Markov random fields II

Rasmus Waagepetersen

November 24, 2023

<ロ > < 回 > < 回 > < 三 > < 三 > < 三 > 三 の Q () 1/28 Outline:

- 1. Auto-logistic (Ising) and auto-Poisson models
- 2. Estimation for Ising model
- 3. Bayesian Image analysis
- 4. Gibbs sampler (MCMC algorithm)
- 5. Phase-transition for Ising model

Brooks vs. Hammersley-Clifford

Given a set of (alledgedly) full conditionals we can use either Brooks or H-C to identify candidate for a joint (unnormalized) density $p(\cdot)$. In both cases we need to check that $p(\cdot)$ can be normalized and that it is consistent with the given full conditionals.

On disadvantage of Brooks is that it in principle yields n! solutions (possible non-uniqueness) and it does not inform on the form of $p(\cdot)$.

For H-C, we can construct the interaction functions using the full conditionals in a systematic way following the proof of $1. \Rightarrow 2$. For given y these interaction functions and hence $p(\cdot)$ are uniquely determined by the full conditionals. Moreover, we can easily check that the constructed interaction functions are consistent with the full conditionals since

$$p_i(x_i|x_{-i}) \propto \frac{p_i(x_i|x_{-i})}{p_i(y_i|x_{-i})} = \frac{p(x)}{p(x_{-i},y_i)} = \prod_{\substack{\substack{\leftarrow C: i \in \mathcal{C} \\ i \in \mathcal{C} \\ j \neq i \\ 3/28}}} \phi(x_C)$$

Gaussian MRF

Consider graph G = (V, E) and full conditionals

$$p_i(x_i|x_{-i}) \propto \exp(-\frac{1}{2\kappa_i}(x_i - \mu_i + \sum_{l \sim i} \beta_{il}(x_l - \mu_l))^2)$$

where $\beta_{ij}/\kappa_i = \beta_{ji}/\kappa_j$.

Letting $y = (\mu_I)_{I \in V}$, we have following H-C that

 $\phi_{\emptyset} = p(\mu)$ (to be determined) $\phi_i(x_i) = \exp(-\frac{1}{2\kappa_i}(x_i - \mu_i)^2)$

$$\phi_{\{i,j\}}(x_i, x_j) = \exp(-\frac{\beta_{ij}}{\kappa_i}(x_i - \mu_i)(x_j - \mu_j))$$

and $\phi_C(x_C) = 1$ for #C > 2.

Note $\phi_{\{i,j\}}$ covers both pairs (i,j) and (j,i).

How ?

Start with $\phi_{\emptyset} = p(\mu)$ (which we do not know yet).

By construction in proof of H-C:

$$\phi_i(x_i) = \frac{p(x_i, \mu_{-i})}{p(\mu)} = \frac{p_i(x_i|\mu_{-i})}{p_i(\mu_i|\mu_{-i})} = \exp(-\frac{1}{2\kappa_i}(x_i - \mu_i)^2)$$

Note that this implies $p(x_i, \mu_{-i}) = \phi_i(x_i)p(\mu)$.

Next,

$$\begin{split} \phi_{\{i,j\}}(x_i, x_j) &= \frac{p(x_i, x_j, \mu_{-\{i,j\}})}{p(\mu)\phi_i(x_i)\phi_j(x_j)} = \frac{p(x_i, x_j, \mu_{-\{i,j\}})}{p(x_i, \mu_{-i})\phi_j(x_j)} = \\ &\frac{p_j(x_j|x_i, \mu_{-\{i,j\}})}{p_j(\mu_j|x_i, \mu_{-\{i,j\}})\phi_j(x_j)} = \exp(-\frac{\beta_{ji}}{\kappa_j}(x_i - \mu_i)(x_j - \mu_j)) \end{split}$$

Proceeding in the same way, we obtain $\phi_C(x_C) = 1$ for all *C* of cardinality #C > 2 (of course we only need to consider *C* that are cliques with respect to *G*)

Considering the constructed $p(x)/p(\mu)$ and letting $Q_{ij} = \beta_{ij}/\kappa_i$ (with $\beta_{ii} = 1$) we see that this is the unnormalized density of $N(\mu, Q^{-1})$ provided Q is positive definite.

