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Outline:

1. Auto-logistic (Ising) and auto-Poisson models

2. Estimation for Ising model

3. Bayesian Image analysis

4. Gibbs sampler (MCMC algorithm)

5. Phase-transition for Ising model
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Brooks vs. Hammersley-Clifford
Given a set of (alledgedly) full conditionals we can use either
Brooks or H-C to identify candidate for a joint (unnormalized)
density p(·). In both cases we need to check that p(·) can be
normalized and that it is consistent with the given full conditionals.

On disadvantage of Brooks is that it in principle yields n! solutions
(possible non-uniqueness) and it does not inform on the form of
p(·).

For H-C, we can construct the interaction functions using the full
conditionals in a systematic way following the proof of 1. ⇒ 2. For
given y these interaction functions and hence p(·) are uniquely
determined by the full conditionals. Moreover, we can easily check
that the constructed interaction functions are consistent with the
full conditionals since

pi (xi |x−i ) ∝
pi (xi |x−i )

pi (yi |x−i )
=

p(x)

p(x−i , yi )
=

∏
C :i∈C

ϕ(xC )
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Gaussian MRF

Consider graph G = (V ,E ) and full conditionals

pi (xi |x−i ) ∝ exp(− 1

2κi
(xi − µi +

∑
l∼i

βil(xl − µl))
2)

where βij/κi = βji/κj .

Letting y = (µl)l∈V , we have following H-C that

ϕ∅ = p(µ) (to be determined) ϕi (xi ) = exp(− 1

2κi
(xi − µi )

2)

ϕ{i ,j}(xi , xj) = exp(−
βij
κi

(xi − µi )(xj − µj))

and ϕC (xC ) = 1 for #C > 2.

Note ϕ{i ,j} covers both pairs (i , j) and (j , i).
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How ?
Start with ϕ∅ = p(µ) (which we do not know yet).

By construction in proof of H-C:

ϕi (xi ) =
p(xi , µ−i )

p(µ)
=

pi (xi |µ−i )

pi (µi |µ−i )
= exp(− 1

2κi
(xi − µi )

2)

Note that this implies p(xi , µ−i ) = ϕi (xi )p(µ).

Next,

ϕ{i ,j}(xi , xj) =
p(xi , xj , µ−{i ,j})

p(µ)ϕi (xi )ϕj(xj)
=

p(xi , xj , µ−{i ,j})

p(xi , µ−i )ϕj(xj)
=

pj(xj |xi , µ−{i ,j})

pj(µj |xi , µ−{i ,j})ϕj(xj)
= exp(−

βji
κj

(xi − µi )(xj − µj))

Proceeding in the same way, we obtain ϕC (xC ) = 1 for all C of
cardinality #C > 2 (of course we only need to consider C that are
cliques with respect to G )
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Considering the constructed p(x)/p(µ) and letting Qij = βij/κi
(with βii = 1) we see that this is the unnormalized density of
N(µ,Q−1) provided Q is positive definite.

If Q is positive definite we can conclude

ϕ∅ = p(µ) = (2π)−#V /2|Q|1/2

For a Gaussian vector X = (Xl)l∈V we know that the full
conditional of Xi only depends on those Xj for which Qij ̸= 0.

Hence, X is a MRF with respect to G ⇔ Qij = Qji differs from
zero only if {i , j} ∈ E .

Note that the above is an example that ϕC can be equal to one
also for C that is in fact a clique.
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Auto-logistic model
Consider 2D rectangular L× K lattice V with horizontal/vertical
neighbours. Only possible cliques are then singletons or pairs of
horizontal or vertical neighbours.

Consider stochastic vector X on {0, 1}V with

pi (xi |x−i ) =
exp(αxi + β

∑
j∈Ni

xixj)

1 + exp(α+ β
∑

j∈Ni
xj)

Note pi (1|x−i ) corresponds to logistic regression with covariate
given by number of neighbouring 1’s.

