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13.1 Introduction

The purpose of this chapter is to give an overview of conditional and intrinsic autoregres-
sions. These models date back at least to [3], and have been heavily used since to model
discrete spatial variation.

Traditionally, conditional autoregressions have been used to directly model spatial depen-
dence in data that have been observed on a predefined graph or lattice structure. Inference
is then typically based on likelihood or pseudo-likelihood techniques [3,17]. More recently,
conditional autoregressions are applied in a modular fashion in (typically Bayesian) com-
plex hierarchical models. Inference in this class is nearly always carried out using Markov
chain Monte Carlo (MCMC), although some alternatives do exist [8,21].

In this chapter, we will describe the most commonly used conditional and intrinsic au-
toregressions. The focus will be on spatial models, but we will also discuss the relationship
to autoregressive time-series models. Indeed, autoregressive time-series models are a spe-
cial case of conditional autoregressions and exploring this relationship is helpful in order
to develop intuition and understanding for the general class.

This chapter will not describe in detail how to build hierarchical models based on con-
ditional autoregressive prior distributions and how to analyze them using MCMC. For a
thorough discussion, see [1,12,20] as well as Chapter 14.

201
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To begin, consider a random vector X = (Xj, ..., X,;) where each component is univari-
ate. It is convenient to imagine that each component is located at a fixed sitei € {1, ..., n}.
These sites may refer to a particular time point or a particular point in two- or higher-
dimensional space, or particular areas in a geographical region, for example.

We now wish to specify a joint distribution with density p(x) for X. A decomposition of
the form

p(x) = p(x1) - p(xalx1) - p(xzlxr, x2) - p(xnlx1, X2, .., Xu—1) (13.1)
is, of course, always possible. In a temporal context, this factorization is extremely useful,
and—under an additional Markov assumption—further simplifies to

p(x) = p(x1) - p(x2|x1) - p(xzlxz) - - - p (Xl Xn—1).

Indeed, this factorization forms the basis of so-called first-order autoregressive models and
can be conveniently generalized to higher orders. However, in a spatial context, where the
indices 1, ..., n are arbitrary and could, in principle, easily be permuted, Equation (13.1)
is not really helpful, as it is very difficult to envision most of the terms entering the above
product.

It is much more natural to specify the full conditional distribution p(x;|x_;), the con-
ditional distribution of X; at a particular site i, given the values X; = x; at all other sites
j # i.Inaspatial context, the Markov assumption refers to the property that the conditional
distribution p(x;|x_;) depends only on a few components of x_;, called the neighbors of
site i. However, it is not obvious at all under which conditions the set of full conditionals
p(xilx_;),i = 1,..., n, defines a valid joint distribution. Conditions under which such a
joint distribution exists are discussed in [3] using the Brook expansion ([9]), see chapter 12
for details.

By far the most heavily studied model is the Gaussian conditional autoregression, where
p(x;|x_;) is univariate normal and p(x) is multivariate normal. Gaussian conditional au-
toregressions with a Markov property are also known as Gaussian Markov random fields
([16,20]). Various Gaussian conditional autoregressions will be discussed in section 13.2.
However, there are also nonnormal conditional autoregressions, for example, the so-called
autologistic model for binary variables X;, as discussed in section 13.3. In section 13.4,
we turn to intrinsic Gaussian conditional autoregressions, a limiting (improper) form of
Gaussian conditional autoregressions of practical relevance in hierarchical models. Finally,
Section 13.5 gives a brief sketch of multivariate Gaussian conditional autoregressions.

