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Outline:

1. specification of joint distributions

2. conditional specifications

3. conditional auto-regression

4. Brooks factorization

5. conditional independence and graphs

6. Hammersley-Clifford
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Specification of joint distributions

Consider random vector (X1, . . . ,Xn).

How do we specify its joint distribution ?

1. assume X1, . . . ,Xn independent - but often not realistic

2. assume (X1, . . . ,Xn) jointly normal and specify mean vector
and covariance matrix (i.e. positive definite n × n matrix)

3. use copula (e.g. transform marginal distributions of joint
normal)

4. specify f (x1), f (x2|x1), f (x3|x1, x2) etc.

5. specify full conditional distributions Xi |X−i - but what is then
joint distribution - and does it exist ?
(X−i = (X1, . . . ,Xi−1,Xi+1, . . . ,Xn))

In this part of the course we will consider the fifth option.
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Conditional auto-regressions

Suppose Xi |X−i is normal.

Auto-regression natural candidate for conditional distribution:

Xi |X−i = x−i ∼ N(αi +
∑
l 6=i

γilxl , κi ) (1)

Equivalent (under certain conditions, see exercise) and more
convenient:

Xi |X−i = x−i ∼ N(µi −
∑
l 6=i

βil(xl − µl), κi ) (2)

Is this consistent with a multivariate normal distribution Nn(µ,Σ)
for X ?
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Brook’s lemma

Consider two outcomes x and y of X where X has joint density p
where p(y) > 0.

Brooks factorization:

p(x)

p(y)
=

n∏
i=1

pi (xi |x1, . . . , xi−1, yi+1, . . . , yn)

pi (yi |x1, . . . , xi−1, yi+1, . . . , yn)

Note n! ways to factorize !

If conditional densities consistent with joint density, we can choose
fixed y and determine p(x) by

p(x) ∝ p(x)/p(y)

where RHS evaluated using Brook’s factorization.
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Application to conditional normal specification
We let y = µ = (µ1, . . . , µn). Then

log

(
pi (xi |x1, . . . , xi−1, µi+1, . . . , µn)

pi (µi |x1, . . . , xi−1, µi+1, . . . , µn)

)
=− 1

2κi
[(xi − µi +

i−1∑
l=1

βil(xl − µl))2 − (
i−1∑
l=1

βil(xl − µl)2]

=− 1

2κi
[(xi − µi )2 + 2

i−1∑
l=1

βil(xi − µi )(xl − µl)]

Assume now βij/κi = βji/κj . Then (you do the algebra)

log p(x) = log p(µ)− 1

2

n∑
i=1

n∑
l=1

βil
κi

(xi − µi )(xl − µl) (3)

with βii = 1.

Easy to see that this is consistent with (2)
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This is formally equivalent to a multivariate Gaussian density with
mean vector µ and precision matrix Q = Σ−1 = [qij ]ij with
qij = βij/κi .

A well-defined Gaussian density provided Q is symmetric and
positive definite (whereby Σ = Q−1 positive definite and
symmetric)

We already assumed symmetry

qij = qji ⇔ βij/κi = βji/κj ⇔ βijκj = βjiκi

Positive definiteness must be checked by considering the whole of
Q.
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There are n! factorizations. In general

p(x)

p(y)
=

n∏
i=1

pπ(i)(xπ(i)|xπ(1), . . . , xπ(i−1), yπ(i+1), . . . , yπ(n))

pπ(i)(yπ(i)|xπ(1), . . . , xπ(i−1), yπ(i+1), . . . , yπ(n))

where (π(1), . . . , π(n)) represents a permutation of (1, 2, . . . , n).