Following construction in proof of Hammersley-Clifford with
y = (0, . . . , 0) we obtain

ϕi (xi ) = exp(αxi ) ϕ{i ,j}(x{i ,j}) = exp(βxixj)

We do not need to consider C with #C > 2 since such a C can
not be a clique.
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Unknown normalizing constant

Hence joint density is

p(x) = p(0) exp(α
∑
l∈V

xl + β
∑

{i ,j}∈E

xixj)

Sum defining

p(0) =

 ∑
x∈{0,1}V

exp(α
∑
l∈V

xl + β
∑

{i ,j}∈E

xixj)

−1

has 2LK terms !

Finite but in general impossible to compute exactly.

Hence we only know p(·) up to proportionality.
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Boundary conditions

▶ free boundary: pixels at edges have only 2 or 3 neighbours

▶ fixed boundary: we condition on fixed values of boundary
pixels. Then all interior “random” pixels have 4 neighbours

▶ toroidal (similar to circulant): edge pixels neighbours of pixels
on opposite edge. E.g. pixel (1, j) becomes neighbour of pixel
(L, j). Hence all pixels have 4 neighbours.
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Symmetric case

Suppose all pixels have 4 neighbours (fixed or toroidal boundary).

If
∑

j∈Ni
= 2 we may want pi (0|x−i ) = pi (1|x−i ).

This is achieved with α = −2β.
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Ising model

Autologistic model is another name for the very famous Ising model
(from statistical physics). In statistical physics 0, 1 are replaced by
−1, 1 representing “spins” of elementary particles in piece of iron.

An equivalent form is

p(x) ∝ exp(α̃
∑
l∈V

xl + β̃
∑

{i ,j}∈E

1[xi = xj ]) (1)

That is, with β̃ > 0, the model assigns large probabilities to x with
many neighbours of equal value.

If xi ∈ {0, 1} and all pixels have four neighbours then (1) is
equivalent to auto-logistic with α = α̃− 4β̃ and β = 2β̃.
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Simulation of MRF

Gaussian MRF: use sparse matrix Cholesky decomposition of
precision matrix.

General MRF: Markov chain Monte Carlo. Here we consider the
so-called Gibbs sampler
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Gibbs sampler
Idea: generate Markov chain X 1,X 2, . . . so X n converges to the
distribution p of X .

Reasonable requirement: p is invariant distribution for Markov
chain. That is, if X i ∼ p then also X i+1 ∼ p. This is implied by
reversibility:

P(X i ∈ A,X i+1 ∈ B) = P(X i ∈ B,X i+1 ∈ A) when X i ∼ p

(set B equal to sample space S of X . Then reversibility implies
P(X i ∈ A) = P(X i+1 ∈ A))

Gibbs sampler update: given X i = x i pick l in V and let
X i+1 = (X i

−l ,Yl) where Yl is sampled from conditional distribution

of Xl |X−l = x i−l .

l can be chosen at random in V or we can run through V in a
systematic order.
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Gibbs update is reversible
Let S =

∏
l∈V Sl be sample space of X .

P(X i ∈ A,X i+1 ∈ B) =

∫
S

∫
Sl

1[(x−l , yl) ∈ B, x ∈ A]pl(yl |x−l)dylp(x)dx

Moreover, using a change of variable,

P(X i ∈ B,X i+1 ∈ A) =

∫
S

∫
Sl

1[(x−l , yl) ∈ A, x ∈ B]pl(yl |x−l)dylp(x)dx

=

∫
S

∫
Sl

1[x ∈ A,(x−l , yl) ∈ B]pl(xl |x−l)dxlp(x−l , yl)dx−ldyl

These two integrals are equal since

p(x)pl(yl |x−l) = p(yl , x−l)pl(xl |x−l)

Under weak regularity conditions one can show that the Gibbs
sampler Markov chain converges to p(·).

I.e. X 1,X 2, . . . serves as a random sample of (dependent)
observations from p(·).
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Estimation

Suppose we have observed realization of auto-logistic model.

Likelihood is

p(x ;α, β) = p(0;α;β) exp(α
∑
i∈V

xi + β
∑
i∼j

xixj)

Problem: normalizing constant

c(α, β) = [p(0;α, β)]−1 =
∑

x∈V {0,1}

exp(α
∑
i∈V

xi + β
∑
i∼j

xixj)

can not be evaluated exactly and is difficult to approximate
numerically.
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Besag’s pseudo-likelihood
Likelihood function for auto-logistic is intractable due to unknown
normalizing constant

Julian Besag suggested to maximize the pseudo-likelihood (product
of full conditionals)

PL(α, β) =
∏
i∈V

pi (xi |x−i ;α, β)

Not likelihood except if Xi ’s independent.

