Computation of the likelihood function for GLMMs - Monte Carlo methods

Rasmus Waagepetersen Department of Mathematics Aalborg University Denmark

November 17, 2023

(日) (四) (注) (注) (正)

1/21

Outline for today

- Monte Carlo methods
- Computation of the likelihood function using importance sampling
- Newton-Raphson and the EM-algorithm

Generalized linear mixed effects models

Consider stochastic variable $\mathbf{Y} = (Y_1, \dots, Y_n)$ and random effects U.

Two step formulation of GLMM:

 $\blacktriangleright \mathbf{U} \sim N(0, \Sigma).$

Given realization u of U, Y_i independent and each follows density f_i(y_i|u) with mean μ_i = g⁻¹(η_i) and linear predictor η = Xβ + Zu.

I.e. conditional on \mathbf{U} , Y_i follows a generalized linear model.

NB: GLMM specified in terms of marginal density of **U** and conditional density of **Y** given **U**. But the likelihood is the marginal density of $f(\mathbf{y})$ which can be hard to evaluate !

Likelihood for generalized linear mixed model

For normal linear mixed models we could compute the marginal distribution of **Y** directly as a multivariate normal. That is, $f(\mathbf{y})$ is a density of a multivariate normal distribution.

For a generalized linear mixed model it is difficult to evaluate the integral:

$$f(\mathbf{y}) = \int_{\mathbb{R}^m} f(\mathbf{y}, \mathbf{u}) \mathrm{d}\mathbf{u} = \int_{\mathbb{R}^m} f(\mathbf{y}|\mathbf{u}) f(\mathbf{u}) \mathrm{d}\mathbf{u}$$

since $f(\mathbf{y}|\mathbf{u})f(\mathbf{u})$ is a very complex function.

Monte Carlo computation of likelihood for GLMM

Likelihood function is an expectation:

$$L(\theta) = f(y;\theta) = \int_{\mathbb{R}} f(y|u;\beta)f(u;\tau^2) du = \mathbb{E}_{\tau^2} f(y|U;\beta)$$

Use Monte Carlo simulations to approximate expectation.

NB: also applicable in high dimensions

However, naive methods may fail !

Simple Monte Carlo: $g(u) = f(u; \tau^2)$

$$egin{aligned} \mathcal{L}(heta) &= \int_{\mathbb{R}} f(y|u;eta) f(u; au^2) \mathrm{d} u = \mathbb{E}_{ au^2} f(y|U;eta) pprox \mathcal{L}_{SMC}(heta) = \ &rac{1}{M} \sum_{l=1}^M f(y|U^l;eta) & ext{where } U^l \sim \mathcal{N}(0, au^2) ext{ independent} \end{aligned}$$

Monte Carlo variance:

$$\mathbb{V}\mathrm{ar}(L_{SMC}(\theta)) = \frac{1}{M} \mathbb{V}\mathrm{ar}f(y|U^1;\beta)$$

NB: variance is of order 1/M regardless of dimension !

NB: large M is needed to get large reduction of standard error which is of order $1/\sqrt{M}$

Estimate $\mathbb{V}arf(y|U^1;\beta)$ using empirical variance estimate based on $f(y|U';\beta)$, l = 1, ..., M:

$$\frac{1}{M-1}\sum_{l=1}^{M}(f(y|U^{l};\beta)-L_{SMC}(\theta))^{2}$$

Often $\operatorname{Var} f(y|U^1;\beta)$ is large so large *M* is needed.

Increasing dimension leads to worse performance (useless in high dimensions)

<ロト < 回 > < 直 > < 直 > < 直 > < 三 > < 三 > < 三 > の < で 8/21

Importance sampling

Consider $Z \sim f$ and suppose we wish to evaluate $\mathbb{E}h(Z)$ where h(Z) has large variance.

Suppose we can find density g so that

$$rac{h(z)f(z)}{g(z)}pprox {
m const} \ \ \, {
m and} \ \, h(z)f(z)>0 \Rightarrow g(z)>0$$

Then

$$\mathbb{E}h(Z) = \int \frac{h(z)f(z)}{g(z)}g(z)\mathrm{d}z = \mathbb{E}\frac{h(Y)f(Y)}{g(Y)}$$
where $Y \sim g$.

Note variance of h(Y)f(Y)/g(Y) small so estimate

$$\mathbb{E}h(Z)\approx\frac{1}{n}\sum_{i=1}^{n}\frac{h(Y_i)f(Y_i)}{g(Y_i)}$$

has small Monte Carlo error.