13.2 Gaussian Conditional Autoregressions

Suppose that, fori =1, ..., n, Xi|x_; is normal with conditional mean and variance

E(Xilxi) = i+ Y Bij(x; — ), (13.2)
A

Var(X;|x_;) = ;" (13.3)
Here, n; will typically take a regression form, say, w/ o for covariates w; associated with
site i. Without loss of generality we assume that 1 = - - - = , = 0 in the following. Under

the additional assumption that

KiBij = kjBji

forall i # j, these conditional distributions correspond to a multivariate joint Gaussian
distribution with mean 0 and precision matrix Q with elements Q;; = «; and Q;; = —«;f;j,

i # j, provided that Q is symmetric and positive definite.
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Such a system of conditional distributions is known as an autonormal system [3]. Usu-
ally it is assumed that the precision matrix Q is regular; however, Gaussian conditional
autoregressions with singular Q are also of interest and known as intrinsic autoregressions,
as discussed in Section 13.4.

In many applications the coefficients g;; will be nonzero for only a few so-called
“neighbors” of X;. Let 9i denote the set of “neighbors” for each site i. We can then write
Equation (13.2) (using 1 = --- = u,, = 0) as

E(Xilx_;) = Z Bijx;
jedi
to emphasize that the conditional mean of X; only depends on the neighbors di. The random

vector X = (Xy, ..., X,,)T will then follow a Gaussian Markov random field, as discussed Check chap
in Chapter 3.1. number.

13.2.1 Example
Suppose that the X;s follow a zero-mean Gaussian conditional autoregression with
To+x,) fori=1
E(Xilx_i) =¢< 2 (xici +x41) forl<i<mn (13.4)
%(xl +x,1) fori=mn
where ¢ € [0,1) and Var(X;|x_;) = !, say. At first sight, this looks like a first-order
autoregressive time-series model, but by linking the first “time point” x; with the last
“time point” x,, the model is defined on a circle. The model is called a circular first-order

autoregressive model and is useful for analyzing circular data.
The precision matrix of X = (Xj, ..., X,)Tis

2 —9¢ —¢
- 2 —¢
-9 2 —¢
K
Q:E (13.5)
- 2 —¢

¢ 2 —¢

—¢ -9 2

with all other elements equal to zero. Thus, the precision matrix Q is a circulant matrix
with base d = « - (1, —=¢/2,0,...,0, —=¢/2)7 (the first row of Q) (see [20, sec. 2.6.1] for an
introduction to circular matrices). The covariance matrix 3 = Q" of x is again circular. Its
base e, which equals the autocovariance function of X, can be calculated using the discrete
Fourier transform DFT(d) of d,

e= %IDFT(DFT(d)‘l),
here IDFT denotes the inverse discrete Fourier transform and the power function is to be
understood elementwise. See [20] for a derivation.

The following R-code illustrates, how e is computed for the circulant precision matrix
(13.5) with n = 10, ¢ = 0.9, and « = 1. Note that the (inverse) discrete Fourier transform is
computed with the function ££t () and that the imaginary parts of the function values are
equal to zero.
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> # function make.d computes the base d

result <- e(n, phi)
print (result)

> make.d <- function(n, phi){

+ d <- rep(0.0, n)

+ dlfij] <- 1

+ d[2] <- -phi/2

+ d[n] <- -phi/2

+ return(d)

+ }

> # function e computes the base e, 1.e. the autocovariance function
> # if corr=T you obtain the autocorrelation function
> e <- function(n, phi, corr=F){

+ d <- make.d(n, phi)

+ e <- Re(fft(l/Re(fft(d)), inverse=TRUE))/n

+ if(corr==F)

+ return(e)

+ else return(e/el[l])

+ }

>n <- 10

> phi <- 0.9

>

>

[1] 2.3375035 1.4861150 0.9649742 0.6582722 0.4978530 0.4480677 0.4978530
[8] 0.6582722 0.9649742 1.4861150

From the autocovariances e we can easily read off the autocorrelations of X. The left panel
in Figure 13.1 displays the autocorrelation function for n = 100 and ¢ = 0.9, 0.99, 0.999,
0.9999. Of course, the autocorrelation function must be symmetric, the correlation between
x1 and x3 must be the same as the correlation between x; and x99, for example. For the two
smaller values of ¢, the autocorrelation is essentially zero for lags around #n/2 = 50. For the
larger values of ¢ very close to unity, there is substantial autocorrelation between any two
components of x.

