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Outline for today

» Monte Carlo methods
» Computation of the likelihood function using importance

sampling
» Newton-Raphson and the EM-algorithm
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Generalized linear mixed effects models

Consider stochastic variable Y = (Y3, ..., Y,) and random effects
u.

Two step formulation of GLMM:
> U~ N(0,X).
» Given realization u of U, Y; independent and each follows

density fi(y;|u) with mean p; = g~1(7;) and linear predictor
n=Xp+ Zu.

I.e. conditional on U, Y; follows a generalized linear model.
NB: GLMM specified in terms of marginal density of U and

conditional density of Y given U. But the likelihood is the
marginal density of f(y) which can be hard to evaluate !
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Likelihood for generalized linear mixed model

For normal linear mixed models we could compute the marginal
distribution of Y directly as a multivariate normal. That is, f(y) is
a density of a multivariate normal distribution.

For a generalized linear mixed model it is difficult to evaluate the
integral:

f(y) = - f(y,u)du = - f(y[u)f(u)du

since f(y|u)f(u) is a very complex function.
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Monte Carlo computation of likelihood for GLMM

Likelihood function is an expectation:

L(6) = Flyi6) = [ Flylus B)f(ui m)du = B f(y|Us )
Use Monte Carlo simulations to approximate expectation.
NB: also applicable in high dimensions

However, naive methods may fail !
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Simple Monte Carlo: g(u) = f(u; 72)

1(6) = /R Fylu: B)F (u: 72)du = EF(y|Us ) ~ Lowc(6) =

M
Z (y|U'; )  where U' ~ N(0,72) independent

Monte Carlo variance:
1
Var(Lsmc(0)) = MVarf(le; B)
NB: variance is of order 1/M regardless of dimension !

NB: large M is needed to get large reduction of standard error
which is of order 1/v/M
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Estimate Varf(y|U'; 8) using empirical variance estimate based on
f(Y|U/;/8), I=1,...,M:

M

1 D (FYIUB) = Lsuc(6))
=1

Often Varf(y|U%; B) is large so large M is needed.

Increasing dimension leads to worse performance (useless in high
dimensions)
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Importance sampling

Consider Z ~ f and suppose we wish to evaluate Eh(Z) where
h(Z) has large variance.

Suppose we can find density g so that

M ~ const and h(z)f(z z
az) t d h(z)f(z) >0=g(z) >0
Then
n2) - [ MDD, ~ gPVIY)
g(2) g(Y)
where Y ~ g.

Note variance of h(Y)f(Y)/g(Y) small so estimate

15~ hODF(Y)

g

has small Monte Carlo error.
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Importance sampling for GLMM

g(+) probability density on R™.

u U'T2
16) = | Fylus )r(uirydn = [ PO pupau -
)
. gV

fy|V;B)f(V;7%)
)

where V ~ g(-).

/ I.
L(0) ~ Lis(0) = Z f(y“/g(z/,()v ) where V! ~ g(.), !

Find g so Var%\fgvﬂ small.

Varls(0) < oo if f(y|v;0)f(v;0)/g(v) bounded (i.e. use g(-)
with heavy tails).
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Possibility: Note

Fylu, B)f(u; )
fuly; 0)

Laplace: U|Y =y ~ N(up,0p)

= f(y; 0) = L(0) = const

Use g(-) density for N(MLP,JEP) or tl,(uLp,afp)—distribution:

Fylu, B)f(u; )

~ const
g(u)

so small variance.
Simulation straightforward.

Note: ‘Monte Carlo version’ of adaptive Gaussian quadrature.
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Possibility: Consider fixed 6p:

g(u) = f(uly,bo) = f(ylu; 0o)f(u;60)/L(60)

Then
fy ) B fylu; B)f(u; 7%)
/]R g(u)du-L(GO)/ ( ‘ BO) ( ) (u|}/790)du_
|U; 5 ™) v Lo) fylU; B)F(U;m2) |\,
]Eeo[ f(y|U; Bo)f U TO)| —y} < L(6o) _Eeo{f(y\U;ﬂo)f(U;Tgﬂy_

So we can estimate ratio L(0)/L(6y) where L(6p) is unknown
constant.