If Q is positive definite we can conclude

$$\phi_{\emptyset} = p(\mu) = (2\pi)^{-\#V/2} |Q|^{1/2}$$

For a Gaussian vector $X = (X_i)_{i \in V}$ we know that the full conditional of X_i only depends on those X_j for which $Q_{ij} \neq 0$.

Hence, X is a MRF with respect to $G \Leftrightarrow Q_{ij} = Q_{ji}$ differs from zero only if $\{i, j\} \in E$.

Note that the above is an example that ϕ_C can be equal to one also for C that is in fact a clique.

Auto-logistic model

Consider 2D rectangular $L \times K$ lattice V with horizontal/vertical neighbours. Only possible cliques are then singletons or pairs of horizontal or vertical neighbours.

Consider stochastic vector X on $\{0,1\}^V$ with

$$p_i(x_i|x_{-i}) = \frac{\exp(\alpha x_i + \beta \sum_{j \in N_i} x_i x_j)}{1 + \exp(\alpha + \beta \sum_{j \in N_i} x_j)}$$

Note $p_i(1|x_{-i})$ corresponds to logistic regression with covariate given by number of neighbouring 1's.

Following construction in proof of Hammersley-Clifford with y = (0, ..., 0) we obtain

$$\phi_i(x_i) = \exp(\alpha x_i) \quad \phi_{\{i,j\}}(x_{\{i,j\}}) = \exp(\beta x_i x_j)$$

We do not need to consider C with #C > 2 since such a C can not be a clique.

Unknown normalizing constant

Hence joint density is

$$p(x) = p(0) \exp(\alpha \sum_{l \in V} x_l + \beta \sum_{\{i,j\} \in E} x_i x_j)$$

Sum defining

$$p(0) = \left[\sum_{x \in \{0,1\}^V} \exp(\alpha \sum_{l \in V} x_l + \beta \sum_{\{i,j\} \in E} x_i x_j)\right]^{-1}$$

has 2^{LK} terms !

Finite but in general impossible to compute exactly.

Hence we only know $p(\cdot)$ up to proportionality.

Boundary conditions

- free boundary: pixels at edges have only 2 or 3 neighbours
- fixed boundary: we condition on fixed values of boundary pixels. Then all interior "random" pixels have 4 neighbours
- toroidal (similar to circulant): edge pixels neighbours of pixels on opposite edge. E.g. pixel (1, j) becomes neighbour of pixel (L, j). Hence all pixels have 4 neighbours.

Suppose all pixels have 4 neighbours (fixed or toroidal boundary).

If
$$\sum_{j\in N_i}=2$$
 we may want $p_i(0|x_{-i})=p_i(1|x_{-i}).$

This is achieved with $\alpha = -2\beta$.

Ising model

Autologistic model is another name for the very famous Ising model (from statistical physics). In statistical physics 0, 1 are replaced by -1, 1 representing "spins" of elementary particles in piece of iron.

An equivalent form is

$$p(x) \propto \exp(\tilde{\alpha} \sum_{l \in V} x_l + \tilde{\beta} \sum_{\{i,j\} \in E} \mathbb{1}[x_i = x_j])$$
(1)

That is, with $\tilde{\beta} > 0$, the model assigns large probabilities to x with many neighbours of equal value.

If $x_i \in \{0, 1\}$ and all pixels have four neighbours then (1) is equivalent to auto-logistic with $\alpha = \tilde{\alpha} - 4\tilde{\beta}$ and $\beta = 2\tilde{\beta}$.

Gaussian MRF: use sparse matrix Cholesky decomposition of precision matrix.

General MRF: Markov chain Monte Carlo. Here we consider the so-called Gibbs sampler

Gibbs sampler

Idea: generate Markov chain X^1, X^2, \ldots so X^n converges to the distribution p of X.

