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Outline for today

I Monte Carlo methods

I Computation of the likelihood function using importance
sampling

I Newton-Raphson and the EM-algorithm
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Generalized linear mixed effects models

Consider stochastic variable Y = (Y1, . . . ,Yn) and random effects
U.

Two step formulation of GLMM:

I U ∼ N(0,Σ).

I Given realization u of U, Yi independent and each follows
density fi (yi |u) with mean µi = g−1(ηi ) and linear predictor
η = Xβ + Zu.

I.e. conditional on U, Yi follows a generalized linear model.

NB: GLMM specified in terms of marginal density of U and
conditional density of Y given U. But the likelihood is the
marginal density of f (y) which can be hard to evaluate !
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Likelihood for generalized linear mixed model

For normal linear mixed models we could compute the marginal
distribution of Y directly as a multivariate normal. That is, f (y) is
a density of a multivariate normal distribution.

For a generalized linear mixed model it is difficult to evaluate the
integral:

f (y) =

∫
Rm

f (y,u)du =

∫
Rm

f (y|u)f (u)du

since f (y|u)f (u) is a very complex function.
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Monte Carlo computation of likelihood for GLMM

Likelihood function is an expectation:

L(θ) = f (y ; θ) =

∫
R
f (y |u;β)f (u; τ2)du = Eτ2f (y |U;β)

Use Monte Carlo simulations to approximate expectation.

NB: also applicable in high dimensions

However, naive methods may fail !
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Simple Monte Carlo: g(u) = f (u; τ 2)

L(θ) =

∫
R
f (y |u;β)f (u; τ2)du = Eτ2f (y |U;β) ≈ LSMC (θ) =

1

M

M∑
l=1

f (y |U l ;β) where U l ∼ N(0, τ2) independent

Monte Carlo variance:

Var(LSMC (θ)) =
1

M
Varf (y |U1;β)

NB: variance is of order 1/M regardless of dimension !

NB: large M is needed to get large reduction of standard error
which is of order 1/

√
M
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Estimate Varf (y |U1;β) using empirical variance estimate based on
f (y |U l ;β), l = 1, . . . ,M:

1

M − 1

M∑
l=1

(f (y |U l ;β)− LSMC (θ))2

Often Varf (y |U1;β) is large so large M is needed.

Increasing dimension leads to worse performance (useless in high
dimensions)
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Importance sampling
Consider Z ∼ f and suppose we wish to evaluate Eh(Z ) where
h(Z ) has large variance.

Suppose we can find density g so that

h(z)f (z)

g(z)
≈ const and h(z)f (z) > 0⇒ g(z) > 0

Then

Eh(Z ) =

∫
h(z)f (z)

g(z)
g(z)dz = E

h(Y )f (Y )

g(Y )

where Y ∼ g .

Note variance of h(Y )f (Y )/g(Y ) small so estimate

Eh(Z ) ≈ 1

n

n∑
i=1

h(Yi )f (Yi )

g(Yi )

has small Monte Carlo error.
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Importance sampling for GLMM

g(·) probability density on Rm.

L(θ) =

∫
R
f (y |u;β)f (u; τ2)du =

∫
R

f (y |u;β)f (u; τ2)

g(u)
g(u)du =

E
f (y |V ;β)f (V ; τ2)

g(V )
where V ∼ g(·).

L(θ) ≈ LIS(θ) =
1

M

M∑
l=1

f (y |V l ;β)f (V l ; τ2)

g(V l)
where V l ∼ g(·), l = 1, . . . ,M

Find g so Var f (y |V ;β)f (V ;τ2)
g(V ) small.

VarLIS(θ) <∞ if f (y |v ; θ)f (v ; θ)/g(v) bounded (i.e. use g(·)
with heavy tails).
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Possibility: Note

f (y |u, β)f (u; τ2)

f (u|y ; θ)
= f (y ; θ) = L(θ) = const

Laplace: U|Y = y ≈ N
(
µLP , σ

2
LP

)
Use g(·) density for N

(
µLP , σ

2
LP

)
or tν

(
µLP , σ

2
LP

)
-distribution:

f (y |u, β)f (u; τ2)

g(u)
≈ const

so small variance.

Simulation straightforward.

Note: ‘Monte Carlo version’ of adaptive Gaussian quadrature.
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Possibility: Consider fixed θ0:

g(u) = f (u|y , θ0) = f (y |u; θ0)f (u; θ0)/L(θ0)

Then

L(θ) =

∫
R

f (y |u;β)f (u; τ 2)

g(u)
g(u)du = L(θ0)

∫
R

f (y |u;β)f (u; τ 2)

f (y |u;β0)f (u; τ 20 )
f (u|y , θ0)du =

L(θ0)Eθ0

[ f (y |U;β)f (U; τ 2)

f (y |U;β0)f (U; τ 20 )
|Y = y

]
⇔ L(θ)

L(θ0)
= Eθ0

[ f (y |U;β)f (U; τ 2)

f (y |U;β0)f (U; τ 20 )
|Y = y

]
So we can estimate ratio L(θ)/L(θ0) where L(θ0) is unknown
constant.