Autocorrelation

Lag

FIGURE 13.1

Autocorrelation function of the circular (left) and ordinary (right) first-order autoregressive model (13.4) and
(13.6), respectively, for n = 100 and ¢ = 0.9 (solid line), ¢ = 0.99 (dashed line), ¢ = 0.999 (dotted line), and
¢ = 0.9999 (dot-dashed line). The corresponding coefficients of the ordinary first-order autoregressive model are
a =0.63, ¢ =0.87, = 0.96, and « = 0.99; compare equation (13.7).
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It is interesting to compare the autocorrelations obtained with those from the ordinary
first-order autoregressive process defined through the directed definition

Xilxi-1 ~ N(axi_1, 71, (13.6)

where |a| < 1 to ensure stationarity. This model has identical neighborhood structure as
the circular first-order autoregressive model, except for the missing link between X; and
X,,. The autocorrelation function is pr = o for lag k.

It is easy to show that this directed definition induces the full conditional distribution

N (oexp, 71) i=1
Xilx—i ~ ¢ N (ﬁ (xi-1 + xi11), (k(1 +0l2))_1> i=2...,n-1
N (oxy—1, 671) i=n.

If we want to compare the circular autoregressive model Equation (13.4) with the ordinary
autoregressive model (13.6), we need to equate the autoregressive coefficients of the full
conditional distributions. From ¢/2 = a/(1 + &?) it follows that for a given autoregressive
coefficient ¢ of the circular autoregressive model, the corresponding coefficient & = «a(¢)
of the ordinary first-order autoregressive process is

_A_H
a(¢)=¥-

For example, ¢ = 0.99 corresponds to a ~ 0.87, ¢ = 0.999 corresponds to « ~ 0.96. This
illustrates that coefficients from undirected Gaussian conditional autoregressions have a
quite different meaning compared to coefficients from directed Gaussian autoregressions.

Figure 13.1 compares the autocorrelation function of the circular autoregressive model
with coefficient ¢ with the corresponding autocorrelation function of the ordinary autore-
gressive model with coefficient «(¢). A close correspondence of autocorrelations up to lag
50 can be seen for ¢ = 0.9 and ¢ = 0.99. The autocorrelations up to lag 1/2 of the circular
model differ from the corresponding ones from the ordinary model not more than 4.5¢ — 11
and 0.00072, respectively. For ¢ = 0.999 and ¢ = 0.9999, the decay of the autocorrelations
with increasing lag is not as pronounced as the geometric decay of the ordinary autoregres-
sive model. This is due to the increasing impact of the link between x,, and x; in the circular
model.

(13.7)

13.2.2 Gaussian Conditional Autoregressions on Regular Arrays

Suppose now that a conditional autoregressive model is defined on a lattice with n = nn,
nodes and let (i, j) denote the node in the ith row and jth column. In the interior of the
lattice, we can now define the nearest four sites of (i, j) as its neighbors, i.e., the nodes

(G—=1,7),G+17),6Gj-1,0Gj+1).

A proper conditional Gaussian model with this neighborhood structure, often called first-
order autoregression, is based on the conditional mean

E(Xijlx_ij) = a(xi—1,j + Xiz1,7) + B(xi j—1 + Xi j41) (13.8)

with |a| +|B] < 0.5 and Var(Xj|x_;;) = «x !, say. In most practical applications, both « and
B will be positive. Assuming that the lattice is wrapped on a torus, so that every pixel has
four neighbors, this process is stationary. A torus is a regular lattice with toroidal boundary
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FIGURE 13.2
Ilustration of a torus obtained on a two-dimensional lattice with 111 = 1, = 29 and toroidal boundary conditions.

conditions, which can be obtained in two steps. First, the lattice is wrapped to “sausage.”
In a second step, the two ends of the sausage are joined such that the sausage becomes a
ring. This two-stage process ensures that every pixel of the lattice has four neighbors. For
example, pixel (1, 1) will have the four neighbors (1, 2), (2, 1), (1, n) and (13, 1). For further
illustration of toroidal boundary conditions, see Figure 13.2 and the R-code in the following
example. Note that an alternative way to study conditional autoregressions is on an infinite
regular array, in which case the process will be stationary and the spectral density is useful.
(For details, see [7,17].)