Reasonable requirement: p is invariant distribution for Markov chain. That is, if $X^i \sim p$ then also $X^{i+1} \sim p$. This is implied by reversibility:

$$P(X^i \in A, X^{i+1} \in B) = P(X^i \in B, X^{i+1} \in A)$$
 when $X^i \sim p$

(set *B* equal to sample space *S* of *X*. Then reversibility implies $P(X^i \in A) = P(X^{i+1} \in A)$)

Gibbs sampler update: given $X^i = x^i$ pick *l* in *V* and let $X^{i+1} = (X^i_{-1}, Y_l)$ where Y_l is sampled from conditional distribution of $X_l | X_{-l} = x^i_{-l}$.

I can be chosen at random in *V* or we can run through *V* in a systematic order.

Gibbs update is reversible

Let $S = \prod_{I \in V} S_I$ be sample space of X.

$$P(X^i \in A, X^{i+1} \in B) = \int_{\mathcal{S}} \int_{\mathcal{S}_l} \mathbb{1}[(x_{-l}, y_l) \in B, x \in A] p_l(y_l | x_{-l}) \mathrm{d}y_l p(x) \mathrm{d}x$$

Moreover, using a change of variable,

$$P(X^{i} \in B, X^{i+1} \in A) = \int_{S} \int_{S_{l}} \mathbb{1}[(x_{-l}, y_{l}) \in A, x \in B] p_{l}(y_{l}|x_{-l}) \mathrm{d}y_{l} p(x) \mathrm{d}x$$
$$= \int_{S} \int_{S_{l}} \mathbb{1}[x \in A, (x_{-l}, y_{l}) \in B] p_{l}(x_{l}|x_{-l}) \mathrm{d}x_{l} p(x_{-l}, y_{l}) \mathrm{d}x_{-l} \mathrm{d}y_{l}$$

These two integrals are equal since

$$p(x)p_l(y_l|x_{-l}) = p(y_l, x_{-l})p_l(x_l|x_{-l})$$

Under weak regularity conditions one can show that the Gibbs sampler Markov chain converges to $p(\cdot)$.

I.e. X^1, X^2, \ldots serves as a random sample of (dependent) observations from $p(\cdot)$.

Estimation

Suppose we have observed realization of auto-logistic model.

Likelihood is

$$p(x; \alpha, \beta) = p(0; \alpha; \beta) \exp(\alpha \sum_{i \in V} x_i + \beta \sum_{i \sim j} x_i x_j)$$

Problem: normalizing constant

$$c(\alpha,\beta) = [p(0;\alpha,\beta)]^{-1} = \sum_{x \in V^{\{0,1\}}} \exp(\alpha \sum_{i \in V} x_i + \beta \sum_{i \sim j} x_i x_j)$$

can not be evaluated exactly and is difficult to approximate numerically.

Besag's pseudo-likelihood

Likelihood function for auto-logistic is intractable due to unknown normalizing constant

Julian Besag suggested to maximize the pseudo-likelihood (product of full conditionals)

$$PL(\alpha,\beta) = \prod_{i \in V} p_i(x_i | x_{-i}; \alpha, \beta)$$

Not likelihood except if X_i 's independent.

Score of log pseudo-likelihood is an unbiased estimating function

$$\mathbb{E}\frac{\mathrm{d}}{\mathrm{d}\alpha\mathrm{d}\beta}\log p_i(X_i|X_{-i};\alpha,\beta)=0$$

(Bartlett identity) and one can show that PL estimates are asymptotically normal.

Computationally straightforward - formally equivalent to logistic regression. $\textcircled{\begin{tabular}{c} \begin{tabular}{c} \begi$

16 / 28

Bayesian image analysis

Consider a pixel image $X = (X_i)_{i \in V}$ where X_i represents the color/intensity for pixel *i*.

Suppose we observe "dirty" image Y where

 $Y_i = X_i + \epsilon_i$

where ϵ_i represents independent zero-mean noise terms with some density $\epsilon_i \sim f$.

We want to reconstruct X given observation y of Y !

Idea behind Bayesian image analysis: represent prior beliefs about X using a probability distribution and infer X using posterior distribution X|Y = y.

