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Specification of joint distributions

Consider random vector (Xi, ..., Xy).

How do we specify its joint distribution ?

1. assume Xi,..., X, independent - but often not realistic

2. assume (Xi, ..., Xy) jointly normal and specify mean vector
and covariance matrix (i.e. positive definite n x n matrix)

3. use copula (e.g. transform marginal distributions of joint
normal)

4. specify f(x1), f(xa2|x1), f(x3|x1, x2) etc.

5. specify full conditional distributions X;|X_; - but what is then

joint distribution - and does it exist ?
(Xoi= (X1, Xim1, Xig, -, Xa))

In this part of the course we will consider the fifth option.
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Conditional auto-regressions

Suppose X;|X_; is normal.

Auto-regression natural candidate for conditional distribution:

Xi|X_i = x_i ~ Nl + > yixi, i) (1)
I£i

Equivalent (under certain conditions, see exercise) and more
convenient:

Xi|lX—i = x_j~ N(uj — Zﬁi/(xl — ), Ki) (2)
I£i

Is this consistent with a multivariate normal distribution N,(u, X)
for X 7
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Brook's lemma

Consider two outcomes x and y of X where X has joint density p
where p(y) > 0.

Brooks factorization:

p(X) ﬁpi(Xl'|Xla"~aXifla.yl'+17"'7yn)
ply) g pilyilxe, .o Xie1, Yiets - Yn)

Note n! ways to factorize !

If conditional densities consistent with joint density, we can choose
fixed y and determine p(x) by

p(x) o< p(x)/p(y)

where RHS evaluated using Brook’s factorization.
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Application to conditional normal specification
We let y = = (p1,...,pn). Then

|0g (Pi(Xi|X17 ey Xi—1y i1y .- 7,un)>
pi(/ii‘xla ceey Xi—1, i1y - - 7:“”7)

i—1 i-1
- 2:/: [(Xi — i+ ZBII(XI - MI))2 - (Z B,‘/(X/ — MI)2]
I I=1

1
= 2/{[ [ ,Ul + 2 Z 61/ — Mi (XI )]

Assume now fj;/k; = Bji/kj. Then (you do the algebra)

log p(x) = log p(k) — 5 Z > i’,’ —m)  (3)

i=1 I=1
with G; = 1.

Easy to see that this is consistent with (2)
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This is formally equivalent to a multivariate Gaussian density with
mean vector y and precision matrix @ = L1 = [g;]; with
qij = Bij/ki.

A well-defined Gaussian density provided @ is symmetric and
positive definite (whereby ¥ = Q! positive definite and
symmetric)
We already assumed symmetry

qij = qji < Bij/ki = Bji/kj < Bijrj = Bjiki

Positive definiteness must be checked by considering the whole of

Q.
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There are n! factorizations. In general

(x) ﬁ Pr(iy (X (i) Xn(1)5 - - + 5 Xa(i=1)s Y (i+1)» - - + 5 Ye(n))

P(Y) i1 pﬂ(i)(yﬂ’(i)|x7r(1)7 s Xp(i=1)s Yr(i41)s - - a.)/ﬂ'(n))

where (7(1),...,7(n)) represents a permutation of (1,2,...,n).

In case of (2) we obtain in the same manner as before

1 : . /Bw ks
log p(x) = log p(1) — 5 3 M(><7r(;) — (i) (X (1) = K (1))

iz1 =1 ()

which in fact coincides with (3) (just a reordering of the double
sum) - hence choice of 7 does not matter.
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Conditional distribution of X; for N(u, Q1)

1
pi(xi|x—;) exp(—i(X,- - Mi)zQii - Z(Xi — i) (X — 1) Qi)
ki

For a normal distribution Y ~ N(¢&, 0?),

1 1

_—— 2 JR—
ply) ocexp(=5 5y~ + —5¥¢)

Comparing the two above equations we get (again you do the
algebra)

Xi|X_i = x_j~ N(pij — 0 Z Qik(x ), Qi 1
Yy

Thus auto-regressions on slide 4 are in fact general forms of the

conditional distributions for a multivariate normal distribution !
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Example: Gaussian random field on 1D lattice

Consider lattice V = {/|/ =1,...,L}. Define u; =0, k; = B =1
and for some 3 # 0 define

/Bij:{ﬁ li—j] mod(L—2)=1

0 otherwise
Q obviously symmetric. Q not positive definite if 5 = —1/2.
Q positive definite < |3 < 1/2
Note this is an example of a circulant precision matrix/random
field: if we say /,j are neighbours if 3;; # 0 then we obtain circular

graph on V.

(exercise in case L = 4 - consider determinant of Q)
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Example: Gaussian random field on 2D lattice

Consider lattice V = {(/,k)|/=1,...,L,k=1,...,K}. Now
indices i,j € V correspond to points (i1, 2) and (j1,j2) Define
i,j € V to be neighbours i ~ j < |ii — j1| + |l —jo| =1 (i and j

horizontal or vertical neighbours).

Tempting: define p; =0,
—1/#N; i~
Bij = { /

0 otherwise

where #N; is number of neighbours (2, 3, or 4) of i and

ki = k/#N; > 0 where k > 0. Recall also 3; =1

Then .
Xi|X_i = x_i ~ N(M > x5 /#N))

ji

has conditional mean given by average of neighbours and
conditional variance inversely proportional to number of

neighbours.
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Case K=L=3
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Case K = L = 3 continued
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Problem: resulting @ is positive semi definite:
xTQx =0« x = al, for some a € R.

Why: ith row of x~1Q has ith entry #N; and N; entries equal to
—1. Rest zero. Consider e.g. specific case L = K = 3 to see what
happens.