This suffices for finding MLE:

arg max L(0) = arg max L(90)

where U ~ f(uly; 60)
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Simulation from U|Y =y
Problems:
>

fluly) = L)

is a non-standard density.

» We know numerator f(y|u)f(u) but we do not know
normalizing constant

70) = [ fylo)f(u)du
which is the likelihood

How to simulate a non-standard density 7(z) = h(z)/c where we
only know h(z) - i.e. only know

f(z) x h(z)
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Simulation of random variables

Direct methods exists for many standard distributions (normal,
binomial, t, etc.: rnorm(), rbinom(), rt() etc.)

Suppose f(z) o< h(z) is a non-standard density but

h(z) < Kg(z)
for some constant K and standard density g.

Then we may apply rejection sampling:
1. Generate Y ~ g and W ~ unif[0, 1].
W< K((YQ) return Y (accept); otherwise go to 1 (reject).
Note probability of accept is ¢/K where ¢ = [ h(z)dz

If f is high-dimensional density it may be hard to find g with small
K so rejection sampling mainly useful in small dimensions.

MCMC is then useful alternative (we'll briefly consider this in MRF

part of course)
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Proof of rejection sampling:

Show
P(Y < ylaccept) = P(Y < y|w < 100y _ /y Fv)dv (1)
- T T Ke(Y)Y s
Hint: write out P(Y <y, W < ;g(p)) as integral in terms of the

densities of Y and W.

Also recall ¢ = [ h(v)dv and f(v) = h(v)/c.
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Prediction of U using conditional simulation

Compute Monte Carlo estimate of E(U|Y = y) using importance
sampling or conditional simulations of U|Y = y:

E(UIY =y) ZU’" U™ ~ f(uly)

We can also evaluate e.g. P(U; > cly) or P(U; > U, 1 # i]Y) etc.
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Conditional simulation of U|Y = y using rejection
sampling

Note

Fuly; 0) o Fy|u; B)f(u; 7°) < K t,,(u; pip, o7p)
for some constant K.
Rejection sampling:

1. Generate V ~ t,(urp,02p) and W ~ Unif(]0, 1[)

2. Return V if W < f(y|V;B)F(V;72) /(K t(V; pip, o2p));
otherwise go to 1.
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Maximization of likelihood using Newton-Raphson

Let d
Voly, u) = 5 log f(y, ulf)
Then d
u(0) = 75 log L(0) = Eo[Vs(y, U)|Y = y]
and
2
J(0) = ~ 515 Vog L(6)

—(Eo[dVi(y, U)/d0T|Y = y] + Varg[Vy(y, U)|Y = y])
Newton-Raphson:
0141 = 0;+ j(0;) " u(6y)

All unknown expectations and variances can be estimated using
the previous numerical integration or Monte Carlo methods !
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EM-algorithm

Given current estimate 6;:

1. (E) compute Q(0),0) = Eg,[log f(y, U|#)|Y = y]
2. (M) 0,41 = argmaxg Q(6,,6).

For LNMM E-step can be computed explicitly but seems pointless
as likelihood is available in closed form.

For GLMMs (E) step needs numerical integration or Monte Carlo.

Convergence of EM-algorithm can be quite slow. Maximization of
likelihood using Newton-Raphson seems better alternative.
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Exercises

1. why heavy-tailed importance sampling density ? (show that
variance of Monte Carlo estimate is finite when importance
sampling ratio is bounded)

2. R exercises on exercise-sheet exercises_imp.pdf. Note code
(unfortunately with a few mistakes) available on website.

3. Show that the rejection sampler works - i.e. equation (1)

4. Simulate a binomial distribution (n = 10, p = 0.2) using
simulations of a Poisson distribution (mean 2) and rejection
sampling. What is the acceptance rate ? Can you simulate a
Poisson using simulations of a binomial ?
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