
Laplace approximation

Rasmus Waagepetersen

1 Laplace approximation in one dimension

Consider an integral

In =

∫
R

exp(nh(x))g(x)dx

where h(x) is three times differentiable and assume there exists x̂ so that

C1 H = −h′′(x̂) > 0 and h′(x̂) = 0

C2 for any ∆ > 0 there exists an ε > 0 so that h(x̂)−h(x) > ε for |x− x̂| > ∆

C3 there exists a δ > 0 so that |h(3)(x)| < K and |g(x)| < C for |x− x̂| ≤ δ

C4 a)
∫
R |g(x)|dx < Ka or b)

∫
R exp(h(x))|g(x)|dx < Kb

Then
In

exp(nh(x̂))g(x̂)
√

2πn−1H−1
→ 1 (1)

as n→∞.

Proof:

Pick a δ > 0 as in C3 and let Aδ = [x̂− δ, x̂+ δ]. Then using C2 and C4 a),∫
Acδ

exp(nh(x)− nh(x̂))g(x)dx ≤ exp(−nε)Ka.

Using instead C4 b),∫
Acδ

exp(nh(x)− nh(x̂))g(x)dx

=

∫
Acδ

exp((n− 1)(h(x)− h(x̂)) + h(x)− h(x̂))g(x)dx

≤ exp(−(n− 1)ε) exp(−h(x̂))Kb.

1



Thus

In exp(−nh(x̂))

g(x̂)
√

2πn−1H−1

=

∫
Aδ

exp(nh(x)− nh(x̂))g(x)dx

g(x̂)
√

2πn−1H−1
+

∫
Acδ

exp(nh(x)− nh(x̂))g(x)dx

g(x̂)
√

2πn−1H−1

where, in case of a),∣∣∣∣∣
∫
Acδ

exp(nh(x)− nh(x̂))g(x)dx

g(x̂)
√

2πn−1H−1

∣∣∣∣∣ ≤ exp(−nε)Ka

g(x̂)
√

2πn−1H−1
→ 0,

and similar in case of b).
We thus need to approximate

Jn =

∫
Aδ

exp(nh(x)− nh(x̂))g(x)dx

by

g(x̂)
√

2πn−1H−1 = n−1/2
∫
R

exp(−H
2
u2)g(x̂)du.

To do this we make the change of variable u =
√
n(x− x̂) whereby

Jn = n−1/2
∫
Bn,δ

exp(nh(n−1/2u+ x̂)− nh(x̂))g(n−1/2u+ x̂)du

where Bn,δ = [−
√
nδ,
√
nδ]. Define

fn(u) = exp(nh(n−1/2u+ x̂)− nh(x̂))g(n−1/2u+ x̂)− exp(−H
2
u2)g(x̂)

Then

|
∫
Bn,δ

exp(nh(n−1/2u+ x̂)− nh(x̂))g(n−1/2u+ x̂)du−
∫
R

exp(−H
2
u2)g(x̂)du|

=|
∫
Bn,δ

exp(nh(n−1/2u+ x̂)− nh(x̂))g(n−1/2u+ x̂)du−
∫
Bn,δ

exp(−H
2
u2)g(x̂)du−

∫
Bcn,δ

exp(−H
2
u2)g(x̂)du|

≤
∫
Bn,δ

|fn(u)|du+ |
∫
Bcn,δ

exp(−H
2
u2)g(x̂)du|

where limn→∞ |
∫
Bcn,δ

exp(−H2 u
2)g(x̂)du| = 0. Hence

∫
Bn,δ
|fn(u)|du → 0 will

imply
Jn

g(x̂)
√

2πH−1n−1
=

n1/2Jn

g(x̂)
√

2πH−1
→ 1.
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We expand nh(n−1/2u + x̂)− nh(x̂) using a second order Taylor expansion
around u = 0:

nh(n−1/2u+ x̂)− nh(x̂) = −H
2
u2 +Rn(u)

where

Rn(u) = nn−3/2
1

6
h(3)(c)u3 =

n−1/2

6
h(3)(c)u3

and c is between x̂ and n−1/2u+ x̂. Now, u ∈ Bn,δ implies h(3)(c) ≤ K so Rn(u)
tends to zero for any fixed u ∈ R meaning that

1[u ∈ Bn,δ]fn(u)

=1[u ∈ Bn,δ]| exp(nh(n−1/2u+ x̂)− nh(x̂))g(n−1/2u+ x̂)− exp(−H
2
u2)g(x̂)|

(2)

converges to zero for any u ∈ R. Also

|Rn(u)| ≤ n−1/2

6
Kn1/2δu2 =

1

6
Kδu2

so

1[u ∈ Bn,δ] exp(nh(n−1/2u+x̂)−nh(x̂))|g(n−1/2u+x̂)| ≤ exp(−H
2
u2+

1

6
Kδu2)C

where the upper bound is integrable as a function of u for δ small enough. We
can now use the triangle inequality to show that (2) is bounded by an integrable
function. Hence

∫
Bn,δ
|fn(u)|du→ 0 follows by dominated convergence.