13.2.3 Example

Suppose we set @ = 8 = 0.2496 in model (13.8), defined on a torus of size 11y = n, = 29. The
following R-code illustrates the computation of the autocovariance matrix of X by simply
inverting the precision matrix of X using the function solve (). An alternative way would
be to exploit the fact that the precision matrix of X is block-circulant. The two-dimensional
Fourier transform can then be used to calculate the base of the autocovariance matrix (see
[20, section 2.6.2] for details).

> # make.prec computes the precision matrix of a toroidal first-order
> # autoregression on a two-dimensional lattice of size nl x n2
> # with coefficient coeff
> make.prec <- function(nl, n2, coeff){
prec <- diag(nl*n2)
for(i in 1:(nl1*n2)){
J <- ((i-1)%%nl)+1 # column index
k <- (nl*(n2-1)) # if i>k we are in the last row

if(j!=1) (prec[i,i-1] <- -coeff) # left neighbor
else (prec[i,i+(nl-1)] <- -coeff) # left toroidal neighbor

if(j!=nl) (prec([i,i+1] <- -coeff) # right neighbor
else (prec([i,i-(nl-1)] <- -coeff) # right toroidal neighbor

if(i>nl) (prec[i,i-nl] <- -coeff) # top neighbor
else (prec([i, (j+k)] <- -coeff) # top toroidal neighbor

T S S I

if(i<=k) (prec[i,i+nl] <- -coeff) # bottom neighbor
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FIGURE 13.3
Plot of the correlation of a pixel x;; with the pixel x15,15 in model (13.8), defined on a torus of size ny = ny =29
with coefficients & = g = 0.2496. Shown is 10 times the autocorrelation, truncated to an integer.

else (prec[[i,j] <- -coeff) # bottom toroidal neighbor
}
return (prec)
}
prec <- make.prec(nl=29, n2=29, coeff=0.2496)
# inversion gives the covariance matrix
cova <- solve(prec)

VVV o+ o+ o+ o+

From the autocovariance matrix, we can easily calculate autocorrelations between any
pair of sites. Figure 13.3 displays the correlation of pixel x;;, 1 < 7, j < 29, with pixel
x15,15 in the center of the plot. Although the coefficients « and B are close to the border
of the parameter space, the correlation between adjacent pixels is only 0.669. The smallest
correlation observed, for example, between x;,1 and x;5,15 is 0.186.

13.3 Non-Gaussian Conditional Autoregressions

For binary or count data, direct usage of Gaussian conditional autoregressions is often not
possible. Instead, conditional autoregressive models in the form of a logistic or log-linear
Poisson model have been proposed. Here, we discuss the autologistic and the auto-Poisson
model, which basically adopt the form (13.2) for the conditional mean of X;|x_; using a
link function, as known from generalized linear modeling ([19]). However, consistency
requirements imply that for binary data only the logistic link, and for Poisson counts only
the log link can be used (see [2] and [3] for details). Only the autologistic model has gained
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some popularity in applications, the auto-Poisson has undesirable properties, which make
it not suitable for most applications in spatial statistics.

13.3.1 Autologistic Models

Assume X;,i =1, ..., n, are binary random variables with conditional success probability
mi(x—;) = E(Xi|x_;). The autologistic model specifies the (logit-transformed) conditional
mean
logit 7;(x—;) = wi + Z Bijx;,
jedi

where B; i = Biji, for consistency reasons. The normalizing constant of the joint distribu-
tion, which depends on the g;;s, is very difficult to compute, thus a traditional likelihood
approach to estimate the coefficients is typically infeasible. Instead, a pseudo-likelihood
approach has been proposed by [4], in which the product of the conditional binomial prob-
abilities is maximized. The model can be generalized to a binomial setting with additional
“sample sizes” N;, say. Also, the model can be extended to include covariates (see [14], for
example).