Score of log pseudo-likelihood is an unbiased estimating function

E
d

dαdβ
log pi (Xi |X−i ;α, β) = 0

(Bartlett identity) and one can show that PL estimates are
asymptotically normal.

Computationally straightforward - formally equivalent to logistic
regression. 16 / 28



Bayesian image analysis

Consider a pixel image X = (Xi )i∈V where Xi represents the
color/intensity for pixel i .

Suppose we observe “dirty” image Y where

Yi = Xi + ϵi

where ϵi represents independent zero-mean noise terms with some
density ϵi ∼ f .

We want to reconstruct X given observation y of Y !

Idea behind Bayesian image analysis: represent prior beliefs about
X using a probability distribution and infer X using posterior
distribution X |Y = y .
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Pixel values continuous
Suppose Xi ∈ R. We believe neighbouring pixel values are similar.
We might model this using Gaussian MRF introduced in previous
lecture. I.e. with µi = µ and κi = κ,

Xi |X−i = x−i ∼ N(µ+
1

#Ni + τ

∑
k∼i

(xk − µ),
κ

#Ni + τ
)

That is the conditional mean of Xi is essentially µ corrected with
average deviations for neighbours. Joint density is of form

p(x) ∝ exp[−1

2
(x − µ)T(Q + τ I )(x − µ)]

Assume ϵi ∼ N(0, σ2). Posterior is

p(x |y) ∝ p(y |x)p(x) ∝ exp[− 1

2σ2

∑
i∈V

(yi − xi )
2]p(x) (2)

which is again a Gaussian MRF.
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Posterior is known exactly (we can evaluate normalizing constant).

Note also: posterior Gaussian MRF is well-defined also with τ = 0
in which case it does not depend on µ.

This is nice since we then do not need to specify µ.
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Image segmentation

Image consists of two types (e.g. black or white) homogeneous
regions. We may take Xi ∈ {0, 1} with 0 for black and 1 for white.

Homogeneity: most neighbouring pixel values are of the same type
⇒ use Ising model as prior !

Assume again Gaussian noise. Then posterior is

p(x |y) ∝ exp(− 1

2σ2

∑
i∈V

(yi − xi )
2 + α̃

∑
i∈V

xi + β̃
∑
i∼j

1[xi = xj ])

Again MRF distribution !

This time normalizing constant intractable but we can at least
simulate posterior using Gibbs sampler.

We may want to use symmetric prior with α̃ = 0.
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Contingency tables and graphical models

Consider a K -way contingency table given by combinations of K
factors where the kth factor has values in set Sk .

For example 3 factors Smoker S1 = {yes, no}, lung cancer
S2 = {yes, no}, Age S3 = {young ,middle, old}.

Consider an individual/object which is classified according to
random values of these factors - leads to discrete random vector X
that takes value x = (x1, . . . , xK ) if factor l takes the value xl . E.g.
outcome could be (yes, no,middle) if person is middle-aged smoker
without lung cancer.

Let
p(x) = P(X = x)

for x in sample space S =
∏K

k=1 Sk . E.g. p(yes, no,middle) is
probability of above outcome.
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Suppose we have n individuals with vectors X1, . . . ,Xn. Let Nx

denote the number of individuals with Xi = x .

We can model vector of numbers N = (Nx)x∈S of individuals for
each combination x of factor levels using a multinomial
distribution N ∼ multinomial(n, (p(x))x∈S).

Imposing a MRF structure on probability p(x) allows us to study
conditional independence properties of various factors. E.g. is
smoking conditionally independent of lung cancer given age ?
(OK, not true :))

Conditional independence structure can be visualized via
accompanying graph where vertices represent factors.
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Phase transitition

Ernst Ising proposed his model as a model for ferromagnets. The
spins represent orientations of iron-atoms. If majority of spins
either + or - then the piece of iron is a magnet.