2 Order of approximation

Here we assume for simplicity that g(x) = 1 (meaning that condition C4 b) is
relevant). We also assume h(4)(x) < K̃ for all |x − x̂| ≤ δ. We next employ a
fourth order Taylor expansion

nh(n−1/2u+ x̂)− nh(x̂) = −H
2
u2 + n−1/2

H3

6
u3 + R̃n(u)

where H3 = h(3)(x̂) and

R̃n(u) = n−1
H4(u)

24
u4

where H4(u) = h(4)(c̃) and c̃ is between x̂ and n−1/2u+ x̂. A first order Taylor
expansion of exp(·) yields

exp(n−1/2
H3

6
u3+R̃n(u)) = 1+n−1/2

H3

6
u3+R̃n(u)+

exp(b)

24

(
n−1/2

H3

6
u3 + R̃n(u)

)2

3



where b is between 0 and n−1/2H3

6 u
3 + R̃n(u).

We now assess

n1/2Jn =

∫
Bn,δ

exp(−H
2
u2)

[
1 + n−1/2

H3

6
u3 + R̃n(u) +

exp(b)

24

(
n−1/2

H3

6
u3 + R̃n(u)

)2
]

du

by considering each term inside the integral separately (and using dominated
convergence to replace Bn,δ by R):

lim
n→∞

∫
Bn,δ

exp(−H
2
u2)du =

∫
R

exp(−H
2
u2)du =

√
2πH−1

For the second term times n we have

lim
n→∞

n1/2
∫
Bn,δ

exp(−H
2
u2)

H3

6
u3du = 0

since exp(−H2 (−u)2)H3

6 (−u)3 = − exp(−H2 u
2)H3

6 u
3. For the third term multi-

plied by n, we get

lim
n→∞

∫
Bn,δ

exp(−H
2
u2)n|R̃n(u)|du ≤

∫
R

exp(−H
2
u2)

K̃

24
u4du <∞.

For the last term,∫
Bn,δ

exp(−H
2
u2) exp(b)

(
n−1/2

H3

6
u3 + R̃n(u)

)2

du

we use

|n−1/2H3

6
u3| ≤ H3

6
δu2 and |R̃n(u)| ≤ K̃

24
δ2u2

so that exp(−H2 u
2+b) becomes dominated by an unnormalized Gaussian density

for δ small enough. Further(
n−1/2

H3

6
u3 + R̃n(u)

)2

≤ n−1H
2
3

36
u6 + n−2

K̃2

242
u8 + n−3/2

|H3|K̃
144

|u|7.

The last term thus becomes O(n−1). In conclusion,

n1/2Jn√
2πH−1

= 1 +O(n−1).

This further implies for the relative error,

n1/2Jn −
√

2πH−1√
2πH−1

= O(n−1)

and

n1/2Jn −
√

2πH−1

n1/2Jn
=
n1/2Jn −

√
2πH−1√

2πH−1

√
2πH−1

n1/2Jn
= O(n−1).
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3 Tail moments for a Gaussian random variable

In this section we derive a bound for the integral∫ ∞
x

uk exp(−u2/2)du

for a large x. Note first that uk < exp(αu2/2) for any α > 0 when u is large
enough. Hence for large enough x,∫ ∞
x

uk exp(−u2/2du) ≤
∫ ∞
x

exp(−u2(1−α)/2)du ≤
∫ ∞
x

u

x
exp(−u2(1−α)/2)du

Using the substitution v = u2/2 and choosing α < 1 we obtain∫ ∞
x

u

x
exp(−u2(1− α)/2)du =

∫ ∞
x2/2

1

x
exp(−v(1− α))dv

=[−exp(−v(1− α))

x(1− α)
]∞x2/2 =

exp(−x2(1− α)/2)

x(1− α)
.

We used this for the second term in the previous section. For large enough
n,

n1/2
∫ ∞
√
nδ

uk exp(−Hu2/2)du ≤ n1/2 exp(−nδ2H(1− α)/2)

n1/2δ(1− α)
=

exp(−nδ2H(1− α)/2)

δ(1− α)

which tends to zero as n→∞.

5