Pixel values continuous

Suppose $X_i \in \mathbb{R}$. We believe neighbouring pixel values are similar. We might model this using Gaussian MRF introduced in previous lecture. I.e. with $\mu_i = \mu$ and $\kappa_i = \kappa$,

$$X_i|X_{-i} = x_{-i} \sim N(\mu + rac{1}{\#N_i + au}\sum_{k\sim i}(x_k - \mu), rac{\kappa}{\#N_i + au})$$

That is the conditional mean of X_i is essentially μ corrected with average deviations for neighbours. Joint density is of form

$$p(x) \propto \exp[-\frac{1}{2}(x-\mu)^{\mathsf{T}}(Q+\tau I)(x-\mu)]$$

Assume $\epsilon_i \sim N(0, \sigma^2)$. Posterior is

$$p(x|y) \propto p(y|x)p(x) \propto \exp\left[-\frac{1}{2\sigma^2}\sum_{i \in V}(y_i - x_i)^2\right]p(x) \qquad (2)$$

which is again a Gaussian MRF.

Posterior is known exactly (we can evaluate normalizing constant).

Note also: posterior Gaussian MRF is well-defined also with $\tau = 0$ in which case it does not depend on μ .

This is nice since we then do not need to specify μ .

Image segmentation

Image consists of two types (e.g. black or white) homogeneous regions. We may take $X_i \in \{0, 1\}$ with 0 for black and 1 for white.

Homogeneity: most neighbouring pixel values are of the same type \Rightarrow use Ising model as prior !

Assume again Gaussian noise. Then posterior is

$$p(x|y) \propto \exp\left(-\frac{1}{2\sigma^2}\sum_{i\in V}(y_i - x_i)^2 + \tilde{\alpha}\sum_{i\in V}x_i + \tilde{\beta}\sum_{i\sim j}\mathbb{1}[x_i = x_j]\right)$$

Again MRF distribution !

This time normalizing constant intractable but we can at least simulate posterior using Gibbs sampler.

We may want to use symmetric prior with $\tilde{\alpha} = 0$.

Contingency tables and graphical models

Consider a K-way contingency table given by combinations of K factors where the kth factor has values in set S_k .

For example 3 factors Smoker $S_1 = \{yes, no\}$, lung cancer $S_2 = \{yes, no\}$, Age $S_3 = \{young, middle, old\}$.

Consider an individual/object which is classified according to random values of these factors - leads to discrete random vector X that takes value $x = (x_1, \ldots, x_K)$ if factor I takes the value x_I . E.g. outcome could be (*yes*, *no*, *middle*) if person is middle-aged smoker without lung cancer.

Let

$$p(x) = P(X = x)$$

for x in sample space $S = \prod_{k=1}^{K} S_k$. E.g. p(yes, no, middle) is probability of above outcome.

Suppose we have *n* individuals with vectors X_1, \ldots, X_n . Let N_x denote the number of individuals with $X_i = x$.

We can model vector of numbers $N = (N_x)_{x \in S}$ of individuals for each combination x of factor levels using a multinomial distribution $N \sim$ multinomial $(n, (p(x))_{x \in S})$.

Imposing a MRF structure on probability p(x) allows us to study conditional independence properties of various factors. E.g. is smoking conditionally independent of lung cancer given age ? (OK, not true :))

Conditional independence structure can be visualized via accompanying graph where vertices represent factors.

Phase transitition

Ernst Ising proposed his model as a model for ferromagnets. The spins represent orientations of iron-atoms. If majority of spins either + or - then the piece of iron is a magnet.

Consider the model with $\tilde{\alpha} = 0$ (no prefence for either + or -)

In one dimension, the Ising model is a Markov chain. According to the central limit theorem $M = \frac{1}{\sqrt{n}} \sum_{i \in V} x_i$ will converge to a zero mean normal distribution. I.e. distribution centered on configurations with roughly equal numbers of + and -.

In two or more dimensions the picture is completely different. There exists a critical value $\tilde{\beta}_c \approx 0.88$ so that for $\tilde{\beta} < \tilde{\beta}_c$, the distribution of M is unimodal, while for $\tilde{\beta} > \tilde{\beta}_c$, the distribution is bi-modal ! I.e. either majority of + or majority of - !