13.3.2 Auto-Poisson Models

Suppose X;, i =1, ..., n, are Poisson random variables with conditional mean ;(x_;) =
E(Xi|x_;). Similar to the autologistic model, the auto-Poisson model specifies the (log-
transformed) conditional mean

log Aj(x_;) = i + Z Bijx;.
jedi
It turns out that a necessary (and sufficient) condition for the existence of a joint distribution
with the specified conditional distributions is that 8;; < 0 foralli # j. However, a negative
coefficient f;; implies negative interaction between i and j because the conditional mean
of X; decreases with an increase in x;. This is quite opposite to the intent of most spatial

modeling; however, there are applications in purely inhibitory Markov point processes
(see [5]).

13.4 Intrinsic Autoregressions

Intrinsic Gaussian autoregressions arise if the precision matrix Q of the Gaussian condi-
tional autoregression (13.2) and (13.3) is only positive semidefinite with rank(Q) < n. For
example, if f;; = w;j/w;, and k; = kw;; where k > 0 is a precision parameter, w;; > 0
are predefined weights and wiy = >_; ; wij, Q will be rank deficient. Such weights are
quite common in spatial models for areal data. For example, adjacency-based weights are
w;j = lif regionsi and j are adjacent (usually denoted by i ~ j) and zero otherwise. Other
choices are weights based on the inverse distance between area centroids or the length of
the common boundary, for example.
For adjacency-based weights, the conditional mean and variance simplify to

E(Xilx_i) =Y xj/m;
jedi
Var(X;|x_;) = (« - m;) ™",

here m; denotes the number of neighbors of region i, i.e., the cardinality of the set oi.
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The resulting joint distribution is improper, its density can be written (up to a propor-
tionality constant) as

K 2
plxl) ocexp | =5 ;(x,- —x)* |, (13.9)
where the sum goes over all pairs of adjacent regionsi ~ j. This is a special case of a pairwise
difference prior, as described in [6]. With x = (x1, ..., x,)7, the density (13.9) can be written

in the form p
p(x|k) o< exp (—ExTRx) , (13.10)
where the structure matrix R has elements
m; ifi = j,
0  otherwise
We immediately see that the precision matrix Q = xR cannot be of full rank because all
rows and columns of R sum up to zero.

In the special case where the indexi =1, ..., n represents time and each time-point has
the two (respectively one) nearest time-points as its neighbors, Equation (13.9) simplifies

to
p(xlx) o exp (—% Z(xi — xi_1)2> .

i=2
This is a so-called first-order random walk model, as it corresponds to the directed formulation

Xilxio1 ~ N(xi_q, €71,

with improper uniform prior on x;. Obviously this is a limiting case of model (13.6) with
o = 1. The structure matrix of this model has a particularly simple form,

1 -1
-1 2 -1
-1 2 -1
R= , (13.11)
-1 2 -1
-1 2 -1
-1 1

and forms the basis of some spatial models on regular arrays, as we will see later.

Intrinsic autoregressions are more difficult to study than ordinary (proper) conditional
autoregressions. The rank deficiency of the precision matrix does not allow the computa-
tion of autocorrelation functions, for example. Similarly, it is not possible to sample from an
intrinsic autoregression without imposing additional constraints, so they cannot be mod-
els for data. On infinite regular arrays, intrinsic autoregressions can be studied using the
generalized spectral density (see [7,17] for details).

13.4.1 Normalizing Intrinsic Autoregressions

An interesting question that arises is the appropriate “normalizing constant” of intrinsic
Gaussian autoregressions. The constant will depend on unknown parameters in the pre-
cision matrix Q and is necessary if those need to be estimated from the data. Of course,
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intrinsic Gaussian autoregressions are improper, so there is no constant to normalize the
density

p(x|k) o exp (—%xTQx> (13.12)

if Q is not positive definite. The term “normalizing constant” has to be understood in a
more general sense as the normalizing constant of an equivalent lower-dimensional proper
Gaussian distribution.