This suffices for finding MLE:

arg max
θ

L(θ) = arg max
θ

L(θ)

L(θ0)
≈ arg max

θ

1

M

M∑
l=1

f (y |U l ;β)f (U l ; τ2)

f (y |U l ;β0)f (U l ; τ20 )

where Ul ∼ f (u|y ; θ0)
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Simulation from U |Y = y
Problems:

I

f (u|y) =
f (y |u)f (u)

f (y)

is a non-standard density.

I We know numerator f (y |u)f (u) but we do not know
normalizing constant

f (y) =

∫
f (y |u)f (u)du

which is the likelihood

How to simulate a non-standard density f (z) = h(z)/c where we
only know h(z) - i.e. only know

f (z) ∝ h(z)
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Simulation of random variables
Direct methods exists for many standard distributions (normal,
binomial, t, etc.: rnorm(), rbinom(), rt() etc.)

Suppose f (z) ∝ h(z) is a non-standard density but

h(z) ≤ Kg(z)

for some constant K and standard density g .

Then we may apply rejection sampling:

1. Generate Y ∼ g and W ∼ unif[0, 1].

2. If W ≤ h(Y )
Kg(Y ) return Y (accept); otherwise go to 1 (reject).

Note probability of accept is c/K where c =
∫
h(z)dz .

If f is high-dimensional density it may be hard to find g with small
K so rejection sampling mainly useful in small dimensions.

MCMC is then useful alternative (we’ll briefly consider this in MRF
part of course)
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Proof of rejection sampling:

Show

P(Y ≤ y |accept) = P
(
Y ≤ y |W ≤ h(Y )

Kg(Y )

)
=

∫ y

−∞
f (v)dv (1)

Hint: write out P(Y ≤ y ,W ≤ h(Y )
Kg(Y )) as integral in terms of the

densities of Y and W .

Also recall c =
∫
h(v)dv and f (v) = h(v)/c.
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Prediction of U using conditional simulation

Compute Monte Carlo estimate of E(U|Y = y) using importance
sampling or conditional simulations of U|Y = y :

E(U|Y = y) ≈ 1

M

M∑
m=1

Um, Um ∼ f (u|y)

We can also evaluate e.g. P(Ui > c |y) or P(Ui > Ul , l 6= i |Y ) etc.
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Conditional simulation of U |Y = y using rejection
sampling

Note

f (u|y ; θ) ∝ f (y |u;β)f (u; τ2) ≤ K tν(u;µLP , σ
2
LP)

for some constant K .

Rejection sampling:

1. Generate V ∼ tν(µLP , σ
2
LP) and W ∼ Unif(]0, 1[)

2. Return V if W ≤ f (y |V ;β)f (V ; τ2)/(K t(V ;µLP , σ
2
LP));

otherwise go to 1.
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Maximization of likelihood using Newton-Raphson

Let

Vθ(y , u) =
d

dθ
log f (y , u|θ)

Then

u(θ) =
d

dθ
log L(θ) = Eθ[Vθ(y ,U)|Y = y ]

and

j(θ) = − d2

dθTdθ
log L(θ)

= −
(
Eθ[dVθ(y ,U)/dθT|Y = y ] + Varθ[Vθ(y ,U)|Y = y ]

)
Newton-Raphson:

θl+1 = θl + j(θl)
−1u(θl)

All unknown expectations and variances can be estimated using
the previous numerical integration or Monte Carlo methods !
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EM-algorithm

Given current estimate θl :

1. (E) compute Q(θl , θ) = Eθl [log f (y ,U|θ)|Y = y ]

2. (M) θl+1 = argmaxθ Q(θl , θ).

For LNMM E-step can be computed explicitly but seems pointless
as likelihood is available in closed form.

For GLMMs (E) step needs numerical integration or Monte Carlo.

Convergence of EM-algorithm can be quite slow. Maximization of
likelihood using Newton-Raphson seems better alternative.

19 / 21



20 / 21



Exercises

1. why heavy-tailed importance sampling density ? (show that
variance of Monte Carlo estimate is finite when importance
sampling ratio is bounded)

2. R exercises on exercise-sheet exercises_imp.pdf. Note code
(unfortunately with a few mistakes) available on website.

3. Show that the rejection sampler works - i.e. equation (1)

4. Simulate a binomial distribution (n = 10, p = 0.2) using
simulations of a Poisson distribution (mean 2) and rejection
sampling. What is the acceptance rate ? Can you simulate a
Poisson using simulations of a binomial ?
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