We can modify by Q@ := Q + ~-/ where 7 > 0.
Then modified Q is positive definite and we obtain modified
conditional distributions

1 K
XilXoi=x_j ~ N(puj + ——— Xk — _—
I’ i i (:ul #N,+T§( k Mk)a #N,'+T)
which are consistent with joint multivariate distribution.
For the record: we can make sense of multivariate distributions
with positive-semidefinite ¥ as distributions on lower dimensional

subspaces. Then Q is generalized inverse of X.
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Conditional vs. marginal modeling

Usually we model multivariate normal in terms of ¥ - i.e.
covariance structure well understood.

Modeling in terms of conditional distributions (or equivalently Q)
appealing but downside is that we do not necessarily know
structure of ¥ - although it can be computed numerically by
inverting Q.

You are invited to invert @ from previous example L = K = 3 with
T>0.
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Markov random fields

Let V denote a finite set of vertices and E a set of edges where an
element e in E is of the form {i,j} for i #j € V. (i.e. an edge is a
unordered pair of vertices). G = (V, E) is a graph.

i,j € V are neighbours, i ~ j, if {i,j} € E.

A random vector X = (Xj)jcv is a Markov random field with
respect to G if

pi(xi|x—i) = pi(xi|xn;)

where N; is the set of neighbours of i and for x = (x);cv and
ACV, xa=(xi)iea-

In other words, X; and X are conditionally independent given
X_yijy if i and j are not neighbours.

Markov random field is another word for graphical model.
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Graphical model

Model where conditional dependence structure specified by graph.
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Hammersley-Clifford theorem
Consider a positive density p(-) > 0 for X = (Xj);ev and a graph

G =
1.
2.

(V, E). Then the following statements are equivalent:
X is a MRF wrt G.

p(x) = ] éclxc)
ccv
for interaction functions ¢¢ where ¢ = 1 unless C is a clique
wrt. G. We can further introduce the constraint ¢c(xc) =1
if x; =y, for | € C and some fixed y. Then the interaction
functions are uniquely determined.

Notation: for ease of notation we often write / for {i} and
(xa, yg) will denote a vector with entries x; for i € A and y;
for j € B, AN B =) (this is a convenient but not rigorous
notation)

Clique: CC Viisacliqueifi~jforalli#je C
(in particular, all singletons C = {i} are cliques)
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Proof: 2. = 1.

pi(xi|x—7) o H ¢c(xc)

CCV:CNi0

RHS depends only on x; € N;: if / € C is not a neighbour of i then
C can not be a clique. Then ¢¢(xc) =1 so it does not depend on
XJ.
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1. = 2.
We choose an arbitrary reference outcome y for X. We then define
g = p(y) and, recursively,

1 C not a clique or x; = y; for some | € C

pclxc) = { plxc,y—c)

[lgcc @8(xs)
Let x = (xa,y—_a) where x; # y; for all | € A. We show 2. by
induction in the cardinality |A| of A. If |A| =0 then x =y and
p(y) = ¢p so 2. holds. Assume now that 2. holds for |A| = k — 1
where k < |V/| and consider A with |A| = k.

otherwise

Assume A is a clique. Then by construction,
p(xa,y-a) = da(xa) [ | ¢8(xs)
BCA

and we are done since for C C V which is not a subset of A we
have ¢¢c((xa,y—a)c) = 1 by construction

NB: don't need induction hypothesis in this case.
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Assume A is not a clique, i.e. there exist /,j € A so that [ ¢ j.

Then
p(xa, y_n) :wp(x Yen )
T pi(yilxa\; y-a) D I=A
pi(xi|xa 1j Vi Y—a)
= M2 p(XA\lay—A7y/)
p(}/l‘XA\{l,j}v)/jv}/—A)
Pi(X15 Xa\{1,j}s Yj» Y-A)
= MIJE 2 P(XA\lv)/—AaYI)
Pi(Y1, Xa\{1,jys Yis Y-A)
[Tccay dc(xc)
Moo octec) L1 20
CCA\{1,j} PCrC CCA\/
=[] ¢c(xc)
CCA
where second "=" by 1. and fourth "=" by induction. Thus 2.

also holds in this case.

NB: At the expense of further tecnicalities HC-theorem can be
generalized to the case of a not strictly positive p(-).
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Exercises

1. Show that two parametrizations (1) and (2) are equivalent
under the condition that the matrix A with A; =1 and
Ajj = —ijj is invertible. In other words, show that there is an
invertible mapping between the parameter vectors
(a1,..., a0, M2, .. 7'7(n71)n) and
(#17"'7[LH7B127"'aB(n—l)n)

Hint: equate the conditional means for all i =1,...,n.

Verify Brook's Lemma.

Perform derivations left to the reader at slides 6 and 9

Show that a precision matrix, if it exists, is positive definite.

Check in case L = 4 for circulant Gaussian that Q is positive

definite if and only if || < 1/2 (one criterion for this is that

all leading principal submatrices have positive determinants)

6. Compute numerically the inverse of @ for circulant Gaussian
(L=4, 3 =-0.3,0.3) and inverse of Q + 7/ for various
7=0.01,0.1,1 in case of 2D Gaussian with L = K = 3 (slides
10 and 12). Also consider the correlation matrix.

o1k N

23 /24



Conditional independence

Suppose X, Y, Z are random variables (or vectors). Then we
define X and Y to be conditionally independent given Z if

p(x;y|z) = p(x|2)p(y|2)

The following statements are equivalent:

1. p(x,ylz) = p(x|z)p(y|2)

2. p(x,y,z) = f(x,z)g(y,z) for some functions f and g
3. p(xly,z) = p(x|2)

4. p(ylx,z) = p(ylz)

(p(-) generic notation for (possibly conditional) probability
densities)
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