Itisnow commonly accepted ([13,15,20]) that for the general model Equation (13.12) with
n x n precision matrix Q of rank n — k, the correct “normalizing constant” is

(2m)~ P21 Q)12,

where |Q[* denotes the generalized determinant of Q, the product of the 1 — k nonzero eigen-
values of Q.

In the special case Q = «R of model (13.10) with known structure matrix R, the “normal-
izing constant” simplifies to

n—k

K 2
(E) (13.13)
due to the rank deficiency of R with rank n — k. If the neighborhood structure is non-
separable, i.e., every pixel is connected to every other by some chain of neighbors, then

k=1.

13.4.2 Example

Suppose data y;,i =1, ..., n, are observed and we assume that
vilxi, o* ~ N(x;, 0?) (13.14)

are conditionally independent with known variance o2. Assume further that, conditional
on «, the unknown mean surface x = (x, ..., x,)” follows a pairwise difference prior
(Equation 13.9) with a nonseparable neighborhood structure. The goal is to infer x from y in
order to denoise the observed “image” y and to obtain a smoother version. A fully Bayesian
analysis would place a hyperprior on «, usually a conjugate gamma prior « ~ G(«, 8), i.e.,

f(x) ok exp(—Bi).

To implement a two-stage Gibbs sampler (see for example [11]), one would sample from
x|k, y and from «|x, y = k|x. Note that R is of rank n — 1 since the graph is assumed to be
nonseparable, so based on (13.9) and (13.13), it follows that

n—1 1 5
Klx~G “+T/ﬂ+§;(xi—xj)

The other full conditional distribution is
x|k, y ~ N(Aa, A),

where A = (kR +o%I) ' and a = o?y.

Note that there is no need to include an intercept in (13.14), as the intrinsic autoregression
x has an undefined overall level. An equivalent formulation is to include an additional
intercept with a flat prior and to use an additional sum-to-zero constraint on x. Note also
that omission of the data error, i.e., setting 02 =0, is not useful, as x; will then equal y; and
no smoothing will be done.
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13.4.3 Intrinsic Autoregressions on Regular Arrays

We now return to conditional autoregressions defined on regular arrays. When fitting model
(13.8) to data, the estimated coefficients are often close to singularity (i.e., & + 8 will be close
to 0.5) in order to obtain nonnegligible spatial autocorrelations. A limiting case of model
(13.8) is obtained if a + B = 0.5. For example, if « = g = 0.25, the conditional mean of x;; is

1
E(xijlx_ij) = Z(xi—l,j + Xig1,j X o1+ X jr1)

This is an intrinsic autoregression and a special case of the pairwise difference prior (Equa-
tion 13.9) with conditional variance equal to 1/(4«).

However, on regular arrays it is possible to define an anisotropic intrinsic model, which
is able to weight horizontal and vertical neighbors differently. The conditional mean in this
extended model is still given by Equation (13.8), but the coefficients & > 0 and g > 0 are
now allowed to vary subject to « + 8 = 0.5. The conditional variance is still equal to 1/(4«).
This specification defines a valid intrinsic autoregression. In applications, « (or 8) can be
treated as an unknown parameter, so the degree of anisotropy can be estimated from the
data.

To estimate « it is necessary to compute the generalized determinant of the associated
precision matrix Q, which can be written as a sum of two Kronecker products:

Q = OCRnl ® Inz + ﬂlnl &® an-

Here R, is the structure matrix (13.11) of an n-dimensional random-walk model and I, is
the nn x n-identity matrix. An explicit form for the generalized determinant can be found in
[20], page 107.