Consider the model with α̃ = 0 (no prefence for either + or -)

In one dimension, the Ising model is a Markov chain. According to
the central limit theorem M = 1√

n

∑
i∈V xi will converge to a zero

mean normal distribution. I.e. distribution centered on
configurations with roughly equal numbers of + and -.

In two or more dimensions the picture is completely different.
There exists a critical value β̃c ≈ 0.88 so that for β̃ < β̃c , the
distribution of M is unimodal, while for β̃ > β̃c , the distribution is
bi-modal ! I.e. either majority of + or majority of - !

23 / 28



You can observe this by simulation: run a Gibbs sampler for large
number of iterations starting from a random starting point (X 1

i +
or - with probability 0.5 each and initial spins independent).

For super critical β̃ > 0.88 the Markov chain will end up in
configurations dominated by either + or -. And once in a
configuration with majority of + it takes a (very) long time to
move to a configuration with a majority of - (and vice versa).

If β sub critical roughly equal amount of + and -
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Exercises

1. Identify the ϕC functions for the auto-logistic model
(following proof of the Hammersley-Clifford theorem, use
y = (0, 0, . . . , 0)).

2. Use Brook’s lemma to identify p(·) for the auto-logistic model.
Does the result depend on the order of the factorization ?

3. Show that (1) is equivalent to the auto-logistic model in the
case where all pixels have 4 neighbours

Hint: 1[xi = xj ] = xixj + (1− xi )(1− xj) when xi , xj ∈ {0, 1}.
4. Auto-Poisson: suppose Xi |X−i = x−i is Poisson with mean

exp(α+ β
∑

j∈Ni
xj) with neighbourhood structure as for the

auto-logistic. Find the joint distribution of X . Show that it is
well-defined when β ≤ 0 (meaning

∑
x∈S h(x) < ∞) but not

(
∑

x∈S h(x) = ∞) when β > 0 and h(·) denotes the
unnormalized simultaneous density.
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Exercises continued

5. How can you simulate a Gaussian MRF when the Cholesky
decomposition Q = LLT has been obtained for the precision
matrix ?

6. Show that the posterior distribution (2) is a Gaussian MRF.
Also show that the posterior does not depend on µ when
τ = 0.

Hint: if Z ∼ Nn(ξ,K
−1), then

p(z) ∝ exp(−1

2
zTKz + zTKξ).

7. Implement and run Gibbs sampler for the Ising model (1) with
xi ∈ {0, 1}. Use fixed boundary with all boundary pixels equal
to 1. Consider the symmetric case α̃ = 0 and values of
β̃ = 0.4, 0.7, 0.9. What do you observe ? (some code
available on webpage).
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Exercises continued
8. 8.1 Show that the score function of pseudo-likelihood is unbiased.

8.2 Implement pseudo-likelihood for auto-logistic model when a
fixed boundary condition is used (use R-procedure glm) (some
code available on webpage).

8.3 Estimate α and β from the data set isingdata.txt using
fixed boundary condition.

The data was generated from (1) with α̃ = 0 and β̃ = 0.4. Do
your estimates of α and β seem reasonable compared to this ?

9. The data set imageAnoisy.txt contains a binary
(black/white) image corrupted by iid normal noise with mean
zero and standard deviation 0.25. You can read and view it
using
temp=as.matrix(read.table("imageAnoisy.txt")) and
image(temp). Adapt the previously constructed Gibbs
sampler to sample from the posterior distribution when the
Ising model is used as a prior. Use toroidal edge correction
and try out different β̃ values.
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Exercises continued

10. Consider the posterior distribution in exercise 6 with τ = 0.
Show that the posterior mean is

x̂ =
1

σ2
(Q +

1

σ2
I )−1y

Compute the posterior mean based on the image data from
previous exercise (σ2 = 0.25). Try out varying values of κ.

Hint: use the sketch code bayesian_GMRF.R. Explain what is
going on. Note moreover that x = K−1y ⇔ Kx = y . If K is
positive definite, K = UTU for an upper triangular U. Thus
we can solve Kx = y ⇔ UTUx = y in two steps involving first
UT and next U. Each step is computationally efficient
because U and UT are triangular matrices.
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