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Causation and association

For a person let Y denote amount of icecream bought a given day,
A be an indicator of whether the person wore shorts (1) or not (0),
and let W denote outdoor temperature.

We might expect to see a correlation/association between A and
Y but this may not reflect a causal relation.

We could estimate E[Y |A = 1]− E[Y |A = 0] but this can not in
general be viewed as a causal effect due to confounding by W .

Basic question: how do we define causal effects ?

Essentially two approaches:

I Interventions in structural causal models

I Counterfactuals
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Structural causal models (e.g. Pearl et al.: Causal
inference in statistics)

Represent relation between variables using equations (structural
causal model, SCM):

W = f (UW )

A = f (W ,UA)

Y = f (A,W ,UY )

Here I sloppily use f as a generic notation for a function evaluated
on one or more random variables. The variables UW ,UA,UY are
independent random variables that generate the stochasticity in
the model.

The model gives rise to a joint density p(y , a,w) (again I use p as
generic notation for a density) which can naturally be factorised as

p(y , a,w) = p(y |a,w)p(a|w)p(w)

and the model can be visualised in terms of a directed graph
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Intervention

We can now formulate causal effects in terms of interventions
which in the simplest form means fixing a variable on a given
variable. E.g. fixing A = 1. Then A is non-random and the
previous SCM reduces to

W = f (UW )

A = 1

Y = f (1,W ,UY )

This gives rise to a new joint distribution of Y and W (recall A is
now fixed):

pdo(A=1)(y ,w) = p(y |1,w)p(w)

(“do(A = 1)” is Pearl’s notation for intervening on a variable. Not
the same as conditioning on A = 1)
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Intervention

The SCM after fixing A = 1 corresponds to a “world” where A is
always 1 but the generating mechanisms for all other variables are
left unchanged.

This differs from conditioning on A = 1 since unless variables are
independent, conditioning on one variable will alter the
distributions of the other variables.
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The mean of Y under the modified distribution is

Edo(A=1)[Y ] =

∫
E[Y |A = 1,W = w ]p(w)dw (1)

which in general differs from

E[Y |A = 1] =

∫
E[Y |A = 1,W = w ]p(w |1)dw

where p(w |1) is conditional density of W given A = 1.

When are the two expectations equal ?

Causal effect of changing A from 0 to 1 is now defined as

Edo(A=1)[Y ]− Edo(A=0)[Y ]

Formula (1) goes under various names: backdoor formula,
g -formula, standardization,...
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Estimation

In practice we may use plug-in estimate (g -computation)

Êdo(A=1)[Y ] =
1

n

n∑
i=1

Ê[Y |A = 1,W = wi ]

or inverse probability weighting (IPW)

Êdo(A=1)[Y ] =
1

n

n∑
i=1

1[ai = 1]yi
p̂(1|wi )
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Counterfactuals (Donald Rubin)

Let Y (0) and Y (1) represent counterfactual outcomes in
hypothetical worlds where A is either 0 or 1. In reality we observe
Y which is either Y (0) or Y (1). Average causal effect (ATE):

EY (1)− EY (0)

Identifying assumptions (cf. Emilie’s lecture)

I (Y (0),Y (1)) and A conditionally independent given W
(conditional unconfoundedness)

I P(A = a|W = w) > 0 for all w and a (positivity)

I Y = Y (A) (consistency)

Under these assumptions we saw in Emilie’s lecture that

E[Y (a)] = E[E[Y |A = a,W ]]

which precisely equals (1)
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Randomized trial
A randomized trial can be represented as

W = f (UW )

A = UA

Y = f (A,W ,UY )

where UA is a Bernouilli variable. In this case we do have

Edo(A=a)[Y ] = E[Y (a)] = E[Y |A = a]

which could simply be estimated by∑n
i=1 yi1[ai = a]∑n
i=1 1[ai = a]

or

∑n
i=1 yi1[ai = a]

np(a)

Hence we can evaluate causal effect regardless of whether
confounder W is observed or not ! In case of observational studies
we must rely on observing all confounders which may or may not
be true.
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Relation SCM and counterfactuals

We could modify SCM as follows to explicitly represent
counterfactuals:

W = f (UW )

A = f (W ,UA)

Y (0) = f (0,W ,UY )

Y (1) = f (1,W ,UY )

Y = Y (A)

Then A and (Y (0),Y (1)) are indeed conditionally independent of
A given W and Y = Y (A).

Note: joint distribution of all 5 variables is degenerate since Y is
deterministic given specific values of A,Y (0),Y (1).
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Graphs
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We’ve only considered the very basics

Huge literature on causal inference including books by Pearl et al.,
Hernan and Robins, Jonas Peters et al. etc.
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Exercise

Show that plug-in estimate and IPW estimate are unbiased if true
expectations an probabilities are used:

Êdo(A=1)[Y ] =
1

n

n∑
i=1

E[Y |A = 1,W = wi ]

or inverse probability weighting (IPW)

Êdo(A=1)[Y ] =
1

n

n∑
i=1

1[ai = a]yi
p(a|wi )
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