13.4.4 Higher-Order Intrinsic Autoregressions

Allintrinsic autoregressions up to now are of order one, in the sense that the precision matrix
Q has a rank deficiency of 1. This is due to an undefined overall level of the distribution of
x. An equivalent representation is obtained if x is replaced by u + x, where x has a density
as described above, but under an additional sum-to-zero constraint, and the scalar u has
an improper locally uniform prior. In more complex hierarchical models with more than
one intrinsic autoregression, such sum-to-zero constraints are necessary to ensure a proper
posterior. Computational routines for sampling from GMRFs under linear constraints are
particularly useful in this context for MCMC simulation (see chapter 12 for details).

Intrinsic autoregressions of higher order may also be considered. On regular lattices,
such autoregressions can be defined using the closest eight or twelve nearest neighbors, for
example. However, appropriate weights have to be chosen with care. It is useful to start
with an (improper) joint Gaussian distribution based on squared increments, similar to the
squared difference prior (Equation 13.9), and to derive the full conditional from the joint
distribution. For example, one might consider the increments

=, (13.15)

where the es enter the difference, but not the os, which only serve to fix the spatial location.
Summing over all pixels with well-defined increments, Equation (13.15) thus leads to the
joint improper distribution

nm—1n—1

K
p(x|k) oc exp —5 DO (i g = Xisa — %+ x5) | (13.16)
io1 =1
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This is a special case of model (13.10) with structure matrix R defined as the Kronecker
product of two structure matrices Ry and R, of random-walk type (13.11) with dimension 14
and 1y, respectively: R = « - (R1 ® Ry). The rank of R is (111 — 1)(n2 — 1), so R has a deficiency
in rank of order n; +n, — 1.

The conditional mean of x;; in the interior of the lattice 2 <i <n; —1,2 < j <n; —1)
now depends on its eight nearest sites and is

1
E(xijlx_ij) = E(xifl,j + Xig1,j + X o1+ X j41) (13.17)
- Z(XH,]A + Xio1,j41 + Xig1,jo1 + Xig1,j41),

while the conditional precision is 4«. In a more compact notation, the conditional mean is
1.. 1...
Blxijle—ij) = 5«00 — g o0
Anisotropic versions of this intrinsic autoregression with eight neighbors are discussed
in [17].
For illustration, we now describe how to derive the conditional mean (13.17) from (13.16).

Clearly, p(x;i ilx_ij, k) « p(x|«), so in the interior of the lattice four terms in the double sum
in Equation (13.16) depend on x; js hence,

K 2
p(xijlx_ij, k) o< exp (_E ((Xig1, j41 — Xig1,j — Xi j41 + X, )

2
+ (Xi41,j = Xit1,j-1 — Xi,j + Xi, j-1)

2
+ (X j1 = Xij — X1, j41 + Xio1,j)

2
+(xi,j — X j—1 — Xi—1,j + Xio1,j-1) )) ,
which can be rearranged to

K
p(xij|x—ij, k) o exp (—5 (%) = (Xis, + X j1 = Xig,j41))°

+ (%, — (Xig1,j + X, jo1 — Xig1,j-1))°
+ (x5, — (Xi1,j + X, 1 — Xi—1,j41))°

+(x,; — (%, 1+ xio1,j — xi1,j1))2)) .
A useful identity for combining quadratic forms* eventually gives
4k 1
p(xij|x_ij, k) o< exp —5 (% - E(xi—l,j + Xiy1,j + X1+ X j11)
1 2
_Z(xi—l,j—l +Xio1,j41 + i1, j-1 + xi+1,j+1)>) ) , (13.18)

from which the conditional mean (13.17) and the conditional 4« precision can be read off.