In case of (2) we obtain in the same manner as before

log p(x) = log p(µ)− 1

2

n∑
i=1

n∑
l=1

βπ(i)π(l)

κπ(i)
(xπ(i)−µπ(i))(xπ(l)−µπ(l))

which in fact coincides with (3) (just a reordering of the double
sum) - hence choice of π does not matter.
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Conditional distribution of Xi for N(µ,Q−1)

pi (xi |x−i ) ∝ exp(−1

2
(xi − µi )2Qii −

∑
k 6=i

(xi − µi )(xk − µk)Qik)

For a normal distribution Y ∼ N(ξ, σ2),

p(y) ∝ exp(− 1

2σ2
y2 +

1

σ2
yξ)

Comparing the two above equations we get (again you do the
algebra)

Xi |X−i = x−i ∼ N(µi −
1

Qii

∑
k 6=i

Qik(xk − µk),Q−1ii )

Thus auto-regressions on slide 4 are in fact general forms of the
conditional distributions for a multivariate normal distribution !
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Example: Gaussian random field on 1D lattice

Consider lattice V = {l |l = 1, . . . , L}. Define µi = 0, κi = βii = 1
and for some β 6= 0 define

βij =

{
β |i − j | mod (L− 2) = 1

0 otherwise

Q obviously symmetric. Q not positive definite if β = −1/2.

Q positive definite ⇔ |β| < 1/2

Note this is an example of a circulant precision matrix/random
field: if we say i , j are neighbours if βij 6= 0 then we obtain circular
graph on V .

(exercise in case L = 4 - consider determinant of Q)
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Case L = 4
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Example: Gaussian random field on 2D lattice
Consider lattice V = {(l , k)|l = 1, . . . , L, k = 1, . . . ,K}. Now
indices i , j ∈ V correspond to points (i1, i2) and (j1, j2) Define
i , j ∈ V to be neighbours i ∼ j ⇔ |i1 − j1|+ |i2 − j2| = 1 (i and j
horizontal or vertical neighbours).

Tempting: define µi = 0,

βij =

{
−1/#Ni i ∼ j

0 otherwise

where #Ni is number of neighbours (2, 3, or 4) of i and
κi = κ/#Ni > 0 where κ > 0. Recall also βii = 1

Then

Xi |X−i = x−i ∼ N(
1

#Ni

∑
j∼i

xj , κ/#Ni )

has conditional mean given by average of neighbours and
conditional variance inversely proportional to number of
neighbours. 12 / 24



Case K = L = 3
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Case K = L = 3 continued
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Problem: resulting Q is positive semi definite:
xTQx = 0⇔ x = a1n for some a ∈ R.

Why: ith row of κ−1Q has ith entry #Ni and Ni entries equal to
−1. Rest zero. Consider e.g. specific case L = K = 3 to see what
happens.

We can modify by Q := Q + τ
κ I where τ > 0.

Then modified Q is positive definite and we obtain modified
conditional distributions

Xi |X−i = x−i ∼ N(µi +
1

#Ni + τ

∑
k 6=i

(xk − µk),
κ

#Ni + τ
)

which are consistent with joint multivariate distribution.

For the record: we can make sense of multivariate distributions
with positive-semidefinite Σ as distributions on lower dimensional
subspaces. Then Q is generalized inverse of Σ.
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Conditional vs. marginal modeling

Usually we model multivariate normal in terms of Σ - i.e.
covariance structure well understood.

Modeling in terms of conditional distributions (or equivalently Q)
appealing but downside is that we do not necessarily know
structure of Σ - although it can be computed numerically by
inverting Q.

You are invited to invert Q from previous example L = K = 3 with
τ > 0.
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Markov random fields

Let V denote a finite set of vertices and E a set of edges where an
element e in E is of the form {i , j} for i 6= j ∈ V . (i.e. an edge is a
unordered pair of vertices). G = (V ,E ) is a graph.

i , j ∈ V are neighbours, i ∼ j , if {i , j} ∈ E .

A random vector X = (Xi )i∈V is a Markov random field with
respect to G if

pi (xi |x−i ) = pi (xi |xNi
)

where Ni is the set of neighbours of i and for x = (xl)l∈V and
A ⊆ V , xA = (xi )i∈A.

In other words, Xi and Xj are conditionally independent given
X−{i ,j} if i and j are not neighbours.

Markov random field is another word for graphical model.
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Graphical model

Model where conditional dependence structure specified by graph.
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Hammersley-Clifford theorem
Consider a positive density p(·) > 0 for X = (Xi )i∈V and a graph
G = (V ,E ). Then the following statements are equivalent:

1. X is a MRF wrt G .

2.
p(x) =

∏
C⊆V

φC (xC )

for interaction functions φC where φC = 1 unless C is a clique
wrt. G . We can further introduce the constraint φC (xC ) = 1
if xl = yl for l ∈ C and some fixed y . Then the interaction
functions are uniquely determined.