You can observe this by simulation: run a Gibbs sampler for large number of iterations starting from a random starting point $(X_i^1 +$ or - with probability 0.5 each and initial spins independent).

For super critical $\tilde{\beta} > 0.88$ the Markov chain will end up in configurations dominated by either + or -. And once in a configuration with majority of + it takes a (very) long time to move to a configuration with a majority of - (and vice versa).

If β sub critical roughly equal amount of + and -

Exercises

- 1. Identify the ϕ_C functions for the auto-logistic model (following proof of the Hammersley-Clifford theorem, use y = (0, 0, ..., 0)).
- 2. Use Brook's lemma to identify $p(\cdot)$ for the auto-logistic model. Does the result depend on the order of the factorization ?
- 3. Show that (1) is equivalent to the auto-logistic model in the case where all pixels have 4 neighbours

Hint:
$$1[x_i = x_j] = x_i x_j + (1 - x_i)(1 - x_j)$$
 when $x_i, x_j \in \{0, 1\}$.

4. Auto-Poisson: suppose $X_i | X_{-i} = x_{-i}$ is Poisson with mean $\exp(\alpha + \beta \sum_{j \in N_i} x_j)$ with neighbourhood structure as for the auto-logistic. Find the joint distribution of X. Show that it is well-defined when $\beta \leq 0$ (meaning $\sum_{x \in S} h(x) < \infty$) but not $(\sum_{x \in S} h(x) = \infty)$ when $\beta > 0$ and $h(\cdot)$ denotes the unnormalized simultaneous density.

Exercises continued

- 5. How can you simulate a Gaussian MRF when the Cholesky decomposition $Q = LL^{T}$ has been obtained for the precision matrix ?
- 6. Show that the posterior distribution (2) is a Gaussian MRF. Also show that the posterior does not depend on μ when $\tau = 0$.

Hint: if $Z \sim N_n(\xi, K^{-1})$, then

$$p(z) \propto \exp(-\frac{1}{2}z^{\mathsf{T}}Kz + z^{\mathsf{T}}K\xi).$$

Implement and run Gibbs sampler for the Ising model (1) with x_i ∈ {0,1}. Use fixed boundary with all boundary pixels equal to 1. Consider the symmetric case α̃ = 0 and values of β̃ = 0.4, 0.7, 0.9. What do you observe ? (some code available on webpage).

Exercises continued

- 8. 8.1 Show that the score function of pseudo-likelihood is unbiased.
 - 8.2 Implement pseudo-likelihood for auto-logistic model when a fixed boundary condition is used (use R-procedure glm) (some code available on webpage).
 - 8.3 Estimate α and β from the data set <code>isingdata.txt</code> using fixed boundary condition.

The data was generated from (1) with $\tilde{\alpha} = 0$ and $\tilde{\beta} = 0.4$. Do your estimates of α and β seem reasonable compared to this ?

 The data set imageAnoisy.txt contains a binary (black/white) image corrupted by iid normal noise with mean zero and standard deviation 0.25. You can read and view it using

temp=as.matrix(read.table("imageAnoisy.txt")) and image(temp). Adapt the previously constructed Gibbs sampler to sample from the posterior distribution when the lsing model is used as a prior. Use toroidal edge correction and try out different $\tilde{\beta}$ values.

Exercises continued

10. Consider the posterior distribution in exercise 6 with $\tau = 0$. Show that the posterior mean is

$$\hat{x} = \frac{1}{\sigma^2} (Q + \frac{1}{\sigma^2} I)^{-1} y$$

Compute the posterior mean based on the image data from previous exercise ($\sigma^2 = 0.25$). Try out varying values of κ .

Hint: use the sketch code bayesian_GMRF.R. Explain what is going on. Note moreover that $x = K^{-1}y \Leftrightarrow Kx = y$. If K is positive definite, $K = U^{\mathsf{T}}U$ for an upper triangular U. Thus we can solve $Kx = y \Leftrightarrow U^{\mathsf{T}}Ux = y$ in two steps involving first U^{T} and next U. Each step is computationally efficient because U and U^{T} are triangular matrices.