*A(x —a)? 4+ B(x —b)> =C(x — )% + %(a —b)?> where C = A+ Band ¢ = (Aa + Bb)/C.
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It is easy to see that the distribution (13.16) is invariant to the addition of arbitrary
constants to any rows or columns. This feature makes this distribution unsuitable as a prior
for a smoothly varying surface, a defect that can be remedied by expanding the system of
neighbors. Indeed, consider now the joint distribution

n1—1 112—1

K
p(x|k) o exp 5 Z Z(xi,u + Xiy1,j + X j-1+ Xi 41 — 4xi,]-)2 , (13.19)
i—2 j=2

which is based on the increments

The conditional mean

E(xijlx—ij) = z=(Xi—1,j + Xi41,j + Xi, j—1 + X j+1)

20

- E(xi—l,]’—l + Xio1,j+1 + Xi1,j-1 + Xig1,j+1)
1

- %(xifz,j + Xiyo,j + Xij-2 + Xi j42)

can be derived for pixels in the interior of the lattice (3 <i <n; —2,3 < j <np, —2).Inour
compact notation, the conditional mean is, hence,

The conditional variance is 1/(20«), while appropriate modifications for both mean and
variance are necessary on the boundary of the lattice (see [20] for a detailed discussion).
Anisotropic versions have also been considered ([17]).

This conditional autoregression is based on the 12 nearest neighbors of each pixel. The
distribution (13.19) is invariant to the linear transformation

Xij = Xij + Pijs

where
pij =Yo+yii + 2]

for arbitrary coefficients yy, y1, and y». This is a useful property, as the prior is often used
in applications for smoothing deviations from a two-dimensional linear trend p;;.

This model has some drawbacks, however. First, the four corners—x 1, X1,1,, Xy,1, Xy, 1,—
do not appear in Equation (13.19). Secondly, viewed as a difference approximation to a dif-
ferential operator, model (13.19) induces a so-called anisotropic discretization error, i.e., the
approximation error is larger along the diagonals than in the horizontal or vertical direction
(for details on this issue, see page 117 in [20]).

A more elaborate model is given by

m—1ny—1

K 2
p(xlk) o exp ) Z Z <§(xi—1,j + Xip1,j + X o1+ X, 1)

i=2 j=2

1 10 \?
+ g(xiq,]el + X141+ Xig1, o1+ Xig1, 1) — ?xi,]) ) , (13.20)
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based on the increments
3. 6 oo 3 .ol

Note that the four corners—xy,1, X1,4,, Xn;,1, Xy, n,—NOW enter the joint distribution. The
full conditional of x;; depends on 24 neighbors, its conditional expectation is

the conditional variance is 1/(13«) (see [20] for further details).

13.5 Multivariate Gaussian Conditional Autoregressions

Multivariate Gaussian conditional autoregressions are a straightforward generalization of
Equation (13.2) and Equation (13.3). Suppose X;, i = 1, ..., n is a p-dimensional random
vector and let the conditional distribution of X; given x_; be multivariate Gaussian with
conditional mean and covariance matrix

E(Xilx—i) = p; + ZBij(xj - 1) (13.21)
j#i
Cov(Xilx_;) = ®;". (13.22)

The matrices B;; and ®; > Oareall of dimension p x p. Without loss of generality, we assume
in the following that p; = - -- = pu,, = 0. As in the univariate case, the joint distribution of
X = (Xj, ..., X,,) is multivariate normal with mean 0 and precision matrix Q = D(I — B),
provided that Q is regular and symmetric ([18]). Here, D is block-diagonal with entries ®;,
i =1,...,n,I1is the identity matrix and B is np x np with block-elements B;; for i # j
and block-diagonal entries equal to zero. More details on this model can be found in [1],
sec. 7.4.2.

In practice, we often encounter the situation that we have multivariate observations
in each pixel with a fixed neighborhood structure between the pixels. A straightforward
generalization of the adjacency-based intrinsic pairwise-difference prior (Equation 13.9) is

1
p(x|®) x exp ) Z(xi - xj)TQJ(xi - xj) (13.23)
i~j
with conditional mean and covariance matrix equal to

EXilx_i) = > xj/mi

jri

Cov(Xilx_;) = (m; - ®)~".
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Multivariate conditional autoregressive models are discussed in more detail in [10] (see
also sec. 7.4 in [1]).
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