Notation: for ease of notation we often write i for {i} and
(xA, yB) will denote a vector with entries xi for i ∈ A and yj
for j ∈ B, A ∩ B = ∅ (this is a convenient but not rigorous
notation)

Clique: C ⊆ V is a clique if i ∼ j for all i 6= j ∈ C
(in particular, all singletons C = {i} are cliques)
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Proof: 2. ⇒ 1.

pi (xi |x−i ) ∝
∏

C⊆V :C∩i 6=∅

φC (xC )

RHS depends only on xj ∈ Ni : if l ∈ C is not a neighbour of i then
C can not be a clique. Then φC (xC ) = 1 so it does not depend on
xl .
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1. ⇒ 2.
We choose an arbitrary reference outcome y for X . We then define
φ∅ = p(y) and, recursively,

φC (xC ) =

{
1 C not a clique or xl = yl for some l ∈ C
p(xC ,y−C )∏
B⊂C φB(xB)

otherwise

Let x = (xA, y−A) where xl 6= yl for all l ∈ A. We show 2. by
induction in the cardinality |A| of A. If |A| = 0 then x = y and
p(y) = φ∅ so 2. holds. Assume now that 2. holds for |A| = k − 1
where k ≤ |V | and consider A with |A| = k.

Assume A is a clique. Then by construction,

p(xA, y−A) = φA(xA)
∏
B⊂A

φB(xB)

and we are done since for C ⊆ V which is not a subset of A we
have φC ((xA, y−A)C ) = 1 by construction

NB: don’t need induction hypothesis in this case.
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Assume A is not a clique, i.e. there exist l , j ∈ A so that l 6∼ j .
Then

p(xA, y−A) =
pl(xl |xA\l , y−A)

pl(yl |xA\l , y−A)
p(xA\l , y−A, yl)

=
pl(xl |xA\{l ,j}, yj , y−A)

p(yl |xA\{l ,j}, yj , y−A)
p(xA\l , y−A, yl)

=
pl(xl , xA\{l ,j}, yj , y−A)

pl(yl , xA\{l ,j}, yj , y−A)
p(xA\l , y−A, yl)

=

∏
C⊆A\j φC (xC )∏

C⊆A\{l ,j} φC (xC )

∏
C⊆A\l

φC (xC )

=
∏
C⊆A

φC (xC )

where second ”=” by 1. and fourth ”=” by induction. Thus 2.
also holds in this case.

NB: At the expense of further tecnicalities HC-theorem can be
generalized to the case of a not strictly positive p(·).
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Exercises
1. Show that two parametrizations (1) and (2) are equivalent

under the condition that the matrix A with Aii = 1 and
Aij = −γij is invertible. In other words, show that there is an
invertible mapping between the parameter vectors
(α1, . . . , αn, γ12, . . . , γ(n−1)n) and
(µ1, . . . , µn, β12, . . . , β(n−1)n).

Hint: equate the conditional means for all i = 1, . . . , n.
2. Verify Brook’s Lemma.
3. Perform derivations left to the reader at slides 6 and 9
4. Show that a precision matrix, if it exists, is positive definite.
5. Check in case L = 4 for circulant Gaussian that Q is positive

definite if and only if |β| < 1/2 (one criterion for this is that
all leading principal submatrices have positive determinants)

6. Compute numerically the inverse of Q for circulant Gaussian
(L = 4, β = −0.3, 0.3) and inverse of Q + τ I for various
τ = 0.01, 0.1, 1 in case of 2D Gaussian with L = K = 3 (slides
10 and 12). Also consider the correlation matrix.
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Conditional independence

Suppose X ,Y ,Z are random variables (or vectors). Then we
define X and Y to be conditionally independent given Z if

p(x , y |z) = p(x |z)p(y |z)

The following statements are equivalent:

1. p(x , y |z) = p(x |z)p(y |z)

2. p(x , y , z) = f (x , z)g(y , z) for some functions f and g

3. p(x |y , z) = p(x |z)

4. p(y |x , z) = p(y |z)

(p(·) generic notation for (possibly conditional) probability
densities)
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