Importance sampling for GLMM

 $g(\cdot)$ probability density on \mathbb{R}^m .

$$L(\theta) = \int_{\mathbb{R}} f(y|u;\beta) f(u;\tau^2) du = \int_{\mathbb{R}} \frac{f(y|u;\beta)f(u;\tau^2)}{g(u)} g(u) du =$$
$$\mathbb{E} \frac{f(y|V;\beta)f(V;\tau^2)}{g(V)} \text{ where } V \sim g(\cdot).$$

$$L(\theta) \approx L_{IS}(\theta) = \frac{1}{M} \sum_{l=1}^{M} \frac{f(y|V';\beta)f(V';\tau^2)}{g(V')} \text{ where } V' \sim g(\cdot), l = 1, \dots, n$$

Find g so $\operatorname{Var} \frac{f(y|V;\beta)f(V;\tau^2)}{g(V)}$ small.

 $\operatorname{Var} L_{IS}(\theta) < \infty$ if $f(y|v;\theta)f(v;\theta)/g(v)$ bounded (i.e. use $g(\cdot)$ with heavy tails).

Possibility: Note

$$\frac{f(y|u,\beta)f(u;\tau^2)}{f(u|y;\theta)} = f(y;\theta) = L(\theta) = \text{const}$$

Laplace: $U|Y = y \approx N(\mu_{LP}, \sigma_{LP}^2)$

Use $g(\cdot)$ density for $N(\mu_{LP}, \sigma_{LP}^2)$ or $t_{\nu}(\mu_{LP}, \sigma_{LP}^2)$ -distribution:

$$\frac{f(y|u,\beta)f(u;\tau^2)}{g(u)}\approx \text{const}$$

so small variance.

Simulation straightforward.

Note: 'Monte Carlo version' of adaptive Gaussian quadrature.

Possibility: Consider fixed θ_0 :

$$g(u) = f(u|y,\theta_0) = f(y|u;\theta_0)f(u;\theta_0)/L(\theta_0)$$

Then

$$L(\theta) = \int_{\mathbb{R}} \frac{f(y|u;\beta)f(u;\tau^2)}{g(u)} g(u) du = L(\theta_0) \int_{\mathbb{R}} \frac{f(y|u;\beta)f(u;\tau^2)}{f(y|u;\beta_0)f(u;\tau_0^2)} f(u|y,\theta_0) du = L(\theta_0) \mathbb{E}_{\theta_0} \Big[\frac{f(y|U;\beta)f(U;\tau^2)}{f(y|U;\beta_0)f(U;\tau_0^2)} |Y = y \Big] \Leftrightarrow \frac{L(\theta)}{L(\theta_0)} = \mathbb{E}_{\theta_0} \Big[\frac{f(y|U;\beta)f(U;\tau^2)}{f(y|U;\beta_0)f(U;\tau_0^2)} |Y = y \Big]$$

So we can estimate ratio $L(\theta)/L(\theta_0)$ where $L(\theta_0)$ is unknown constant.

This suffices for finding MLE:

$$\arg\max_{\theta} L(\theta) = \arg\max_{\theta} \frac{L(\theta)}{L(\theta_0)} \approx \arg\max_{\theta} \frac{1}{M} \sum_{l=1}^{M} \frac{f(y|U^l;\beta)f(U^l;\tau^2)}{f(y|U^l;\beta_0)f(U^l;\tau_0^2)}$$

where $U_l \sim f(u|y; \theta_0)$

12 / 21

Simulation from U|Y = y

Problems:

$$f(u|y) = \frac{f(y|u)f(u)}{f(y)}$$

is a non-standard density.

We know numerator f(y|u)f(u) but we do not know normalizing constant

$$f(y) = \int f(y|u)f(u)\mathrm{d}u$$

which is the likelihood

How to simulate a non-standard density f(z) = h(z)/c where we only know h(z) - i.e. only know

$$f(z) \propto h(z)$$

イロト 不得 トイヨト イヨト ヨー うらつ

Simulation of random variables

Direct methods exists for many standard distributions (normal, binomial, t, etc.: rnorm(), rbinom(), rt() etc.)

Suppose $f(z) \propto h(z)$ is a non-standard density but

 $h(z) \leq Kg(z)$

for some constant K and standard density g.

