (cf. Emilie’s lecture)

» (Y(0), Y(1)) and A conditionally independent given W
(conditional unconfoundedness)

» P(A=alW =w) >0 for all w and a (positivity)
» Y = Y(A) (consistency)

Under these assumptions we saw in Emilie’s lecture that
E[Y(a)] = E[E[Y|A = a, W]]

which precisely equals (1)
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Randomized trial
A randomized trial can be represented as

W = f(Uw)
A= U,
Y = f(A W, Uy)
where Uy is a Bernouilli variable. In this case we do have
Edo(a=a)[Y] = E[Y(a)] = E[Y|A = 4]
which could simply be estimated by
Siayillai=a > yillai = 4]
= or
> i1 1[ai = 4] np(a)

Hence we can evaluate causal effect regardless of whether
confounder W is observed or not ! In case of observational studies
we must rely on observing all confounders which may or may not
be true.
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Relation SCM and counterfactuals

We could modify SCM as follows to explicitly represent
counterfactuals:

W = f(Uw)
A= F(W, Ua)

Y (0) = £(0, W, Uy)

Y (1) = £(1, W, Uy)
Y =Y(A)

Then A and (Y(0), Y(1)) are indeed conditionally independent of
A given W and Y = Y(A).

Note: joint distribution of all 5 variables is degenerate since Y is
deterministic given specific values of A, Y(0), Y(1).
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We've only considered the very basics

Huge literature on causal inference including books by Pearl et al.,
Hernan and Robins, Jonas Peters et al. etc.
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Exercise

Show that plug-in estimate and IPW estimate are unbiased if true
expectations an probabilities are used:

A 1<
Eao(a=1)[Y] = " E E[YIA=1,W = w]
i=1

or inverse probability weighting (IPW)

~ 1 ° 1[2,’ = a]y,-
Egoa=1)[Y] = - Z “p(alw)
i—1
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