Then we may apply rejection sampling:

1. Generate $Y \sim g$ and $W \sim unif[0, 1]$.

2. If $W \leq \frac{h(Y)}{Kg(Y)}$ return Y (accept); otherwise go to 1 (reject). Note probability of accept is c/K where $c = \int h(z) dz$.

If f is high-dimensional density it may be hard to find g with small K so rejection sampling mainly useful in small dimensions.

MCMC is then useful alternative (we'll briefly consider this in MRF part of course)

Proof of rejection sampling:

Show

$$P(Y \le y | accept) = P(Y \le y | W \le \frac{h(Y)}{Kg(Y)}) = \int_{-\infty}^{y} f(v) dv \quad (1)$$

Hint: write out $P(Y \le y, W \le \frac{h(Y)}{Kg(Y)})$ as integral in terms of the densities of Y and W.

イロト 不得 トイヨト イヨト ヨー うらつ

15/21

Also recall $c = \int h(v) dv$ and f(v) = h(v)/c.

Prediction of U using conditional simulation

Compute Monte Carlo estimate of $\mathbb{E}(U|Y = y)$ using importance sampling or conditional simulations of U|Y = y:

$$\mathbb{E}(U|Y=y) \approx \frac{1}{M} \sum_{m=1}^{M} U^m, \quad U^m \sim f(u|y)$$

We can also evaluate e.g. $P(U_i > c|y)$ or $P(U_i > U_l, l \neq i|Y)$ etc.

Conditional simulation of U|Y = y using rejection sampling

Note

$$f(u|y;\theta) \propto f(y|u;\beta)f(u;\tau^2) \leq K t_{\nu}(u;\mu_{LP},\sigma_{LP}^2)$$

for some constant K.

Rejection sampling:

- 1. Generate $V \sim t_{\nu}(\mu_{LP}, \sigma_{LP}^2)$ and $W \sim \text{Unif}(]0, 1[)$
- 2. Return V if $W \leq f(y|V;\beta)f(V;\tau^2)/(Kt(V;\mu_{LP},\sigma_{LP}^2));$ otherwise go to 1.

Maximization of likelihood using Newton-Raphson Let

$$V_{\theta}(y, u) = rac{\mathrm{d}}{\mathrm{d} heta} \log f(y, u| heta)$$

Then

$$u(\theta) = rac{\mathrm{d}}{\mathrm{d}\theta} \log L(\theta) = \mathbb{E}_{\theta}[V_{\theta}(y, U)|Y = y]$$

and

$$\begin{split} j(\theta) &= -\frac{\mathrm{d}^2}{\mathrm{d}\theta^{\mathsf{T}}\mathrm{d}\theta}\log L(\theta) \\ &= -\big(\mathbb{E}_{\theta}[\mathrm{d}V_{\theta}(y,U)/\mathrm{d}\theta^{\mathsf{T}}|Y=y] + \mathbb{V}\mathrm{ar}_{\theta}[V_{\theta}(y,U)|Y=y]\big) \end{split}$$

Newton-Raphson:

$$\theta_{l+1} = \theta_l + j(\theta_l)^{-1} u(\theta_l)$$

All unknown expectations and variances can be estimated using the previous numerical integration or Monte Carlo methods !

EM-algorithm

Given current estimate θ_l :

1. (E) compute
$$Q(\theta_l, \theta) = \mathbb{E}_{\theta_l}[\log f(y, U|\theta)|Y = y]$$

2. (M) $\theta_{l+1} = \operatorname{argmax}_{\theta} Q(\theta_l, \theta).$

For LNMM E-step can be computed explicitly but seems pointless as likelihood is available in closed form.

For GLMMs (E) step needs numerical integration or Monte Carlo.

Convergence of EM-algorithm can be quite slow. Maximization of likelihood using Newton-Raphson seems better alternative.

<ロト < 回 > < 国 > < 国 > < 国 > < 国 > < 国 > < 図 < @ 20/21

Exercises

- 1. why heavy-tailed importance sampling density ? (show that variance of Monte Carlo estimate is finite when importance sampling ratio is bounded)
- R exercises on exercise-sheet exercises_imp.pdf. Note code (unfortunately with a few mistakes) available on website.
- 3. Show that the rejection sampler works i.e. equation (1)
- 4. Simulate a binomial distribution (n = 10, p = 0.2) using simulations of a Poisson distribution (mean 2) and rejection sampling. What is the acceptance rate ? Can you simulate a Poisson using simulations of a binomial ?